
Dynamic Service Oriented Architectures through
Semantic Technology

Suzette Stoutenburg1, Leo Obrst2, Deborah Nichols2, Ken Samuel2, and Paul

Franklin1

1 The MITRE Corporation, 1155 Academy Park Loop
Colorado Springs, Colorado 80910

2 The MITRE Corporation, 7515 Colshire Drive
McLean, Virginia 22102

{suzette, lobrst, dlnichols, samuel, pfranklin}@mitre.org

Abstract. The behavior of Department of Defense (DoD) Command and
Control (C2) services is typically embedded in executable code, providing static
functionality that is difficult to change. As the complexity and tempo of world
events increase, C2 systems must move to a new paradigm that supports the
ability to dynamically modify service behavior in complex, changing
environments. Separation of service behavior from executable code provides
the foundation for dynamic system behavior and agile response to real-time
events. In this paper we show how semantic rule technology can be applied to
express service behavior in data, thus enabling a dynamic service oriented
architecture.

Keywords: Dynamic Service Oriented Architectures, Integrated ontology and
rules, Knowledge Management, Semantic rules, Web services.

1 Introduction

In this paper, we describe an implementation that applies a proposed standard rule
language with ontologies to construct dynamic net-centric web services. We
successfully show that rules for service behavior can be expressed in XML-based
languages with formal semantics. This greatly simplifies the service code and allows
rules for behavior to be changed dynamically with no code modifications, thus
achieving an agile service architecture.

We modeled a military convoy traveling through an unsecured area under changing
conditions. The World Wide Web Consortium (W3C) standard Web Ontology
Language (OWL)1 was used to describe the battlespace domain and the proposed
W3C Semantic Web Rule Language (SWRL)2 was used to capture recommended
operating procedures for convoys in theater. We translated the ontologies and rules

1 http://www.w3.org/TR/owl-features/
2 http://www.w3.org/Submission/SWRL/

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 06-0904

into a logical programming language to produce an integrated knowledge base that
derives alerts and recommendations for the convoy commander. In our experiment,
two sets of rules were used: one set models rules of engagement for favorable
visibility conditions on the battlefield, and the other models rules of engagement for
poor visibility conditions. When a dynamic event, such as an unexpected sandstorm,
occurs, this causes the latter set of rules of engagement to be applied to the service to
guide the convoy to safety. In this paper, we provide a description of our approach
and outline the architectural options for constructing dynamic services. We briefly
describe the semantic-based approach utilizing the ontologies and rules that we
developed. We conclude with our findings and recommendations.

2 Use Case

To demonstrate the potential power of agile services, we selected a convoy support
scenario for our use case. In this scenario, a convoy moves through enemy territory.
As the convoy approaches potential threats, a web service consults an integrated
knowledge base (consisting of ontologies and rules) to generate alerts and
recommendations for action. These alerts and recommendations are provided to the
convoy commander for decision support. The integrated knowledge bases can be
switched dynamically, thus achieving instantaneous change in service behavior. In
particular, we implemented an approach in which dynamic events, such as an
unexpected sandstorm, automatically trigger the swapping of knowledge bases, thus
effecting dynamic services. With this scenario, we demonstrate agility in a dynamic
battlefield, a current real mission need, with application to mission challenges of the
Army, Air Force, Joint Forces and others.

3. Implementation Overview

The high-level design of the application is shown in Figure 1. The components of the
system include the following.
• Enterprise Service Bus (ESB)
• Google Earth3 Client
• AMZI Prolog Logic Server4

• Knowledge Base
• Convoy Service
• Adapter
• Message Injector

We selected Mule5 as the ESB solution to manage the interactions of the components
in our solution. The ESB detects messages moving between components,

3 http://earth.google.com/
4 http://www.amzi.com/
5 http://mule.codehaus.org/

Enterprise Service Bus

AMZI Logic
Server

Google Earth
Client

Message
Injector

Adapter

Events

Convoy
Service

Knowledge
Base 1

Knowledge
Base 2

Enterprise Service Bus MULE

PROLOG

OWL+SWRL OWL+SWRL

XML/KMLKML

XML Schema

Java Java

AMZI Messages

Fig. 1. High-Level Application Design

including events that cause the swapping of knowledge bases. ESB technology also
applies translations when appropriate, by using the XSLT capabilities of the Adapter.

We chose Google Earth as the client, since it offers seamless integration of multiple
data sources via its Keyhole Markup Language (KML). We were able to show that
structured data from heterogeneous sources can be translated to KML and easily
rendered, thus offering the potential for dynamic, user-defined displays.

AMZI’s Prolog Logic Server was selected as the platform on which to host the
integrated ontologies and rule base. Prolog was selected because it is based on
formal logic and therefore supports the notion of proof.

The Knowledge Base consists of integrated ontologies, rules and instances.
Ontologies were constructed in the Web Ontology Language (OWL) and the rules in
the Semantic Web Rule Language (SWRL). These were then translated to one
Knowledge Base in Prolog.

We constructed the Convoy Service, a software service that detects events (message
exchanges over the ESB), consults the knowledge base, and delivers appropriate alerts
and recommendations to the convoy commander via Google Earth clients.

The service operates under a very basic set of instructions:

“Something moved on the battlefield.
What does that mean for the convoy?”

To determine the answer, the Convoy Service queries the integrated knowledge base
to determine what new events mean to the convoy. So, the rules for behavior of the
Convoy Service are in fact, expressed in data, thus allowing for agile response to real-
time events. The Convoy Service also detects when the rules of behavior should

change (based on message exchanges over the ESB) and triggers the swapping of
rules on the AMZI Logic Server.

The Adapter comprises a set of XSLTs that are invoked by the ESB to translate
messages to the appropriate format as they move between components. XSLTs have
been developed to convert from OWL, SWRL and RuleML6 to Prolog.

We constructed a Message Injector, which sends messages over the ESB to simulate
events on the battlefield. For this experiment, we constructed messages using the
Ground Moving Target Indicator (GMTI) Format (STANAG 4607) and the United
States Message Text Format (USMTF) Intelligence Summary (INTSUM) message
format (3/31/2004).

The application works as follows. First, the Message Injector sends event messages
over the ESB, such as convoy movement and weather events. The Adapter detects
the event messages and applies the new information to both knowledge bases, so that
they are both ready to be applied at any time. If the Convoy Service sees an event
that could potentially impact alerts and recommendations to the convoy commander, a
query is sent to the AMZI Prolog Logic Server, requesting the latest alerts and
recommendations. The Google Earth client then presents them to the convoy
commander.

Certain events are recognized by the Convoy Service as events that should trigger a
change in rule sets. For example, if a weather report is issued indicating reduced
visibility on the battlefield, the Convoy Service stops querying the high-visibility
knowledge base, switching to the low-visibility knowledge base. More details on the
separation of rules from software are provided in section 5.

4. Architecture Options for Dynamic Services

There are a number of issues that must be considered when developing an integrated
knowledge base to support dynamic service behavior. These include design decisions
such as how to structure the rule bases (which impacts how to trigger and implement
the swapping of rules), and whether to store instances in an ontology or a database.

One approach to structuring knowledge bases is to build fully separate knowledge
bases designed to handle different environments or situations. For example, we chose
to build two independent rule sets, one to handle favorable visibility on the battlefield
and one to handle poor visibility on the battlefield. If this approach is used, triggers
to invoke the applicable knowledge base could be handled by services or through a set
of meta-rules in the knowledge base, as shown in Figures 2 and 3 respectively.

6 http://ruleml.org/

Knowledge
Base1

Knowledge
Base2

Logic Server1 Logic Server2

Service

Fig. 2. Option for Dynamic Services: Service Triggers Knowledge Base Swap

Knowledge

Base1

Knowledge
Base2

Logic Server1

MetaRules

Service

Fig. 3. Option for Dynamic Services: Meta-rules Trigger Knowledge Base Swap

We selected the former case to simplify the rule set necessary to model the use case.
This approach also reduces the risk of unintended interactions of rules. By
instantiating a different logic server for each rule set, each knowledge base is ready to
be swapped at any time, allowing us to change service behavior instantly, whenever a
real-time event is detected. The disadvantage of this approach, however, is that the
burden of detection is on the service, which reduces agility. Applying meta-rules, on
the other hand, offers more flexibility, since these are expressed in data and can
therefore be changed without change in code.

Another design decision involves whether to store instances in a database or ontology.
We chose to store instances in the ontology to simplify the overall approach.
However, since we planned to swap between logic servers in real-time, we found we
had to keep both knowledge bases updated with instance information and
synchronized at all times. This didn’t pose any performance problems and in fact,

worked well in the AMZI environment. Finally, if instances are stored in a database,
then tools for linking database tables to ontological concepts must be used.

5. Ontologies

To understand how we separated rules from service behavior, it is necessary to have a
basic understanding of the ontologies we built to model the use case. The following
ontologies were constructed, each named for its most important class.
• TheaterObject – to describe objects in the battlefield and reports about them.
• RegionOfInterest – to describe regions of interest on the battlefield.
• Convoy –to describe the convoy, its mission, components, etc.
• ConvoyRoute – to describe routes the convoy might take.
• ConditionsAndAlerts – to model conditions and alerts that affect the convoy.

Figure 4 shows the high level relationships between the five major ontologies and
their key concepts. Note that in some cases, the name of an ontology is also the name
of a class. For example, Convoy is the name of the ontology but it is also the name of
a class in the ontology. Thus, it is shown as a subclass of MilitaryUnit. This was
done to show the high level structure of the ontology set.

The heart of the model is the class TheaterObject, representing objects in theater (i.e.,
on the battlefield.) Subclasses of TheaterObject include MilitaryUnit, Sniper,
RoadObstacle, and Facility. An instance of TheaterObject has a location, and it may
have a speed, heading, and a combat disposition (combatIntent), among other
features.

Fig. 4. Ontology Overview

 TheaterObject

hasFocalObject

DynamicRegion
ofInterestMilitaryUnit

subclassOf

subclassOf

RegionOfInterest

subclassOf

Convoy ConvoyRoute

hasCurrentRoute

ConditionsAnd
Alerts

conditionAffects

describedBy

Observation
Artifact

GMTIObservation

IntelSummary

VMTIObservation

subclassOf

Primary Ontology

Major class
within ontology

The property combatIntent is used to represent whether an object in theater is
friendly, hostile or has an unknown intention.

To distinguish the objects in theater from reports about them, we created the class
ObservationArtifact, which is the class of reports about objects in the theater. An
instance of ObservationArtifact has properties such as the time and location of the
observation, the object observed, and the observation source and/or platform. We
found the distinction between theater objects and observations to be very important,
as it allows inferencing over multiple reports about the same object in theater. This
provided the foundation for using rules to fuse information from multiple sources.
The distinction required that we build rules to transfer, or derive, property values from
an instance of ObservationArtifact to a corresponding instance of TheaterObject. We
modeled subclasses of ObservationArtifact, including GMTIObservation and
IntelSummary, based on the message formats referenced above.

The RegionOfInterest (ROI) ontology models the class of geospatial areas of special
interest surrounding theater objects. Each TheaterObject is the focal object of a
DynamicROI, since most theater objects move on the battlefield. An ROI is centered
on the position of its focal object. An ROI has shape, dimensions and area, which
may depend on the type of threat or interest. For example, ROIs are used to define a
“safety zone” around a convoy which must not be violated by hostile or suspicious
objects. Also, ROIs are used to define the area around a reported hostile track that
delineates the potential strike area of the threat.

The Convoy ontology models the class of organized friendly forces moving on the
ground. This ontology allows specification of the mission, components and personnel
associated with a convoy. Convoy is a subclass of TheaterObject. The ConvoyRoute
ontology provides a representation of possible paths of a convoy, including critical
points on primary and alternate routes. Recommended routes can change based on
application of rules.

The ConditionsAndAlerts ontology provides a description of situations on the
battlefield based on aggregations of events and actions of theater objects. As the
knowledge base grows, a set of conditions is constructed based on events on the
battlefield, which can result in alerts and recommendations to friendly forces.
Conditions, alerts and recommendations are generated through the application of
rules.

6. Rules

Rules were used to specify the behavior of the Convoy Service by incrementally
constructing a knowledge base of the situation on the battlefield from which alerts and
recommendations could be derived and made available to the convoy commander.
To that end, rules were applied in numerous ways. First, we used rules to construct a

conceptualization of the battlespace for enhanced situational awareness. This was
done in two major ways. First, rules were used to transfer the characteristics of
ObservationArtifacts to TheaterObjects. If a location, speed, combatIntent, etc., are
reported by (or inferable from) an observation, those characteristics must be
transferred to the observed object, as shown in Example Rule 1 below. Note that this
design positions the model to reason over multiple messages in the future, a potential
mechanism for sensor fusion.

Example Rule 1.

If there is a GMTI report about a mover,
 then the velocity of the mover is assigned the velocity in the GTMI report.

The second way the battlespace was conceptually constructed using rules was to
establish regions of interest (ROIs) around each theater object and derive
characteristics about those ROIs. For example, if the object is hostile, then we
classify its ROI as an AreaOfRedForceActivity. See Example Rules 2 and 3 below.
This also builds the basis for future enhancements, such as defining the ROI radius
size based on the capability of the threat. For example, a dirty bomb would result in a
much wider ROI than a sniper.

Example Rule 2.

If there is a TheaterObject,
 then there exists a RegionOfInterest that surrounds that object.

Example Rule 3.

If the TheaterObject is hostile,
then classify its RegionOfInterest as anAreaOfRedForceActivity.

Rules were also used to synthesize information from multiple sources, for greater
situational awareness. For example, the convoy’s “safety zone,” derived from GMTI
tracking, is correlated with threat locations reported by human intelligence, allowing
convoy commanders to be alerted.

Example Rule 4.

If an AreaOfThreatActivity intersects with the convoy’s RegionOfInterest,
then alert the convoy commander of the threat.

Rules are also used for logical processing of real-time events. Specifically, as
updated information modifies the picture of the battlespace, rules are used to derive
new knowledge relevant to the convoy’s safety. Example Rule 5 ensures that a new
intel report of a threat (such as a mortar emplacement) along the planned convoy
route will result in that route being flagged as unsafe.

Example Rule 5.

If a threat has a range that intersects with planned convoy route,
then classify that route as unsafe.

Accumulated events result in a build-up of conditions that may lead to alerts and
recommendations to the convoy. Examples are provided below.

Example Rule 6.

If a convoy’s planned route is unsafe, then recommend change of route.

Example Rule 7.
If threat is approaching from behind,

then recommend that convoy proceed at maximum speed.

7. Convoy Service Design

The design of the Convoy Service is very simple. The service basically monitors the
ESB for messages that provide information about events on the battlefield. When the
service detects that a relevant event has occurred that may impact the convoy, the
service queries the knowledge base to determine if new alerts and recommendations
may have been generated by the new event. The query is a semantic one, using the
ontologies and rules modeled in the integrated knowledge base. For example,
consider the case in which a track of unknown intent is moving on the battlefield.
The Convoy Service detects the event and queries the knowledge base, basically
querying for the concept of “unknown and hostile movers” and “alerts and
conditions”. The data source of instances of these concepts does not matter, since the
query is semantic; that is, over the concepts not the tables. The query triggers a set of
rules to fire, including rules to apply the new position of the unknown mover,
determine the size and location of the region of interest around that mover, and
whether or not the mover is now within proximity of the convoy. If the unknown
mover is within proximity, additional rules fire to construct conditions that lead to the
generation of alerts and conditions.

The Convoy Service also controlled which Logic Server was consulted when
battlefield events were detected. Recall that we implemented two sets of rules; one
was used to model rules of engagement for favorable visibility conditions and the
other set modeled rules of engagement for poor visibility conditions. When the
Convoy Service detected particular weather events, in particular, an unexpected
sandstorm, the service would switch logic servers. Subsequent queries would be
launched to the logic server instantiated with the more conservative (poor visibility)
rule set.

8. Findings and Conclusions

First, we found that expressing service behavior in structured data is a feasible
solution for constructing dynamic services. By separating the rules from the
executable code, and expressing service behavior in data, we show that dynamic
services can be constructed. So, given a real time event, we can swap rules sets, thus
delivering services that can be agile in real time. We were able to design a generic set
of instructions for the service (i.e., “Something moved on the battlefield, what does

that mean for the convoy?) then express the particular behaviors (which alerts and
recommendations apply?) in data, that is, in SWRL. We were able to build a
demonstration that supported sub second response time, rendering alerts and
recommendations to the Google Earth client.

We believe that a standard XML-based language with formal semantics, such as
SWRL, is the best choice for expressing service behavior since this allows the rules to
be “understandable” by machines, building the foundation for a Machine-to-Machine
Enterprise. Also, since the languages are W3C established or proposed standard, they
are inherently extensible, meaning that as other ontologies and rule sets are
developed, they can potentially be linked and reused for a richer knowledge model.
We also found that ontologies are useful to bridge the “dialects” of each data source,
allowing querying over concepts, thus freeing the application from having to
understand the many ways of representing an event.

Regarding the richness of the W3C semantic languages, we found that OWL is
expressive and meets the majority of identified DoD requirements. However, OWL
should be extended to support uncertainty, n-ary predicates (n > 2) and individual-
denoting functions. We found that neither SWRL (nor RuleML) supports some of the
more important DoD requirements identified in this use case, such as reasoning with
uncertainty, non-monotonic reasoning, assertion of the existence of new instances,
triggers to execute external code, and n-ary predicates. Extensions to these languages
will be proposed to support the DoD.

We found that the state of tools for expressing rules in W3C proposed standards are
immature or non-existent. We believe that an integrated framework of tools and
capabilities is needed to support dynamic service development, particularly in the
DoD. First, we need tools to allow the expression of semantic rules that support the
emerging W3C standards. Further, an integrated approach to specifying ontologies
and rules is needed. For example, we would like to see drop down lists of imported
OWL classes and properties while rules are being built, similar to how XML Spy and
other tools offer drop down lists of valid XML schema entries. We would also like to
see integrated validation of ontologies and rules when rules refer to ontologies or data
sources. The standard framework should include tools for specification, validation,
translation, execution and debugging. The GUI should hide the complexity of rule
constructs. Most importantly, integrated reasoning engines to operate over
ontologies and rules, with knowledge compilation for performance, are required.

