
 1

  
Abstract— This paper demonstrates the automatic creation of 

a web service that chains together existing web services to 
achieve a particular goal. The generated service implements the 
necessary workflows to convert an instance data of one system 
into an instance data of another. This paper further 
demonstrates the reconciliation of structural, syntactic, and 
representational mismatches between the input instance and the 
desired output instance.  
 

I. INTRODUCTION 
Traditional techniques for enterprise integration require the 

manual implementation of workflows in the form of code or 
Web Services Business Process Execution Language 
(WSBPEL) [1]. We developed a tool that automatically 
generates the necessary integration code in the form of a web 
service.  This web service enables information originating in 
one information system to be reused in another information 
system. The code generator leverages a small set of 
RDF/OWL mapping relations [2,3] in conjunction with 
context ontologies, ubiquitous enterprise concepts such as 
Types of Things, Time, and Position (What, When and 
Where) that relate all the various representations across the 
enterprise [2]. The generated web service implements a 
workflow that typically consists of the consecutive invocation 
of web services. These web services perform functions such as 
retrieval of data from data sources, translation between 
various representations of time and position, and other similar 
operations.  

 
To further illustrate the working of the code generator, we 

will begin by discussing the integration of two air flight 
systems: Air Mobility (AM) and the Air Operations (AO).  
First a little background, the AM system is responsible for 
many different types of missions including: mid-air refueling, 
the movement of vehicles, and Air Force One.  The AO 
system is primarily concerned with offensive and defensive 
missions.  These were developed independently and built for 
the specific needs of the users. 

 
In the following scenario we would like to integrate these 

two systems so that the AO system can be kept aware of all of 
the AM missions.  To this end a third system will need to be 
created to accomplish this integration.  It will be a web service 
 
 

that implements the necessary workflows to convert an AM 
instance into an AO instance.  The code generator is then able 
to create this web service provided that each system is 
described with an IS ontology, representing the context [4] of 
each system, which is mapped to the context ontologies, and 
has the necessary mappings between them. 

 
To keep things simple, assume that the only information 

that the AO system needs from the AM system is the plane’s 
call sign, its aircraft type, and its position; however, this 
information will need to be structured in such a way that the 
AO system can process it natively.  This will allow the AO 
system to display the correct airplane icon and call sign in the 
right location. So the generated web service will need to 
retrieve an instance of an AM mission and convert the data to 
an instance of an AO mission, in doing so it will need to 
overcome structural, representational, and semantic 
mismatches.   

 
To achieve this end, the code generator creates an empty 

AO instance which is then populated with data from the 
ontologies and the AM instance.  There are three types of 
transformations that can occur when moving data from one 
system to another. This simplest is that of merely copying the 
data to the correct locations to harmonize structural 
differences.  In AM-AO example, the call sign needs to be 
transferred as it is so that a user in the AO system can contact 
the plane as required.  A slightly more complicated 
transformation is needed to correct syntactic differences when 
dealing with enumerated data types.  This is accomplished by 
substitution, in our case every time an “A10A” is encountered 
it is replaced by “AO10A”, and then it is transferred to its 
correct position in the AO instance.   

  
The third and final transformation involves the 

reconciliation of representational mismatches; that is, cases in 
which the data needs to be converted from one representation 
to another. The code is generated in two steps; the first step 
converts the data into the desired representation, and the 
second inserts this data into the correct position.  This requires 
an understanding of the context the data has, for example if a 
measurement is in miles or kilometers [reference to the space 
probe accident], or the time zone of a time.  To convert an AM 
coordstring, which is a coordinate stored in UTM format (for 
example: “21 N 678076 5423265”), to an AO coordinate, 
which has a geodetic format (an xml representation that has 

Using Data Semantics to Enable Automatic 
Composition of Web Services 

Danny Gagne, Marwan Sabbouh, Dr., and Scott Bennett, Susan Powers 

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 06-0814




 2

both latitude and longitude), requires the invocation a third 
party web service called Geotrans.  Geotrans is mapped into 
the position [5] context ontology, and is capable of converting 
between different representations of location data. After 
Geotrans is executed it returns an instance containing latitude 
and longitude that is moved to the AO instance.  

 
The next section will briefly describe the methodology that 

is used to create the ontologies and map them together, and 
then we will describe the code generation process in detail. 

 

II. BACKGROUND 
The system ontologies, expressed in OWL\RDF [6, 7], 

define the local semantics for each system, and are enriched 
through their relations to the various context ontologies.  
Furthermore, through their mapping to other system 
ontologies, as shown in Fig. 1, they enable the code generator 
to reason over the mapped ontology to reconcile syntactic, 
structural, and representational mismatches. 

 
 

AO-AIRCRAFT-
TYPES

HAS-
ACFTTYPE

F-16E

CALLSIGN
NAME

AM
CALLSIGN

AM
SORTIE 
EVENT

HAS-
LOCATION

OWL:sameAs
AIR

FIELD

HAS-COORD

HAS-MATCH

Air Mobility Air Operations 

HAS-EVENT

HAS-
MISSION-
AIRCRAFT HAS-CALLSIGN

HAS-ACFTYPE

AM
MISSION
AIRCRAFT

AM
AIRPLANE

TYPE

HAS-
MATCHING-

VALUE

IS-A

A10A

IS-A

F-16

HAS-MATCH

OWL:sameAs

AM-FLIGHT

HAS-CALLSIGN
NAME

IS-A IS-A

A010A

HAS-
AIRCRAFTCONFIG

AIRCRAFT
CONFIG

EVENT

HAS-EVENT

HAS-
LOCATION

AO-FLIGHT

LONGITUDE

LATITUDE

HAS-
LONGITUDE

LATLONHTCOORDINATE
_WGE

AM 
LOCATION

HAS-COORD

AO-COORD
(Geodetic)

HAS-CONTEXT
HAS-

LATITUDE

HAS-CONTEXT

UTM-
COORDINATE

_WGE

HAS-ZONE
COORD
ZONE

HAS-HEMICOORD
HEMI

HAS-NORTHINGY
COORD

NORTHINGY

AM 
COORD
(UTM)

HAS-NORTHINGY
COORD

EASTINGX

AO-AIRCRAFT-
TYPES

HAS-
ACFTTYPE

F-16E

CALLSIGN
NAME

AM
CALLSIGN

AM
SORTIE 
EVENT

HAS-
LOCATION

OWL:sameAs
AIR

FIELD

HAS-COORD

HAS-MATCH

Air Mobility Air Operations 

HAS-EVENT

HAS-
MISSION-
AIRCRAFT HAS-CALLSIGN

HAS-ACFTYPE

AM
MISSION
AIRCRAFT

AM
MISSION
AIRCRAFT

AM
AIRPLANE

TYPE

AM
AIRPLANE

TYPE

HAS-
MATCHING-

VALUE

IS-A

A10A

IS-A

F-16

HAS-MATCH

OWL:sameAs

AM-FLIGHT

HAS-CALLSIGN
NAME

IS-A IS-A

A010A

HAS-
AIRCRAFTCONFIG

AIRCRAFT
CONFIG

EVENT

HAS-EVENT

HAS-
LOCATION

AO-FLIGHT

LONGITUDELONGITUDE

LATITUDELATITUDE

HAS-
LONGITUDE

HAS-
LONGITUDE

LATLONHTCOORDINATE
_WGE

LATLONHTCOORDINATE
_WGE

AM 
LOCATION

HAS-COORD

AO-COORD
(Geodetic)

HAS-CONTEXTHAS-CONTEXT
HAS-

LATITUDE
HAS-

LATITUDE

HAS-CONTEXTHAS-CONTEXT

UTM-
COORDINATE

_WGE

UTM-
COORDINATE

_WGE

HAS-ZONEHAS-ZONE
COORD
ZONE

COORD
ZONE

HAS-HEMIHAS-HEMICOORD
HEMI

COORD
HEMI

HAS-NORTHINGYHAS-NORTHINGY
COORD

NORTHINGY
COORD

NORTHINGY

AM 
COORD
(UTM)

HAS-NORTHINGYHAS-NORTHINGY
COORD

EASTINGX
COORD

EASTINGX  
Fig.1. Mappings between the AM and AO System Ontologies. 
 
This diagram, Fig. 1, highlights the following four 

relationships: HAS-MATCHING-VALUE, HAS-CONTEXT, 
HAS-MATCH, and OWL:sameAs. These relationships are 
created when integrating the two systems; each system has 
already been mapped to the appropriate context ontologies. 
The HAS-MATCHING-VALUE relation signifies that the 
values are equivalent, whereas HAS-MATCH only denotes 
semantic correspondence. That is, concepts that are connected 
by HAS-MATCH relationships must also share either a context 
(HAS-CONTEXT), or have instances that are linked together 
using OWL:sameAs. The sharing of a context permits the 
reconciliation of representational mismatches between two 
concepts. 

 
The system ontologies are not complete until they have 

been mapped to their respective web services.  This is 
accomplished by translating the Web Service Description 
Language (WSDL) [8] file for each web service into its own 
WSDL ontology, and web service upper ontology [9].  The 
web service upper ontology is mapped to the system ontology, 
and serves a similar purpose as that of the OWL-S Service 
Profile [10].  The WSDL ontology contains all of the 

information in a WSDL file, and is mapped to the system 
ontology to annotate the XML elements and attributes, defined 
in the WSDL file, with semantics. This allows for a concept in 
the system ontology to be shared between multiple web 
services.  For instance, a concept in the system ontology can 
be mapped to the input of one web service and to the output of 
another web service.  This information plays a role when the 
output of one web service is used as the input to another web 
service. 

 

 
 
Fig. 2. Integration of the MAF-SERVICE to the AM ontology. 
 
Fig. 2 illustrates the mappings that are created when adding 

a web service to the AM system ontology.  The web service 
upper ontology, MAF-SERVICE, is mapped to concepts in the 
system ontology using the OWL/RDF mapping relations: 
HAS-RESULT, HAS-INPUT, HAS-OUTPUT, IN-
PARAMETER, and OUT-PARAMETER.  These same concepts 
in the system ontology are mapped to the WSDL ontology 
using the OWL/RDF mapping relation IS-VALUE-OF. For 
example, COORDSTRING, the OUT-PARAMETER of the 
MAF-SERVICE as shown in Fig. 2 is also linked to 
WS:COORDSTRING using the OWL/RDF mapping relation 
IsOutputValueOf. 

 
Once these mappings have been completed, we reason over 

the ontologies using either a Direct Path Query (DPQ) or an 
Incoming Intersection Query (IIQ) to discover workflows, to 
retrieve default parameters, to reconcile structural, syntactic, 
and representation mismatches. Both the DPQ and IIQ 
algorithms make use of RDF/OWL inferences and are 
described as follows: the DPQ is given a list of input values 
and a desired output, the DPQ creates the set of all the direct 
paths that lead to the desired output concept from the input 
concepts. The IIQ is also given a list of input values and a 
desired output and performs a series of DPQs in the following 
manner.  First, the algorithm uses a DPQ to create the set of 
all the direct paths, starting from any node in the graph, that 
lead to the desired output concept. Second, for each input 
value, the algorithm uses a DPQ to create the set of direct 
paths, starting from any node in the graph, that lead to that 
input value. Third, the algorithm returns the intersection of 
these sets. These algorithms are provided to the code 
generator as part of the semantic framework [2, 9].  In the next 
section we discuss how the code generator uses these queries 
to produce the code. 



 3

III. CODE GENERATION 
To facilitate the integration of each system we generate a 

web service that can convert an instance from one IS to 
another.  This is accomplished by reasoning over the 
ontologies presented in the previous section. There are three 
distinct phases that define the creation of the service.  The first 
is the processing of the high level workflow, the second is the 
processing of the nested parallel workflows, and the third is 
the creation of the output instance. Once these phases have 
been completed the web service is compiled and deployed to 
the web server.  

 
The code generator uses a DPQ with the input value of 

MAF-MISSION-KEY and the output value of CAF-
AIRMISSION to retrieve the high level workflow shown in 
Fig. 3. This workflow denotes the steps that are used to 
retrieve the data, and if necessary the additional steps needed 
to reconcile mismatches to create the correct instance for the 
output. In our case Fig. 3 specifies that the MAF-
MISSIONKEY, a mission id, will be used to retrieve a MAF-
MISSION-OBJECT from the MAF-SERVICE web service. 
We refer to the MAF-MISION-KEY as the input object to the 
webservice and the MAF-MISSION-OBJECT as the output 
object.  The MAF-MISSION-OBJECT will then be used as 
the input to the ONTOMAPPER process; the ONTOMAPPER 
concept signifies that there are structural, syntactic, and 
representational mismatches between the AM and the AO 
system ontologies that need to be reconciled.  Whenever 
ONTOMAPPER is encountered, the generator uses a DPQ to 
retrieve the parallel workflows that are needed to resolve these 
mismatches.  

 
 

 
 
Fig. 3. High level workflow to convert a MAF-MISSION-KEY to a CAF-

AIRMISSION 
 
The processing of the workflows will be described in the 

next section. 
 

A. Processing The Workflow 
 
To convert the workflow from an RDF/XML document into 

C# [11] code, the workflow is loaded into memory as an RDF 
graph.  Then the full class definition of each concept is 
retrieved using services provided by the semantic framework. 
This data is then merged into the RDF graph.  Next each 
concept is assigned an implementation type determined by its 
position in the graph. The graph of implementation types 
provides an environment from which code is generated.  The 
implementation types denote whether a concept represents a 
web service, complex type, complex array type, simple type, 
simple array type, polymorphic type, composite type, 
reference name, method name, instance value, parameter type, 

onto web service, or a mock type.  For brevity we will discuss 
those types representing web services, parameter types, 
complex types, composite types. 

 
A concept is assigned the web service implementation type 

if the concept is a subclass of the WEBSERVICE concept.  
The type representing the web service is defined as having the 
following members: references to the composite types 
denoting the input and output objects, arrays of the parameter 
implementation types denoting the [in]parameters and [out] 
parameters, a string containing the WSDL, a 
CodeNamespace[12] containing the proxy code for the 
webservice, and the namespace, class, and method name used 
to invoke this proxy.   

 
Concepts in the graph that are the object of the relationships 

IN-PARAMETER and OUT-PARAMETER are assigned the 
parameter implementation type.  It is defined as having the 
following members: a reference to the implementation type of 
the object of IS-VALUE-Of relationship (shown in Fig. 2), a 
reference to the implementation type of the object of IS-
OUPUT-VALUE-OF relationship, its type as declared in the 
xml schema [13] (int, string, double, etc), and references to 
the default values of the [in]parameter and the [out]parameter.   

 
A complex implementation type is associated with a 

concept in the WSDL ontology which is defined using the 
relationships HAS-NESTED-ELEMENTS and HAS-
ATTRIBUTES.  It is defined as having the following members: 
namespace name, class name, and an array of implementation 
types which can be a complex type, complex type array, 
polymorphic type, simple type, and a simple type array.   

 
A composite implementation type is assigned with a 

concept that exists in the workflow that is neither a web 
service type, an onto web service type, nor a parameter type.  
It is defined as having a reference to another implementation 
type. 

 

B. Workflow Implementation  
 
Once each concept has been assigned an implementation 

type, the workflow in Fig. 3 is implemented as a web method, 
as shown in Fig. 4.  To generate the WebMethod, the code 
generator creates an environment stack that stores variable 
name/implementation type pairs that will be declared in this 
method’s scope.   

 
 

  [WebMethod()] 
public virtual NS2.CAFAirMission Execute12(string var13) 
{ 

NS3.MAFService service14 = new NS3.MAFService(); 
NS3.MAFMissionObject var15 = service14.GetMAFMission(var13); 

       NS2.CAFAirMission var18 = this.ConvertObject10(var15); 
       return var18; 
}  

 
Fig.4.  High level workflow translated to C# code. 



 4

The code generator processes the workflow step by step. In 
this case, the processing of MAF-MISSION-KEY results in 
the creation of a variable (var13) which is placed into the 
environment stack with the MAF-MISSION-KEY concept’s 
implementation type.  Note that the implementation type also 
contains the type information of the variable, in this case type 
string.  The code generator then retrieves the next item in the 
workflow that is of type web service or onto web service.  In 
this case the code generator processes the MAF-SERVICE by 
emitting the code to instantiate its web service proxy (e.g. 
NS3.MAFService service14 = new NS3.MAFService();) and 
stores the variable name/implementation (service14/MAF-
SERVICE) type on the stack.   

 
Before the code to invoke the web service can be emitted 

the code generator retrieves the parameter implementation 
types from the web service implementation type, and checks 
to see if any of these parameter types exist in the environment 
stack. If so, the variable name associated with the 
implementation type is retrieved, in this case var13.  Once all 
variable names are found, they are passed as arguments in the 
method invocation.  In certain situations a web service may 
require input arguments that are not provided by the high level 
workflow, as a result, they are not part of the environment 
stack.  In our approach the semantic framework offers 
facilities to associate default values with certain parameters 
and to retrieve these values which are then used as arguments 
in the method invocation. If a default value for the parameter 
cannot be ascertained then a null value is used.  Next the code 
generator retrieves from the web service implementation type 
the output implementation type. It then creates a variable 
(var15) to store the return value of the service, and places 
variable and associated implementation type on the 
environment stack (e.g. var15\MAF-MISSION-OBJECT). 
This allows the following line of code to be emitted: 
NS3.MAFMissionObject var15 = 
service14.GetMAFMission(var13); 
 

C. Reconciliation of Structural, Syntactic, and 
Representational Mismatches 
 
The code generator then retrieves the next item in the 

workflow which 
is ontomapper.  Ontomapper is a mediator that translates an 
input 
instance to a desired output instance. It first creates an empty 
instance of the output, and then populates it with data from the 
input instance.  Some of the input instance data can be copied 
as is to the correct place in the output, reconciling structural 
mismatches only, other input data will need have a 
substitution preformed to also resolve syntactic mismatches.  
Further still some data will need to be acted upon by 
workflows to convert the data into the correct representation. 

 
The code generator reconciles only structural mismatches 

when concepts are mapped using HAS-MATCHING-VALUE 
(Fig. 1).  The code generator reconciles structural and 
syntactic mismatches when concepts are mapped using HAS-
MATCH, and instances of the concepts are mapped using 
owl:sameAs.  The code generator reconciles structural and 
representational mismatches when concepts are mapped using 
HAS-MATCH and share a context (HAS-CONTEXT). In 
which case, the code generator retrieves all the parallel 
workflows necessary to enable the creation of the output 
instance from the input instance.  For example, one workflow 
reconciles position representation mismatch (UTM to 
Geodetic), while another reconciles time representation 
mismatches (HH:MM:SS ET to HH:MM:SS Z), and so on. In 
this case, there exists a representation mismatch between the 
MAF-COORD and CAF-COORD concepts, and the workflow 
to reconcile them is shown in Fig. 5. 

 
 

 
 
Fig. 5. Workflow to resolve representational mismatches derived mapped 

ontologies. 
 
The workflows are retrieved by using facilities provided by 

the semantic framework [2].These workflows are processed in 
a similar way to the high level workflow.  What remains to be 
shown is how the code generator emits the code to generate a 
new instance. 

 
1) Instance Generation 

 
The code generator emits the code to instantiate an empty 

CAF-AIRMISSION instance from the WS:CAF-
AIRMISSION implementation type. Each mapping relation 
between system ontologies results in the creation of 
assignment statements. In which case, the reconciling of 
structural mismatches is reduced to determining the signature 
between the left hand side and the right hand side of the 
statement.  Recall, that the WS:CAFAIRMISSION has a 
complex implementation type which contains an array of its 
children's implementation types, and each implementation 
type has reference to its corresponding concept in the system 
ontology. Next the code generator processes each child's 
implementation type to determine how its concept is mapped 
to a concept in the input object, MAF-AIR-MISSION. For 
each occurrence of the mapping relation between concepts in 
the output (CAF-AIR-MISSION) and input object, the code 
generator determines the assignment statement by issuing a 
DPQ on the input object root element, WS:MAF-MISSION-
OBJECT, and the object of the mapping relation to determine 
the signature of the right hand side of the assignment 
statement, and by issuing a  DPQ on the root element of the of 
the output object, WS:CAFAIRMISSION, and the subject of 
the mapping relation to determine the signature of the left 
hand side of assignment statement. 
 



 5

In the case where the mapping relation is has-matching-value, 
the code generator then emits the code to perform the 
assignment between the left hand side and the right hand side, 
effectively transferring the value of the concept from AM to 
the AO, for example:           
returnObject.AircraftConfig.CallSignName = 
toBeConverted.MissionAircraft.CallSign; 
 

 
In the case where the mapping relation is HAS-MATCH, the 
code generator must also resolve syntactic mismatches, by 
using an IIQ to retrieve a list of the instances of the AM 
concepts and their corresponding instances in the AO.  A new 
method is then generated that substitutes each AM instance by 
its AO equivalent, as shown in Fig. 6.  

 
  returnObject.AircraftConfig.AircraftType = this.Swap68(toBeConverted.MissionAircraft.AircraftType); 
… 
 
public virtual string Swap68(string toBeConverted) 
{ 
  if (("A10A".ToLower() == toBeConverted.ToLower())) 
       { 
        return "AO10A"; 
       } 
 … 
} 

 
 
Fig. 6. Reconciling Syntactic and Structural Mismatches 
 
In the case where the mapping relation is both HAS-

MATCH and HAS-CONTEXT, the code generator must resolve 
the representational mismatches.  This is done by finding the 
correct parallel workflow to convert between the instances of 
the concepts connected by the HAS-MATCH relation.  This 
workflow is then processed in same way as the high level 
workflow.  The output structure returned has some of the 
same members as the output object, i.e. CAF-AIRMISSION.  
Then the code generator emits the code to assign the data from 
this structure to the output object (Fig. 7), thus reconciling 
representational mismatches between the AO and the AM. 

 
  int count20 = toBeConverted.SortieEvent.Length; 
returnObject.CAFEvent = new NS2.CAFEventType[count20]; 
for (int i21 = 0; (i21 < count20); i21 = (i21 + 1)) 
{ 
 … 
 NS5.GeoTransService service33 = new NS5.GeoTransService(); 
 NS5.Geotrans var34 =  

 service33.GeoTrans("UTM", "WGE", "GEODETIC", "WGE", null, null, null, null,  
 toBeConverted.SortieEvent[i21].MissionLocation.MAFCoord.CoordString); 
 

 returnObject.CAFEvent[i21].ICAOLocation.CAFCoord.Latitude =  
  ((NS5.GEODETIC)var34.Item).OutputCoordinateList[0].Latitude; 
 
    returnObject.CAFEvent[i21].ICAOLocation.CAFCoord.Longitude =  
  ((NS5.GEODETIC)var34.Item).OutputCoordinateList[0].Longitude; 
}  

 
Fig. 7 Reconciling representational and structural mismatches. 
 
 
2) Array Management 

 
The code generator must identify and handle arrays to 

reconcile structural mismatches between the input and output 
objects. This results in the code generator emitting a for loop 
construct.  When the code generator finds a mapping relation 
between the input and output objects, it uses a DPQ between 
the input object (WS:MAF-MISSION-OBJECT) and  the 
object of the mapping relation and a DQP between the output 

object(WS:CAFAIRMISSION) and the subject of the 
mapping relation, resulting in a directed graph for the right 
and left side, respectively.  The code generator then traverses 
each graph to identify the concepts that are of array types.  A 
concept in the WSDL ontology is determined to be of an array 
type if its corresponding element in the WSDL file has a 
maxOccurrs with a value greater than one.  The code 
generator simply associates the first concept of array type on 
the left hand side with the first concept of array type on the 
right side when assigning the index value, a reference to the 
for loop’s iterator.  This aligns the structures so that objects 
contained by the objects in the array will be processed using 
the same iterator. The code generator emits the code to 
initialize the array denoted by the concept on the left hand 
side to the length of that on the right hand side.  It then emits a 
for loop construct and stores the iterator variable in an array 
environment.  The code generator uses the iterator variable to 
generate the correct signature for accessing the array’s child 
nodes, this is shown in Fig. 7.  If an array is only detected on 
one side then its index is set to zero, since there is only room 
for one corresponding structure on the other side.  Once the 
processing of child nodes is completed the generator removes 
the iterator information from the environment and the for loop 
is closed.   

 
Finally, a flow chart describing this entire process of 

instance generation is shown in Fig. 8. 
 

 

 
 
Fig. 8. The process of emitting the code to generate an instance. 



 6

IV. DISCUSSION AND RELATION TO THE LITERATURE 
Compared to Semantic Web Services [14] based solutions, 

this technique is lightweight in that it builds on current W3C 
standards (XML Schema, RDF, OWL, WSDL) for building 
web services, and for specifying semantics, without requiring 
the many specifications introduced by WSMO [15, 16] and 
OWL-S [10].  In addition to the small set of RDF/OWL 
mappings, we only use RDF and OWL to build the IS 
ontologies, which describe the local semantics of a web 
service, thus alleviating the need for building expensive 
domain ontologies [17, 18].  Furthermore, the building of IS 
ontologies is facilitated by the context ontologies, since 
concepts defined in the context ontologies are used to define 
the IS ontologies.  It is important to note that the context 
ontologies are built once for reuse by all integration activities.  
Once these ontologies are in place, the annotations of existing 
XML schemas with semantics, and the mappings of the 
ontologies are straight forward.  Another distinct advantage to 
this approach is that the generated code runs in a typical .Net 
environment, and the generated code is no different than the 
code written by a programmer today.  Alternatively, we could 
have generated a WSBPEL process using the same techniques 
just as easily. Finally, it is worth mentioning that we see our 
tools as part of an Enterprise Service Bus (ESB) [19], where 
an architect can use them at design time, in order facilitate the 
task of code generation.   

 

V. FUTURE WORK 
Currently, we are in the process of demonstrating the 

scalability of this approach.  Our early results suggest that this 
mapping technique scales O(n) with respect to the number of 
systems that exists in the enterprise. This is the result of 
making some of the RDF\OWL mappings transitive which 
results in the automatic generation of most of the links 
between IS ontologies. We are also investigating the global 
properties [37,38], e.g. path length and clustering coefficient, 
of the emerging complex network [39] that arise from this 
mapping technique.  For instance, a small path length 
indicates that the DPQ and IIQ would work well in an 
enterprise with millions of systems. 

REFERENCES 
[1] OASIS Web Services Business Process Execution Language (WSBPEL), 

http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel 

[2] Sabbouh, M, DeRosa, J.K.,  Powers S., Bennett S., “Using semantic web 
technologies to enable interoperability of disparate information 
systems”, Mitre Technical Report MTR05B0000083, 2005, available 
from: 
http://www.mitre.org/work/tech_papers/tech_papers_05/05_1025/ 

[3] Crubezy,M.,Pincus,Z.,Musen.M.A., “Mediating knowledge between 
application components”, Semantic Integration Workshop of the 
Second International Semantic Web Conference (ISWC-03), Sanibel 
Island, Florida, CEUR, 82. 2003. 

[4] McCarthy, J., GENERALITY IN ARTIFICIAL INTELLIGENCE, 
Communications of the ACM, 30(12):1030-1035, 1987 

[5] Kazura A., Sabbouh M., 2005, Position ontology, Available 
fromhttp://www.openchannelfoundation.org/orders/index.php?group_i
d=348, The Open Channel Foundation 

[6] Resource Description Framework (RDF), World Wide Web Consortium, 
http://www.w3.org/rdf/ 

[7] Web Ontology Language (OWL), World Wide Web Consortium, 
http://www.w3.org/2004/OWL/ 

[8] Webservice Description Language (WSDL) 1.1, 
http://www.w3.org/TR/2001/NOTE-wsdl-20010315, June 2006 

[9] Sabbouh, M., DeRosa, J.K.,  “Using Semantic web technologies to 
integrate software components”, Proceedings of the ISWC 2004 
Workshop on Semantic Web Services.  http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-119/paper8.pdf 

[10] OWL-S: Semantic Markup for Web Services,  
http://www.w3.org/Submission/OWL-S/, November, 2004 

[11] C# Language Specification, ECMA-334, http://www.ecma-
international.org/publications/standards/Ecma-334.htm, June 2006 

[12] CodeNamepsace Class Reference, http://msdn2.microsoft.com/en-
us/system.codedom.codenamespace.aspx, June 2006 

[13] XML Schema, http://www.w3.org/XML/Schema, June 2006 
[14]  McIlraith S., Son T.,Zeng H., Semantic Web services. In IEEE 

Intelligent Systems (Special Issue on the Semantic Web), March/April 
2001.  

[15] Bruijn, J., Fensel, D., Keller, U., Lara, R., “Using the web service 
modeling ontology to enable semantic e-business, Communications of 
the ACM Volume 48, Number 12 (2005), Pages 43-47 

[16] Web Service Modeling Ontology (WSMO),  
http://www.w3.org/Submission/WSMO/, June 2005 

[17] T.R. Gruber. “A translation approach to portable ontologies”, J on 
Knowledge Acquisition, Vol 5(2), p199-220, (1993) 

[18]  Guarino, N, ed.  1998. Formal Ontology in Information Systems.  
Amsterdam.: IOS Press. Proceedings of the First/ International 
Conference (FOIS’98), June 6-8, Trento, Italy. 

[19] Patterns: Implementing an SOA using an Enterprise Service Bus,  Keen, 
M.,  Acharya, A., Bishop, S., Hopkins, A., Milinski, S., Nott, C., 
Robinson, R, Adams, J., Vershueren, P., 
http://www.redbooks.ibm.com/redbooks/pdfs/sg246346.pdf, July 2004 

 
 
 
 
 
First A. Author (M’76–SM’81–F’87) and the other authors may include  
biographies at the end of regular papers. Biographies are often not included in 
conference-related papers. This author became a Member (M) of IEEE in 
1976, a Senior Member (SM) in 1981, and a Fellow (F) in 1987.  The first 
paragraph may contain a place and/or date of birth (list place, then date). Next, 
the author’s educational background is listed. The degrees should be listed 
with type of degree in what field, which institution, city, state or country, and 
year degree was earned. The author’s major field of study should be lower-
cased. 
 The second paragraph uses the pronoun of the person (he or she) and not 
the author’s last name. It lists military and work experience, including summer 
and fellowship jobs. Job titles are capitalized. The current job must have a 
location; previous positions may be listed without one. Information 
concerning previous publications may be included. Try not to list more than 
three books or published articles. The format for listing publishers of a book 
within the biography is: title of book (city, state: publisher name, year) similar 
to a reference. Current and previous research interests ends the paragraph. 
 The third paragraph begins with the author’s title and last name (e.g., Dr. 
Smith, Prof. Jones, Mr. Kajor, Ms. Hunter). List any memberships in 
professional societies other than the IEEE. Finally, list any awards and work 
for IEEE committees and publications.  If a photograph is provided, the 
biography will be indented around it. The photograph is placed at the top left 
of the biography. Personal hobbies will be deleted from the biography. 
 
 
 
 
 



 7

 
 

APPRENDIX I: GENERATED CODE 
 
Note: Due to length constraints the first 1000 lines of code generated by 
wsdl.exe have been removed.   
 
namespace NS 
{ 
    using System; 
    using System.Diagnostics; 
    using System.Xml.Serialization; 
    using System.Web; 
    using System.Web.Services.Protocols; 
    using System.Web.Services; 
     
     
    public class GeneratedService 
    { 
         
        [WebMethod()] 
        public virtual NS2.CAFAirMission Execute12(string var13) 
        { 
            NS3.MAFService service14 = new NS3.MAFService(); 
            NS3.MAFMissionObject var15 = service14.GetMAFMission(var13); 
            NS2.CAFAirMission var18 = this.ConvertObject10(var15); 
            return var18; 
        } 
         
        public virtual NS2.CAFAirMission 
ConvertObject10(NS3.MAFMissionObject toBeConverted) 
        { 
            NS2.CAFAirMission returnObject = new NS2.CAFAirMission(); 
            returnObject.AircraftConfig = new NS2.AircraftConfigType(); 
            returnObject.AircraftConfig.CallSignName = 
toBeConverted.MissionAircraft.CallSign; 
            returnObject.AircraftConfig.AircraftType = 
this.Swap68(toBeConverted.MissionAircraft.AircraftType); 
 
            int count20 = toBeConverted.SortieEvent.Length; 
            returnObject.CAFEvent = new NS2.CAFEventType[count20]; 
            for (int i21 = 0; (i21 < count20); i21 = (i21 + 1)) 
            { 
                returnObject.CAFEvent[i21] = new NS2.CAFEventType(); 
                returnObject.CAFEvent[i21].EventType = 
this.Swap30(toBeConverted.SortieEvent[i21].EventType); 
                returnObject.CAFEvent[i21].EventStartTime = 
toBeConverted.SortieEvent[i21].EventTime; 
                returnObject.CAFEvent[i21].ICAOLocation = new 
NS2.ICAOLocationType(); 
                returnObject.CAFEvent[i21].ICAOLocation.ICAOState = 
toBeConverted.SortieEvent[i21].MissionLocation.ICAOCD; 
                returnObject.CAFEvent[i21].ICAOLocation.CAFCoord = new 
NS2.CAFCoordType(); 
                NS5.GeoTransService service33 = new NS5.GeoTransService(); 
                NS5.Geotrans var34 = service33.GeoTrans("UTM", "WGE", 
"GEODETIC", "WGE", null, null, null, null, 
toBeConverted.SortieEvent[i21].MissionLocation.MAFCoord.CoordString); 
                returnObject.CAFEvent[i21].ICAOLocation.CAFCoord.Latitude = 
((NS5.GEODETIC)var34.Item).OutputCoordinateList[0].Latitude; 
                returnObject.CAFEvent[i21].ICAOLocation.CAFCoord.Longitude 
= ((NS5.GEODETIC)var34.Item).OutputCoordinateList[0].Longitude; 
            } 
            returnObject.TaskUnit = toBeConverted.TaskUnit; 
            returnObject.StatusAndResult = new NS2.StatusAndResultType(); 
            return returnObject; 
        } 
         
        public virtual string Swap30(string toBeConverted) 
        { 
            if (("LANDING".ToLower() == toBeConverted.ToLower())) 

            { 
                return "ARR"; 
            } 
            if (("TAKEOFF".ToLower() == toBeConverted.ToLower())) 
            { 
                return "DEP"; 
            } 
            return null; 
        } 
         
        public virtual string Swap68(string toBeConverted) 
        { 
            if (("A10A".ToLower() == toBeConverted.ToLower())) 
            { 
                return "AO10A"; 
            } 
            if (("MAF-B052H".ToLower() == toBeConverted.ToLower())) 
            { 
                return "CAF-B52H"; 
            } 
            if (("MAF-F015C".ToLower() == toBeConverted.ToLower())) 
            { 
                return "CAF-F15C"; 
            } 
            return null; 
        } 
    } 
} 




