
A REUSE APPROACH FOR FPGA-BASED SDR WAVEFORMS

Kevin Skey, John Bradley, Karl Wagner
The MITRE Corporation

Bedford, MA

ABSTRACT

Software targeting general purpose processing (GPP)
elements has been successfully reused for software de-
fined radio (SDR) platforms in support of low-bandwidth
waveforms. The Joint Tactical Radio System (JTRS) Soft-
ware Communications Architecture (SCA) promotes reuse
of GPP-based software by providing a consistent frame-
work for developing reusable waveform implementations.
However, high-bandwidth waveforms, such as those used
in above 2 GHz MILSATCOM terminals, overwhelm the
capabilities of GPP-only radios making field programma-
ble gate arrays (FPGAs) a necessity in high-bandwidth
radio systems. The SCA does not address the development
of reusable FPGA-based waveform implementations. This
paper presents an approach supplementing the current
SCA to address FPGA-based platforms using System-on-
a-Chip (SoC) best practices for design reuse, including
common interfaces and a robust system simulation envi-
ronment.

INTRODUCTION

In an effort to reduce hardware and software development
costs, many of today’s military (and commercial) satellite
communication systems use SDR technology to support
high data-rate modems. In effect, an SDR-based modem is
a reuseable complex heterogeneous hardware platform.
These platforms are typically architected for flexibility by
using a mixture of GPP, DSP and FPGA processing ele-
ments to support a family of radio waveforms imple-
mented as heterogeneous multiprocessor software applica-
tions. There are intrinsic benefits to this approach such as
the ability to interoperate with numerous legacy radios as
well as in-system upgradeability and maintenance through
software only modifications.

In addition to the potential benefit of hardware reuse, it is
also possible to reuse the radio software application by
porting it to a different SDR platform. However, porting
an existing software radio application to a different plat-
form can present the largest challenge to the SDR devel-
oper. For example, the source and destination SDR plat-
forms could be architected very differently due to radio
form factors. SDR platforms can have a wide variation in
RF-IF and baseband boundaries, different processing ele-
ments (e.g. GPP, DSP, FPGA) as well as different operat-

ing systems, APIs, services and transport layers. A suc-
cessful software port requires the developer to have a
thorough understanding of the hardware architecture and
software operating environments (OE) for both the source
and destination platforms.

To address the porting issues for these complex heteroge-
neous SDR platforms, the JTRS program contracted the
development of the SCA [1] to help enable the reuse of
software radio applications (or waveforms). However, the
current SCA only supports the reuse of heterogeneous
GPP-based software waveform components. For the high
data-rate waveforms used in military satellite systems,
GPPs and DSPs may not be able to support the required
high performance processing. Therefore, code reuse be-
comes more difficult as much of the modem processing
resides in FPGA devices.

Recognizing the deficiencies, there was a JTRS-sponsored
industry working group actively addressing portability
issues for DSP and FPGA based waveforms [2]. However,
the working group was disbanded before a consensus so-
lution could be reached. If waveform reuse is an important
cost factor for military programs, then a reuse approach
for FPGA-based waveforms is still needed. In this paper,
we offer a FPGA reuse strategy for SDR by leveraging
techniques common in the development of System-on-a-
Chip (SoC) integrated circuits.

SCA HIGH BANDWIDTH CHALLENGES

The SCA was developed to enable portability through a
combination of component-based software [3] techniques,
common CORBA middleware, and XML descriptions.
The primary purpose for SCA was to create an operating
environment which enables the creation of portable soft-
ware radio applications by separating the software con-
cerns from the hardware platform. Although, SCA does
aid portability for GPP-based software, it does not suffi-
ciently cover the modem layer processing typically per-
formed by DSP or FPGA resources. In many cases, the
modem is abstracted behind an SCA adapter which hides
the implementation details from the radio application as
shown in Figure 1(a). In some cases, this functionality can
be a significant part of the SDR implementation as illus-
trated in Figure 1(b).

1 of 7

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 06-0796

GPP
(ORB)

Device Mgr

GPP
(ORB)

GPP
(ORB)

FPGA
Devices

Adapter

Figure 1(a): SCA Adapter Illustration for FPGA

GPP
(ORB)

GPP
(ORB)

GPP
(ORB)

Process
Node

Process
Node

DDCProcess
Node

Process
Node

Process
Node

Process
Node

Control

Softcore
uP

Ram

IO
DemodDeinterFEC

DUCModInterFEC

IO IO

FPGA

Switch
Fabric

FPGA

Figure 1(b): Adapters Hiding Complex Functionality

In fact, for high bandwidth and high data-rate waveforms,
a significant amount of the modem and protocol process-
ing is indeed implemented using FPGA devices. Even if it
is feasible for some of the processing to be accomplished
using GPP or DSP devices, there is a trend toward more
FPGA devices as these devices offer the benefits of better
risk reduction and future proofing. The parallel processing
capabilities and reconfigurable nature of FPGAs offer
SDR developers greater flexibility to support unforeseen
requirement changes as well as the ability to host future,
higher performance waveforms. As FPGA devices be-
come dominant in an SDR platform, more of the software
radio is being implemented in reconfigurable hardware.
Therefore, if reuse and portability are the goals, this fact
stresses the need for an additional approach to augment
the SCA.

AN FPGA IS NOT A GPP

As previously discussed, FPGA devices are beginning to
dominate today’s high performance SDR platforms. It is

common for those unfamiliar with FPGAs to incorrectly
assume that they share the architecture and development
flow of GPPs and DSPs. The traditional SDR system is
thought to be a software centric platform, so it is under-
standable how one can conclude FPGA devices are simply
software programmable devices.

For comparison, an SDR system containing GPP or DSP
devices will have fixed hardware compute resources and
peripheral interfaces. A software developer typically uses
high-level languages to describe the operations required to
process incoming and outgoing data on the mostly fixed
hardware while being concerned with task performance
and memory management issues. In almost all cases, an
operating system (OS) with hardware abstraction layer
(HAL) is used to help abstract away the hardware details.

In contrast, FPGAs are very complex reconfigurable Sys-
tem-on-a-Chip (SoC) devices with multiple hard/soft core
processors, configurable memory, specialized I/O, and
area for multi-million equivalent ASIC gate custom de-
signs. In fact, today’s FPGAs are equal in complexity to
many SoC devices of 4 to 5 years ago [4]. Therefore, an
SDR developer targeting FPGAs needs strong digital
hardware design skills as well as intimate knowledge of
the device architecture and the available resources such as
look-up tables (LUTs), routing, flip-flops, clock genera-
tion, and specialized logic core macros. Also, efficient
device resource utilization depends mainly on the physical
design expertise using the FPGA place and route tools,
where concerns such as physical floor planning, logic cell
placement, design constraints and routing congestion sig-
nificantly diverge from those of a GPP-based compile-
link software development flow.

The intent of this section was not to over simplify the
known design complexity of heterogeneous GPP software
development, but rather highlight the contrasting require-
ments for FPGA devices. In this paper, we will focus on
methods to improve the portability of waveforms imple-
mented on FPGA-based SDR platforms. We now start our
discussion, beginning on the topic of how separating the
platform concerns from the waveform component devel-
opment can aid portability.

SEPARATING PLATFORM CONCERNS

Future high performance MILSATCOM waveforms will
require the partitioning of functionality onto multiple
FPGA devices across several PCBs. This increases the
complexity of the waveform deployment significantly
compared to a single device implementation since the

2 of 7

waveform must now have a decomposition strategy for
efficiently partitioning its components across multiple
FPGA devices. Adding to this predicament, the developer
must not only be concerned with connections between the
waveform component cores internal to the FPGA, but also
must be knowledgeable of the interconnect switch fabrics
between the FPGAs themselves. These switch fabrics can
be multiple Gigabit transport links (e.g. RapidIO) span-
ning across the PCB, mezzanine connectors and back-
planes. Even with a proven COTS product, reaching the
maximum specified link data-rate can require significant
effort working through many possible signal integrity is-
sues. With these additional challenges, debugging wave-
form components on the platform while still working the
data-path throughput performance issues can significantly
increase the overall development time. One solution is to
separate the platform integrity and performance effort
from the waveform component development. This is a
common approach in the development of SoC devices.

For example, when developing an SoC, a major portion of
a design effort is spent on the top-level interconnect opti-
mization which is the process of partitioning (or floor
planning) the major functions into resource estimated
block regions as shown in Figure 2.

IO

IO

IO

IO

IO

IO

Block
Region

Estimate
IO

IO

IO

Block
Region

Estimate

Block
Region

Estimate
Top-Level Interconnect

Figure 2: SoC Top-Level Interconnect Optimization

Then, using a predefined (or standardized) I/O interface
definition, the top-level interconnect timing performance
is optimized between the boundaries of the block regions.
A standardized I/O definition offers the benefit of isola-
tion between the individual blocks and the top-level inter-
connect when design changes are made. The primary
benefit is after the functional block development is com-

pleted; the blocks can be essentially dropped in without
disturbing the top-level optimization.

In this paper, we propose a similar approach to increase
the deployment efficiency of FPGA-based waveforms.
Through the use of standard interfaces (e.g. OCP), the
platform high-speed I/O concerns can be easily separated.

OCP-IP INTERFACES

The Open Core Protocol (OCP) [5] is a socket interface
which specifies the communication semantics between
SoC blocks. It is supported by a growing industry consor-
tium including integrated device developers, IP providers,
EDA vendors and research institutions. Of particular in-
terest, Xilinx, one of the primary FPGA suppliers, has
recently joined the consortium. The protocol is defined by
a small group of basic elements with optional extensions
for enhanced capability. This flexibility allows the OCP to
adapt to many different kinds of connections however, it
also opens the possibility that two completely compliant
cores cannot connect to each other. To address this possi-
bility, the idea of profiles is introduced. An OCP profile
defines a subset of the overall protocol. Certain configura-
tion options are fixed to limit implementation overhead
and ensure interoperability. Other options can be left open
when a suitable default operation is defined. In effect, the
communication uses the advanced features if both ends of
a link implement them but automatically falls back to
simpler behavior if either end does not. We have selected
three profiles: dataflow, memory, and system. The data-
flow profile emphasizes performance and simplicity. It is
intended for a single direction of streaming data. The
memory profile allows bi-directional flow and addressing
of specific words. It is used for parameter/status interfaces
as well as data transfers with arbitrary ordering. Neither of
these profiles defines the format or meaning of the data
being transferred. The final profile is used for system
level control of individual modules. It layers a specific
interpretation of the data on top of the basic OCP signals
to implement common system level control operations.

With the interfaces to a module fixed to these profiles,
generic system specific channels can be written to imple-
ment infrastructure connections without knowledge of the
functions the modules perform. The FPGA is thus cleanly
divided into independent waveform modules which im-
plement the functional portion the design and infrastruc-
ture channels which implement the connections. This is
analogous to the module/channel model used in our Sys-
temC environment as we will cover below. Figure 3 illus-

3 of 7

trates the blocks which might be instantiated in a typical
system. The infrastructure channels can leverage the
unique capabilities of a system without affecting wave-
form portability. They also encapsulate hardware bounda-
ries allowing flexible deployment of modules across
FPGA resources. When porting an existing waveform to a
new system, the waveform modules stay the same. Like-
wise, when porting a new waveform to an existing sys-
tem, the infrastructure channels remain the same.

Waveform
Module

A

OCP

OCP

O
C
P

Waveform
Module

B

OCP

OCP

O
C
P

Host
Control
Channel

Waveform
Module

C

OCP

OCP

O
C
P

Host
Control
Channel

D
D

irect
C

hannel

FPG
A

 to
O

utput
C

hannel

FPGA 0 FPGA 1

H
ost to

FPG
A

C
hannel

FPGA to
FPGA

Channel

Host
Control
Channel

Figure 3: Example System Deployment Showing
Waveform Modules and Infrastructure Channels

As mentioned previously, overhead is a major considera-
tion for FPGA module implementation. The initial design
of our test system suggests that the overhead incurred us-
ing OCP interfaces as described is low and comparable to
that of any other connection technique including tailoring
each module to connect directly to the next with a custom
interface. For this implementation, the internal dataflow
channels are designed to transfer a data word on every
cycle after an initial latency so little performance degrada-
tion occurs.

Table I
OCP Area Overhead

Module #Luts #Flops
Direct Channel 34 40
FPGA to Output 69 77
Packetized Host Interface 74 64
Host Controller (base) 14 159

Host Controller (per module) 120 39
Module Overhead 30 55
Total (2 modules) 237 291
Portion of XC2VP100 0.3% 0.3%

Many variables affect actual area overhead. Table I shows
the resource requirements of several blocks which might
be found in a typical FPGA device. For this implementa-
tion, the off-chip connections group samples into format-
ted packets according to the protocol of the connection
fabric. The direct channel is configured with a 2 sample
buffer. The FPGA output uses a 1024 sample buffer. The
data path and control path use 16 bit and 32 bit samples
respectively.

LIMITING FPGA COMPONENT SIZE

Along with a standardized interface, another essential as-
pect of FPGA portability is the proper constraint of the
resources used to implement an individual waveform
component. This practice is commonly referred to as siz-
ing. If, for instance, the waveform is to be ported to an-
other platform, an appropriate sizing provides the ability
to quickly repartition the waveform components across
the new platform. However, blocks which are sized too
small incur disproportionately large interconnect over-
head; whereas, blocks that are sized too large may be
forced to span FPGA device boundaries requiring a pain-
ful repartitioning effort. Yet another issue is the total
FPGA device resource utilization. As more of the device
is used, the place and route (PAR) tools may have diffi-
culty converging, resulting in very long run times and
possibly requiring manual placement. We find keeping the
device utilizations below 60% helps with PAR turnaround
time (TAT). Using readily available Xilinx Virtex-2 Pro
(P100) devices, the following is a FPGA portability rule-
of-thumb we find useful:

 Limit component cores to 25K LUTs, 2Mb
BRAM

o 2 components with ~50% total utilization
on Virtex-2 P100

o 3 components with ~60% total utilization
on Virtex-4 FX140

Applying conservative device utilization rules helps de-
crease PAR TAT, however, it is still common to have
multi-hour cycle times for each HDL change. Addition-
ally, the number of FPGA devices per platform could add
a significant multiplier to the PAR TAT. These facts

4 of 7

prompt us to look again towards SoC methodologies for
solutions. Many FPGA developers avoid the effort re-
quired to use a robust simulation environment, preferring
instead to rely on FPGA reconfigurability while testing
directly on the host device. In the next section, we will
argue the benefits of emphasizing simulation to reduce the
overall code-to-test cycle time for HDL core integration.

FUNCTIONAL VERIFICATION: SIMULATION OR

IN-SYSTEM

Due to the reprogrammable nature of FPGAs, some de-
signers contend that a design can be verified primarily on
the FPGA, since the FPGA can be loaded in a trial-and-
error approach until a successful design is reached. This
approach is acceptable when FPGA designs are simple,
such as glue logic or interface translators, or perhaps
when designs are small and run at a low rate, i.e. require
less than 10% of the target FPGA's resources and operate
at a clock frequency below 25MHz. However, the verifi-
cation of the large, complex, high-performance designs
that can span several of today's multi-million gate FPGAs
must leverage more state-of-the-art techniques and re-
sources in order for acceptable productivity to be sus-
tained. Advanced verification techniques are the topic of
much attention in the SoC community and are finding
thorough treatment in technical references today [6], [7].
For SoC designs today, designers invest much time and
effort to create a comprehensive verification plan encom-
passing every stage of the design, from the interpretation
of the design specification to simulation and to deliverable
testing, and take advantage of myriad tools and methods
to ensure a successful design. At a minimum, the func-
tional verification of designs that are intended to be re-
used should include dynamic simulation that covers a
large extent (if not all) of the functionality of the design.

A thorough simulation provides the means for validating
the retargeting of a design to another platform with dispa-
rate resources than the original platform. It is much more
practical to verify modifications to an HDL design in a
full-featured simulation environment than to churn in an
in-system verification procedure. Furthermore, a designer
will have a much higher confidence in a design if the de-
sign can be shown to operate properly upon delivery in
the form of a simulation. A design without a working
functional simulation carries a significant hurdle to reuse.

The reusability of a design is tightly tied to the means of
verification that are developed for and delivered with the
design. While some in-system debugging will always be

warranted and in-system test is valuable for completing
lengthy test scenarios, in-system operation should not be
the primary means of design verification. All components
of a design should be simulated before being loaded onto
an FPGA, and the greatest emphasis should be placed on
validating all interfaces and start-up operation. Once it
has been verified that data can traverse through all inter-
faces in the design, then it may be reasonable to transition
aspects of the design verification to the in-system FPGA.
However, the functional simulations that accompany a
design are the best means of verification of a design in
reuse because the simulations can be common between
the original design and the incarnation modified for the
new platform.

Even though a design operating in an FPGA will run or-
ders of magnitude faster than a simulation, the PAR TAT
for even the smallest change in a design can be hours or
even days. Then the design must be loaded onto the
FPGAs (perhaps with internal probe points, which may
alter the behavior of the design), and the behavior of the
design must be determined to be valid with little ob-
servability into the real-time inner workings of the design.
This can be a daunting task if there is no working simula-
tion to serve as a point of reference. Also, having this in-
system procedure in a regression test loop would be quite
taxing, particularly when failures needed to be investi-
gated.

The TAT of a well-designed simulation should be less
than that for PAR and an in-system execution of the de-
sign. In addition, a simulation provides the benefit of
complete visibility into the design, simulation licenses are
usually cheaper than a target platform, and a working
simulation of the design increases the value of the prod-
uct, especially in terms of reusability. These benefits out-
weigh the cost of developing the simulation.

The increase in the capabilities of FPGAs has tended to
outpace the capabilities of PAR tools. On the other hand,
simulations using current, high-level languages keep bet-
ter pace with the designs that leverage current FPGA ca-
pabilities. In order for such leading edge complex wave-
form designs to be affordably reusable, the capabilities
and advantages of leading edge simulation-based func-
tional verification must be harnessed.

WAVEFORM AND PLATFORM MODELING

 The simulation of a waveform design includes models of
the waveform and models of the platform on which the
waveform will be implemented.

5 of 7

Performance models: One common method of modeling
the waveform’s modem signal processing is use tools such
as Matlab or SPW. This modeling view is usually used by
a system engineer to determine the performance charac-
teristics of the processing on the signal-in-space (SiS). In
many cases, these models are described to bit-level accu-
racy so they can be used to generate input test-vectors and
expected values for the RTL simulation environment de-
scribed previously. However, this modeling to simulation
coupling method has a few limitations. First, revision con-
trol of the many files containing the test vectors becomes
necessary as changes in the performance model will re-
quire regression testing. Depending on the complexity of
the signal processing, for each test this could include man-
aging many files which contain the intermediate results
used to track down bugs.

Some vendors offer solutions to this issue by developing
APIs which tie the modeling tools (e.g. Matlab) directly to
the logic simulators (e.g. Modelsim). However, this tech-
nique could significantly slow down the overall simula-
tion time which is undesirable in a regression testing envi-
ronment.

C/C++ Bit-accurate Modeling: Most of the commer-
cially available logic simulators can easily co-simulate
C/C++ with VHDL or Verilog. This eliminates the need
for test vector files by offering self-checking via compari-
son of the RTL and C model outputs. Also, a completely
modeled system provides the ability to incrementally
simulate finished RTL blocks in the context of the entire
design rather than just applying individual unit tests. De-
pending on the level of abstraction, C model simulation
can be orders of magnitude faster than Matlab and RTL-
only simulation.

Virtual Platform: Since the platform-to-developer ratio
is often much greater than one, we found it necessary to
create an efficient development environment that provides
parallel development capability in the context of the plat-
form without requiring the actual hardware. Enabling a
number of developers to target a virtual platform simulta-
neously is a significant benefit to project efficiency. By
using an IEEE standardized language called SystemC [8],
we have developed a way to accurately model the target
platform in simulation. SystemC is now supported in all
commercially available logic simulators.

Figure 4 shows a high-level diagram of our SystemC en-
vironment which is built on top of a commonly available
logic simulator. Based on transaction-level modeling

(TLM) techniques, the platform communication depend-
encies are abstracted using channel models and SystemC
wrappers for the functional components (or worker func-
tions). Much of the wrapper code can be automatically
generated.

SystemC-Based Virtual Platform/Porting Environment

SystemC Wrapper

SystemC Wrapper

OCP VHDL adapter

Logic Simulator

Digital
Upconverter

VHDL

Modulator
OQPSK
VHDL

Modulator
OQPSK
(C code)

Digital
Upconverter
C/C++ Model

Channel Model

SCA GPP

Implementation
SystemC Wrapper

SystemC Wrapper

Figure 4: SystemC-based Virtual Platform

The channel models can be bi-directional and have the
capability to model transport behavior at any level. Also,
the channel models can be used to collect data, inject data,
or self-check data at runtime.

Another benefit is the ability to provide co-simulation
capability with the abstracted C-models and RTL. Adapt-
ers break message transactions into the signals required to
exercise RTL designs. Selecting OCP as the interface to
all RTL modules allows a common collection of adapters
to be used for all modules, easing the movement between
the platform and simulation environment. In essence, we
have modeled our exact platform communication infra-
structure to provide the necessary abstraction while prop-
erly simulating the entire waveform in a platform-
independent way. Using this approach can significantly
enhance the portability of any waveform.

It should be mentioned that, although the original intent
was to promote portability for FPGA-based waveforms,
we intend to extend this method to include C-based SCA
compliant components by taking advantage of the C-
based co-simulation capabilities of SystemC.

FPGA REUSE: A FULL METHODOLOGY

We have talked about several point strategies derived
from SoC development methodologies; these included
physical separation of platform and waveform concerns

6 of 7

using standard interfaces, proper limits on FPGA compo-
nent sizes, modeling and simulation. Each method alone
only offers a partial solution. Only by combining all these
techniques into a single systematic approach can wave-
form reuse be fully maximized.
Today, in almost every case, in-house or 3rd party intellec-
tual property (IP) cores are reused to accelerate the devel-
opment of SoC devices. The IP core delivery mechanism
is normally performed in two phases; a design view and
implementation view. The design view is typically a plat-
form independent, model and simulation environment that
is used by the user to understand the functionality of the
IP core. The implementation view would be all the neces-
sary artifacts required to target the IP core towards a spe-
cific technology (or platform).

Waveform Definition
Waveform requirements
Architectural model
Performance analysis

System Architecture
C++ bit-accurate models
HW/SW partitioning
Determine Parallelism
Functional design specification

Platform and FPGA Design
Waveform function partitioning
RTL design
IP selection

FPGA Design Verification
Simulation environment
Functional verification
Functional coverage analysis

FPGA Implementation
Synthesis and PAR

Matlab performance model

“C/C++” Models
Platform

Independent

Platform
Specific

Deliverables

FPGA Sizing and Power
3rd Party IP
Platform Specs

-Transport QoS (Max Data-Rate)

Verification environment
Verification plan
Coverage Metrics

Scripts and constraints

Project Phase

Functional Specification
Iterate

Figure 5: Layered Waveform Reuse Methodology

Figure 5 represents our waveform reuse methodology
modeled after SoC IP core reuse. The layers represent
abstraction levels in the waveform presentation. The
higher the layer, the more abstract the waveform presenta-
tion. Notice each project phase requires a deliverable arti-
fact. These deliverables are the important items that assist
for later reuse. The top-layer represents waveform docu-
mentation. In our approach, executable behavioral models
are a key part of the waveform documentation as paper
documents are frequently misinterpreted. As one moves
down the methodology layers, each presentation of the
waveform moves closer to the actual implementation. The
dotted box is highlighting the iterations normally associ-
ated with matching the platform resources to the wave-
form requirements (or moving from platform independent
to platform specific implementation). This full approach is

very important for reuse because it provides all the means
to retarget the waveform to a new platform. Depending on
the new platform differences, one moves up the layers as
far as necessary to retarget the waveform for the new plat-
form dependent implementation. For example, an extreme
case would be when multi-core processors become readily
available for SDR platforms this will cause the FPGA
platform specific artifacts to become obsolete. Then hav-
ing access to platform independent models becomes criti-
cal to understanding the waveform functionality. This
provides the means to a successful and timely waveform
port.

CONCLUSION
This paper has illustrated how modern SDR systems are
becoming increasingly complex, particularly the role
played by FPGAs and how SoC design techniques can be
applied to more efficiently manage that complexity. A
common interface separates functions from the system
and each other; a simulation environment allows varia-
tions to be quickly explored and verified. The combina-
tion of these techniques works together to minimize the
effect of changes on unrelated elements. Or, stated the
other way, these techniques maximize the portion of a
design which can be reused.

We have developed the framework for a virtual platform
model to demonstrate our findings. It provides a flexible
simulation environment with common block interfaces
based on industry standard practices. Future effort will
expand the framework to increase its ease of use as well
as support additional features such as the integrated simu-
lation of FPGA and GPP elements.

REFERENCES
[1] JTRS JPEO, SCA version 2.2, http://jtrs.spawar.navy.mil/sca/
[2] JTRS JPEO, SCA Specialized Hardware Supplement version 3.0,

http://jtrs.spawar.navy.mil/sca/
[3] Object Management Group, PIM and PSM for Software Radio

Components, 1
st

FTF Convenience Document, dtc/2005-04-02,
April 2005

[4] http://fpgajournal.com.
[5] (Open Core Protocol International Partnership) [Online]. Avail-

able: http://www.ocp-ip.org
[6] J. Bergeron Writing Testbenches: Functional Verification of HDL

Models. Norwell, MA: Kluwer Academic Publishers, 2000.
[7] J. Bergeron, E. Cerny, A. Hunter, and A. Nightingale Verification

Methodology Manual for SystemVerilog. New York, NY:
Springer, 2006.

[8] IEEE Standard SystemC Language Reference Manual, IEEE
Standard 1666-2005, 2006

7 of 7

