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ABSTRACT 

Software targeting general purpose processing (GPP) 
elements has been successfully reused for software de-
fined radio (SDR) platforms in support of low-bandwidth 
waveforms. The Joint Tactical Radio System (JTRS) Soft-
ware Communications Architecture (SCA) promotes reuse 
of GPP-based software by providing a consistent frame-
work for developing reusable waveform implementations. 
However, high-bandwidth waveforms, such as those used 
in above 2 GHz MILSATCOM terminals, overwhelm the 
capabilities of GPP-only radios making field programma-
ble gate arrays (FPGAs) a necessity in high-bandwidth 
radio systems. The SCA does not address the development 
of reusable FPGA-based waveform implementations. This 
paper presents an approach supplementing the current 
SCA to address FPGA-based platforms using System-on-
a-Chip (SoC) best practices for design reuse, including 
common interfaces and a robust system simulation envi-
ronment. 

INTRODUCTION 

In an effort to reduce hardware and software development 
costs, many of today’s military (and commercial) satellite 
communication systems use SDR technology to support 
high data-rate modems. In effect, an SDR-based modem is 
a reuseable complex heterogeneous hardware platform. 
These platforms are typically architected for flexibility by 
using a mixture of GPP, DSP and FPGA processing ele-
ments to support a family of radio waveforms imple-
mented as heterogeneous multiprocessor software applica-
tions. There are intrinsic benefits to this approach such as 
the ability to interoperate with numerous legacy radios as 
well as in-system upgradeability and maintenance through 
software only modifications.   

In addition to the potential benefit of hardware reuse, it is 
also possible to reuse the radio software application by 
porting it to a different SDR platform. However, porting 
an existing software radio application to a different plat-
form can present the largest challenge to the SDR devel-
oper. For example, the source and destination SDR plat-
forms could be architected very differently due to radio 
form factors. SDR platforms can have a wide variation in  
RF-IF and baseband boundaries, different processing ele-
ments (e.g. GPP, DSP, FPGA) as well as different operat-

ing systems, APIs, services and transport layers. A suc-
cessful software port requires the developer to have a 
thorough understanding of the hardware architecture and 
software operating environments (OE) for both the source 
and destination platforms.  

To address the porting issues for these complex heteroge-
neous SDR platforms, the JTRS program contracted the 
development of the SCA [1] to help enable the reuse of 
software radio applications (or waveforms). However, the 
current SCA only supports the reuse of heterogeneous 
GPP-based software waveform components. For the high 
data-rate waveforms used in military satellite systems, 
GPPs and DSPs may not be able to support the required 
high performance processing. Therefore, code reuse be-
comes more difficult as much of the modem processing 
resides in FPGA devices. 

Recognizing the deficiencies, there was a JTRS-sponsored 
industry working group actively addressing portability 
issues for DSP and FPGA based waveforms [2]. However, 
the working group was disbanded before a consensus so-
lution could be reached. If waveform reuse is an important 
cost factor for military programs, then a reuse approach 
for FPGA-based waveforms is still needed. In this paper, 
we offer a FPGA reuse strategy for SDR by leveraging 
techniques common in the development of System-on-a-
Chip (SoC) integrated circuits. 

 

SCA HIGH BANDWIDTH CHALLENGES 

The SCA was developed to enable portability through a 
combination of component-based software [3] techniques, 
common CORBA middleware, and XML descriptions.  
The primary purpose for SCA was to create an operating 
environment which enables the creation of portable soft-
ware radio applications by separating the software con-
cerns from the hardware platform. Although, SCA does 
aid portability for GPP-based software, it does not suffi-
ciently cover the modem layer processing typically per-
formed by DSP or FPGA resources. In many cases, the 
modem is abstracted behind an SCA adapter which hides 
the implementation details from the radio application as 
shown in Figure 1(a). In some cases, this functionality can 
be a significant part of the SDR implementation as illus-
trated in Figure 1(b). 
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Figure 1(a): SCA Adapter Illustration for FPGA 
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Figure 1(b): Adapters Hiding Complex Functionality 

 

In fact, for high bandwidth and high data-rate waveforms, 
a significant amount of the modem and protocol process-
ing is indeed implemented using FPGA devices. Even if it 
is feasible for some of the processing to be accomplished 
using GPP or DSP devices, there is a trend toward more 
FPGA devices as these devices offer the benefits of better 
risk reduction and future proofing. The parallel processing 
capabilities and reconfigurable nature of FPGAs offer 
SDR developers greater flexibility to support unforeseen 
requirement changes as well as the ability to host future, 
higher performance waveforms. As FPGA devices be-
come dominant in an SDR platform, more of the software 
radio is being implemented in reconfigurable hardware. 
Therefore, if reuse and portability are the goals, this fact 
stresses the need for an additional approach to augment 
the SCA. 

 

AN FPGA IS NOT A GPP 

As previously discussed, FPGA devices are beginning to 
dominate today’s high performance SDR platforms. It is 

common for those unfamiliar with FPGAs to incorrectly 
assume that they share the architecture and development 
flow of GPPs and DSPs. The traditional SDR system is 
thought to be a software centric platform, so it is under-
standable how one can conclude FPGA devices are simply 
software programmable devices.  

For comparison, an SDR system containing GPP or DSP 
devices will have fixed hardware compute resources and 
peripheral interfaces. A software developer typically uses 
high-level languages to describe the operations required to 
process incoming and outgoing data on the mostly fixed 
hardware while being concerned with task performance 
and memory management issues. In almost all cases, an 
operating system (OS) with hardware abstraction layer 
(HAL) is used to help abstract away the hardware details. 

In contrast, FPGAs are very complex reconfigurable Sys-
tem-on-a-Chip (SoC) devices with multiple hard/soft core 
processors, configurable memory, specialized I/O, and 
area for multi-million equivalent ASIC gate custom de-
signs.  In fact, today’s FPGAs are equal in complexity to 
many SoC devices of 4 to 5 years ago [4]. Therefore, an 
SDR developer targeting FPGAs needs strong digital 
hardware design skills as well as intimate knowledge of 
the device architecture and the available resources such as 
look-up tables (LUTs), routing, flip-flops, clock genera-
tion, and specialized logic core macros. Also, efficient 
device resource utilization depends mainly on the physical 
design expertise using the FPGA place and route tools, 
where concerns such as physical floor planning, logic cell 
placement, design constraints and routing congestion sig-
nificantly diverge from those of a GPP-based compile-
link software development flow.   

The intent of this section was not to over simplify the 
known design complexity of heterogeneous GPP software 
development, but rather highlight the contrasting require-
ments for FPGA devices. In this paper, we will focus on 
methods to improve the portability of waveforms imple-
mented on FPGA-based SDR platforms. We now start our 
discussion, beginning on the topic of how separating the 
platform concerns from the waveform component devel-
opment can aid portability.   

 

SEPARATING PLATFORM CONCERNS 

Future high performance MILSATCOM waveforms will 
require the partitioning of functionality onto multiple 
FPGA devices across several PCBs.  This increases the 
complexity of the waveform deployment significantly 
compared to a single device implementation since the 
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waveform must now have a decomposition strategy for 
efficiently partitioning its components across multiple 
FPGA devices.  Adding to this predicament, the developer 
must not only be concerned with connections between the 
waveform component cores internal to the FPGA, but also 
must be knowledgeable of the interconnect switch fabrics 
between the FPGAs themselves. These switch fabrics can 
be multiple Gigabit transport links (e.g. RapidIO) span-
ning across the PCB, mezzanine connectors and back-
planes.  Even with a proven COTS product, reaching the 
maximum specified link data-rate can require significant 
effort working through many possible signal integrity is-
sues. With these additional challenges, debugging wave-
form components on the platform while still working the 
data-path throughput performance issues can significantly 
increase the overall development time. One solution is to 
separate the platform integrity and performance effort 
from the waveform component development. This is a 
common approach in the development of SoC devices.   

For example, when developing an SoC, a major portion of 
a design effort is spent on the top-level interconnect opti-
mization which is the process of partitioning (or floor 
planning) the major functions into resource estimated 
block regions as shown in Figure 2. 
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Figure 2: SoC Top-Level Interconnect Optimization 

 

Then, using a predefined (or standardized) I/O interface 
definition, the top-level interconnect timing performance 
is optimized between the boundaries of the block regions. 
A standardized I/O definition offers the benefit of isola-
tion between the individual blocks and the top-level inter-
connect when design changes are made. The primary 
benefit is after the functional block development is com-

pleted; the blocks can be essentially dropped in without 
disturbing the top-level optimization.  

In this paper, we propose a similar approach to increase 
the deployment efficiency of FPGA-based waveforms. 
Through the use of standard interfaces (e.g. OCP), the 
platform high-speed I/O concerns can be easily separated. 

 

OCP-IP INTERFACES 

The Open Core Protocol (OCP) [5] is a socket interface 
which specifies the communication semantics between 
SoC blocks. It is supported by a growing industry consor-
tium including integrated device developers, IP providers, 
EDA vendors and research institutions. Of particular in-
terest, Xilinx, one of the primary FPGA suppliers, has 
recently joined the consortium. The protocol is defined by 
a small group of basic elements with optional extensions 
for enhanced capability. This flexibility allows the OCP to 
adapt to many different kinds of connections however, it 
also opens the possibility that two completely compliant 
cores cannot connect to each other. To address this possi-
bility, the idea of profiles is introduced. An OCP profile 
defines a subset of the overall protocol. Certain configura-
tion options are fixed to limit implementation overhead 
and ensure interoperability. Other options can be left open 
when a suitable default operation is defined. In effect, the 
communication uses the advanced features if both ends of 
a link implement them but automatically falls back to 
simpler behavior if either end does not. We have selected 
three profiles: dataflow, memory, and system. The data-
flow profile emphasizes performance and simplicity. It is 
intended for a single direction of streaming data. The 
memory profile allows bi-directional flow and addressing 
of specific words. It is used for parameter/status interfaces 
as well as data transfers with arbitrary ordering. Neither of 
these profiles defines the format or meaning of the data 
being transferred. The final profile is used for system 
level control of individual modules. It layers a specific 
interpretation of the data on top of the basic OCP signals 
to implement common system level control operations. 

With the interfaces to a module fixed to these profiles, 
generic system specific channels can be written to imple-
ment infrastructure connections without knowledge of the 
functions the modules perform. The FPGA is thus cleanly 
divided into independent waveform modules which im-
plement the functional portion the design and infrastruc-
ture channels which implement the connections. This is 
analogous to the module/channel model used in our Sys-
temC environment as we will cover below. Figure 3 illus-
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trates the blocks which might be instantiated in a typical 
system. The infrastructure channels can leverage the 
unique capabilities of a system without affecting wave-
form portability. They also encapsulate hardware bounda-
ries allowing flexible deployment of modules across 
FPGA resources. When porting an existing waveform to a 
new system, the waveform modules stay the same. Like-
wise, when porting a new waveform to an existing sys-
tem, the infrastructure channels remain the same. 
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Figure 3: Example System Deployment Showing 
Waveform Modules and Infrastructure Channels 

 
As mentioned previously, overhead is a major considera-
tion for FPGA module implementation. The initial design 
of our test system suggests that the overhead incurred us-
ing OCP interfaces as described is low and comparable to 
that of any other connection technique including tailoring 
each module to connect directly to the next with a custom 
interface. For this implementation, the internal dataflow 
channels are designed to transfer a data word on every 
cycle after an initial latency so little performance degrada-
tion occurs.  

Table I  
OCP Area Overhead 

Module #Luts #Flops 
Direct Channel 34 40 
FPGA to Output 69 77 
Packetized Host Interface 74 64 
Host Controller (base) 14 159 

Host Controller (per module) 120 39 
Module Overhead 30 55 
Total (2 modules) 237 291 
Portion of XC2VP100 0.3% 0.3% 
 

Many variables affect actual area overhead. Table I shows 
the resource requirements of several blocks which might 
be found in a typical FPGA device. For this implementa-
tion, the off-chip connections group samples into format-
ted packets according to the protocol of the connection 
fabric. The direct channel is configured with a 2 sample 
buffer. The FPGA output uses a 1024 sample buffer. The 
data path and control path use 16 bit and 32 bit samples 
respectively.  

 

LIMITING FPGA COMPONENT SIZE 

Along with a standardized interface, another essential as-
pect of FPGA portability is the proper constraint of the 
resources used to implement an individual waveform 
component. This practice is commonly referred to as siz-
ing.  If, for instance, the waveform is to be ported to an-
other platform, an appropriate sizing provides the ability 
to quickly repartition the waveform components across 
the new platform. However, blocks which are sized too 
small incur disproportionately large interconnect over-
head; whereas, blocks that are sized too large may be 
forced to span FPGA device boundaries requiring a pain-
ful repartitioning effort. Yet another issue is the total 
FPGA device resource utilization. As more of the device 
is used, the place and route (PAR) tools may have diffi-
culty converging, resulting in very long run times and 
possibly requiring manual placement. We find keeping the 
device utilizations below 60% helps with PAR turnaround 
time (TAT). Using readily available Xilinx Virtex-2 Pro 
(P100) devices, the following is a FPGA portability rule-
of-thumb we find useful:  

 Limit component cores to 25K LUTs, 2Mb 
BRAM 

o 2 components with ~50% total utilization 
on Virtex-2 P100 

o 3 components with ~60% total utilization 
on Virtex-4 FX140 

Applying conservative device utilization rules helps de-
crease PAR TAT, however, it is still common to have 
multi-hour cycle times for each HDL change. Addition-
ally, the number of FPGA devices per platform could add 
a significant multiplier to the PAR TAT. These facts 
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prompt us to look again towards SoC methodologies for 
solutions. Many FPGA developers avoid the effort re-
quired to use a robust simulation environment, preferring 
instead to rely on FPGA reconfigurability while testing 
directly on the host device.  In the next section, we will 
argue the benefits of emphasizing simulation to reduce the 
overall code-to-test cycle time for HDL core integration. 

 
FUNCTIONAL VERIFICATION: SIMULATION OR 

IN-SYSTEM 

Due to the reprogrammable nature of FPGAs, some de-
signers contend that a design can be verified primarily on 
the FPGA, since the FPGA can be loaded in a trial-and-
error approach until a successful design is reached.  This 
approach is acceptable when FPGA designs are simple, 
such as glue logic or interface translators, or perhaps 
when designs are small and run at a low rate, i.e. require 
less than 10% of the target FPGA's resources and operate 
at a clock frequency below 25MHz.  However, the verifi-
cation of the large, complex, high-performance designs 
that can span several of today's multi-million gate FPGAs 
must leverage more state-of-the-art techniques and re-
sources in order for acceptable productivity to be sus-
tained.  Advanced verification techniques are the topic of 
much attention in the SoC community and are finding 
thorough treatment in technical references today [6], [7].  
For SoC designs today, designers invest much time and 
effort to create a comprehensive verification plan encom-
passing every stage of the design, from the interpretation 
of the design specification to simulation and to deliverable 
testing, and take advantage of myriad tools and methods 
to ensure a successful design.  At a minimum, the func-
tional verification of designs that are intended to be re-
used should include dynamic simulation that covers a 
large extent (if not all) of the functionality of the design. 

A thorough simulation provides the means for validating 
the retargeting of a design to another platform with dispa-
rate resources than the original platform.  It is much more 
practical to verify modifications to an HDL design in a 
full-featured simulation environment than to churn in an 
in-system verification procedure.  Furthermore, a designer 
will have a much higher confidence in a design if the de-
sign can be shown to operate properly upon delivery in 
the form of a simulation.  A design without a working 
functional simulation carries a significant hurdle to reuse. 

The reusability of a design is tightly tied to the means of 
verification that are developed for and delivered with the 
design.  While some in-system debugging will always be 

warranted and in-system test is valuable for completing 
lengthy test scenarios, in-system operation should not be 
the primary means of design verification.  All components 
of a design should be simulated before being loaded onto 
an FPGA, and the greatest emphasis should be placed on 
validating all interfaces and start-up operation.  Once it 
has been verified that data can traverse through all inter-
faces in the design, then it may be reasonable to transition 
aspects of the design verification to the in-system FPGA.  
However, the functional simulations that accompany a 
design are the best means of verification of a design in 
reuse because the simulations can be common between 
the original design and the incarnation modified for the 
new platform. 

Even though a design operating in an FPGA will run or-
ders of magnitude faster than a simulation, the PAR TAT 
for even the smallest change in a design can be hours or 
even days.  Then the design must be loaded onto the 
FPGAs (perhaps with internal probe points, which may 
alter the behavior of the design), and the behavior of the 
design must be determined to be valid with little ob-
servability into the real-time inner workings of the design.  
This can be a daunting task if there is no working simula-
tion to serve as a point of reference.  Also, having this in-
system procedure in a regression test loop would be quite 
taxing, particularly when failures needed to be investi-
gated. 

The TAT of a well-designed simulation should be less 
than that for PAR and an in-system execution of the de-
sign.  In addition, a simulation provides the benefit of 
complete visibility into the design, simulation licenses are 
usually cheaper than a target platform, and a working 
simulation of the design increases the value of the prod-
uct, especially in terms of reusability.  These benefits out-
weigh the cost of developing the simulation. 

The increase in the capabilities of FPGAs has tended to 
outpace the capabilities of PAR tools.  On the other hand, 
simulations using current, high-level languages keep bet-
ter pace with the designs that leverage current FPGA ca-
pabilities.  In order for such leading edge complex wave-
form designs to be affordably reusable, the capabilities 
and advantages of leading edge simulation-based func-
tional verification must be harnessed. 

WAVEFORM AND PLATFORM MODELING 

 The simulation of a waveform design includes models of 
the waveform and models of the platform on which the 
waveform will be implemented. 
 

5 of 7 



Performance models: One common method of modeling 
the waveform’s modem signal processing is use tools such 
as Matlab or SPW. This modeling view is usually used by 
a system engineer to determine the performance charac-
teristics of the processing on the signal-in-space (SiS). In 
many cases, these models are described to bit-level accu-
racy so they can be used to generate input test-vectors and 
expected values for the RTL simulation environment de-
scribed previously.  However, this modeling to simulation 
coupling method has a few limitations. First, revision con-
trol of the many files containing the test vectors becomes 
necessary as changes in the performance model will re-
quire regression testing.  Depending on the complexity of 
the signal processing, for each test this could include man-
aging many files which contain the intermediate results 
used to track down bugs.  
 
Some vendors offer solutions to this issue by developing 
APIs which tie the modeling tools (e.g. Matlab) directly to 
the logic simulators (e.g. Modelsim). However, this tech-
nique could significantly slow down the overall simula-
tion time which is undesirable in a regression testing envi-
ronment.  
 
C/C++ Bit-accurate Modeling: Most of the commer-
cially available logic simulators can easily co-simulate 
C/C++ with VHDL or Verilog. This eliminates the need 
for test vector files by offering self-checking via compari-
son of the RTL and C model outputs. Also, a completely 
modeled system provides the ability to incrementally 
simulate finished RTL blocks in the context of the entire 
design rather than just applying individual unit tests. De-
pending on the level of abstraction, C model simulation 
can be orders of magnitude faster than Matlab and RTL-
only simulation. 
 
Virtual Platform: Since the platform-to-developer ratio 
is often much greater than one, we found it necessary to 
create an efficient development environment that provides 
parallel development capability in the context of the plat-
form without requiring the actual hardware. Enabling a 
number of developers to target a virtual platform simulta-
neously is a significant benefit to project efficiency.  By 
using an IEEE standardized language called SystemC [8], 
we have developed a way to accurately model the target 
platform in simulation.  SystemC is now supported in all 
commercially available logic simulators. 
 
Figure 4 shows a high-level diagram of our SystemC en-
vironment which is built on top of a commonly available 
logic simulator.  Based on transaction-level modeling 

(TLM) techniques, the platform communication depend-
encies are abstracted using channel models and SystemC 
wrappers for the functional components (or worker func-
tions). Much of the wrapper code can be automatically 
generated. 
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Figure 4: SystemC-based Virtual Platform 
 
The channel models can be bi-directional and have the 
capability to model transport behavior at any level. Also, 
the channel models can be used to collect data, inject data, 
or self-check data at runtime. 
 
Another benefit is the ability to provide co-simulation 
capability with the abstracted C-models and RTL. Adapt-
ers break message transactions into the signals required to 
exercise RTL designs. Selecting OCP as the interface to 
all RTL modules allows a common collection of adapters 
to be used for all modules, easing the movement between 
the platform and simulation environment. In essence, we 
have modeled our exact platform communication infra-
structure to provide the necessary abstraction while prop-
erly simulating the entire waveform in a platform-
independent way.  Using this approach can significantly 
enhance the portability of any waveform. 
 
It should be mentioned that, although the original intent 
was to promote portability for FPGA-based waveforms, 
we intend to extend this method to include C-based SCA 
compliant components by taking advantage of the C-
based co-simulation capabilities of SystemC. 
 

FPGA REUSE: A FULL METHODOLOGY 
 
We have talked about several point strategies derived 
from SoC development methodologies; these included 
physical separation of platform and waveform concerns 
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using standard interfaces, proper limits on FPGA compo-
nent sizes, modeling and simulation.  Each method alone 
only offers a partial solution. Only by combining all these 
techniques into a single systematic approach can wave-
form reuse be fully maximized.  
Today, in almost every case, in-house or 3rd party intellec-
tual property (IP) cores are reused to accelerate the devel-
opment of SoC devices. The IP core delivery mechanism 
is normally performed in two phases; a design view and 
implementation view. The design view is typically a plat-
form independent, model and simulation environment that 
is used by the user to understand the functionality of the 
IP core. The implementation view would be all the neces-
sary artifacts required to target the IP core towards a spe-
cific technology (or platform). 
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Figure 5: Layered Waveform Reuse Methodology 
 
Figure 5 represents our waveform reuse methodology 
modeled after SoC IP core reuse.  The layers represent 
abstraction levels in the waveform presentation. The 
higher the layer, the more abstract the waveform presenta-
tion. Notice each project phase requires a deliverable arti-
fact. These deliverables are the important items that assist 
for later reuse. The top-layer represents waveform docu-
mentation. In our approach, executable behavioral models 
are a key part of the waveform documentation as paper 
documents are frequently misinterpreted. As one moves 
down the methodology layers, each presentation of the 
waveform moves closer to the actual implementation. The 
dotted box is highlighting the iterations normally associ-
ated with matching the platform resources to the wave-
form requirements (or moving from platform independent 
to platform specific implementation). This full approach is 

very important for reuse because it provides all the means 
to retarget the waveform to a new platform. Depending on 
the new platform differences, one moves up the layers as 
far as necessary to retarget the waveform for the new plat-
form dependent implementation. For example, an extreme 
case would be when multi-core processors become readily 
available for SDR platforms this will cause the FPGA 
platform specific artifacts to become obsolete. Then hav-
ing access to platform independent models becomes criti-
cal to understanding the waveform functionality. This 
provides the means to a successful and timely waveform 
port. 
 

CONCLUSION 
This paper has illustrated how modern SDR systems are 
becoming increasingly complex, particularly the role 
played by FPGAs and how SoC design techniques can be 
applied to more efficiently manage that complexity. A 
common interface separates functions from the system 
and each other; a simulation environment allows varia-
tions to be quickly explored and verified. The combina-
tion of these techniques works together to minimize the 
effect of changes on unrelated elements. Or, stated the 
other way, these techniques maximize the portion of a 
design which can be reused. 

We have developed the framework for a virtual platform 
model to demonstrate our findings. It provides a flexible 
simulation environment with common block interfaces 
based on industry standard practices. Future effort will 
expand the framework to increase its ease of use as well 
as support additional features such as the integrated simu-
lation of FPGA and GPP elements. 
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