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ABSTRACT 

 
Netted sensors offer advantages for many surveillance applications.  Target tracking and identification 
may be enhanced by jointly exploiting a variety of data sources, and certain surveillance applications may 
be more readily accomplished with jointly operated small in situ sensors than with large standoff sensors.  
Efficiently utilizing sensor-network data requires reliable sensor fusion and resource management 
algorithms.  Resource management is particularly important when a limited number of tasks can be 
performed either because sensors may be used in one of several modes at any given time, or various 
resources, e.g. energy, computational capabilities and communication bandwidth are limited.  In this 
paper tracking is viewed as a parameter estimation problem.  Parameters are values in a state space and 
inference about the parameters is based on sensor measurements.  The utility of sensor measurements is 
assessed using the mutual information between the parameters and the measurements.   Resource 
management is achieved by minimizing average expected entropy subject to constraints.   This approach 
is applied to a random set tracking algorithm that is based on Gaussian mixture models.  Quadratic mutual 
information, which in this context is computable in closed form, is used as a substitute for mutual 
information when comparing the utility of sets of sensors of the same cardinality.  The Mobius 
transformation is utilized to reduce the computational requirements of the optimization process.  The 
tracking and resource management algorithms are demonstrated using a simulation capability.  Four 
acoustic arrays, that measure angle of arrival and two radars, that measure range, monitor a triangular 
road network.   For the example shown, two vehicles traversing the network, the tracker and resource 
manager are able to maintain the approximate quality of the estimate, as measured by average entropy of 
the distribution of the state space parameters, using, on average, less than 2.5 of the six sensors.    
 
1.0 INTRODUCTION 
 
Sensor networks are utilized when a single sensor can not adequately provide all desired information, e.g., 
target identification and localization may require multiple sensing modalities.  Furthermore, kinematic or 
other variables may be better estimated using multiple sensors.  Efficiently employing sensor networks 
requires methods to jointly utilize the available information to achieve the sensing objectives subject to 
constraints on energy usage, communications bandwidth, computational capability, or sensor modes of 
operation [5].   
 
The present paper considers the problem of sensor selection for tracking a varying number of vehicles that 
are moving along roads that are under surveillance by a network of sensors.  A random set tracker has 
been developed [11,12] to perform the  localization using multiple sensor data.  In applications, acoustic 
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sensors provide angle of arrival and radars provide range estimates.  Processed data from all tasked 
sensors are available at a central processor which uses the incoming data to update state parameter 
estimates that include number of targets and their location and velocity.   Future work will also include 
vehicle identity.    The resource management problem is to select the sensors to maintain the quality of the 
estimates subject to resource constraints.   
 
In [12] the restless bandit approach is used to solve the sensor selection problem for this tracker.  To 
apply this technique a Markov decision process is defined: monitoring road segments are the tasks; states 
are defined as knowledge of vehicular occupancy of task segments; actions are probing the task segments 
with sensors; rewards are generated for transitioning from one state to another and depend upon whether 
sensors were or were not employed.  The optimal action given the current state provides the maximum 
expected infinite time horizon discounted reward, and it is found by solving a linear programming 
problem [12].  Resource optimization depends only on the current state, and as there are finitely many, the 
optimal action for a given state can be precomputed and stored in a lookup table.   
 
 
Mutual information is the basis for sensor selection in earlier work [13,14].  These papers consider a 
single target moving through a two dimensional sensor field.  In this work, at each time instant, the state 
space probability density function (pdf) is handed off to that sensor, the new leader, which optimizes the 
mutual information.  The calculations are performed by discretizing the state and measurement spaces, 
which have a combined dimension of three.  Dimension issues preclude applying a grid based approach to 
the problem considered herein of tracking a varying number of targets using potentially multiple 
simultaneous measurements.   Information theoretic control using particle filters is described in [1].  
 
The present paper equates the resource optimization problem with minimizing the average entropy of the 
state space probability density function subject to constraints.    This approach does not require a Markov 
decision structure. However, resource optimization computations must be done in real time and not 
precomputed.  The approach is described in section two, and various approximations and simplifications 
are introduced.   In section three, simulation results using the random set tracker demonstrate the efficacy 
of the approach.  For the problem of tracking two vehicles moving through a road network, little 
degradation in entropy occurs using on average less than 2.5 out of six sensors.   
 
2.0 ENTROPY BASED RESOURCE MANAGEMENT 
 
Tracking is viewed, herein, as a parameter estimation problem in which certain parameters of interest, e.g. 
position and velocity, may be time varying and other attributes, such as shape and color that may be used 
to identify the object, are fixed.  The parameter estimation problem is then cast in the form of a state-
space model in which inference regarding the parameters of interest is conditioned on measurements.   
The present approach assumes that the inference process produces probability density functions of the 
state space variables conditioned on past and/or current measurements and of the measurement space 
conditioned on past measurements.  The state space model may have the general form 
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Assume that sensors are employed and that Yt denotes the measurement vector at time t. The state space 
model includes a measurement model, ( )tt

t XYg | ,where gt is the probability density on the 
measurements conditioned on the state space variate.  Note that the measurement density further depends 
on the target-sensor relations, ,Α∈α  i.e., 
 
( ) ( ) ( )∑

Α∈

=
α

αα pXYgXYg tt
t

tt
t ,||                                                                     (2) 

The state space model is completed by specifying a state space propagation model, i.e. the probability 
distribution function on state space at time t+1 conditioned on the variate at time t. ( )tt

t XXf |1
1

+
+  

This formulation includes time series models of the form  
 

( )111 ,, +++ = tttt uVXX ϕ      and ( ),, ttt WXY ψ=  
 
where tV and tW are noise processes and tu is a control parameter.   
 
Witkoskie et al.  develop a tracker in this context.  Reference [12] allows for a variable number of targets 
and kinematic parameters, and reference [11], additionally, allows for target identifiers.    In this work, the 
probability density functions are mixtures of Gaussians.  Sensor fusion takes place through the estimation 
of state variables using multiple sensor data.  As described below and in [12], the methods have been 
applied to tracking vehicles confined to roads using range-radars and angle of arrival estimates obtained 
from acoustic sensors.   
 
In this context optimal control is the selection of sensors to optimize an objective function subject to 
resource constraints.  For the present work sensors are chosen to minimize the expected entropy of the 
state space distribution subject to a resource constraint on each sensor or a total resource constraint. 
 
Let  
 
( ) ( ) ( )( ) ttttttt dXYXfYXfYXH :0:0:0 |ln|| ∫=                                                        (3) 

 
be the entropy in the state space distribution conditioned on the measurements up to time t.  Also define  
 

( ) ( ) ( )( ) ( ),||ln|| 1:011:01:01:0 −−−−− −= ∫ ttttttttt YXHdXYXfYXfYXA                             (4) 

 
and 
 
( ) ( ) ( )( ) ( ).||ln|| :01:01:0:0 ttttttttt YXHdXYXfYXfYXR −= −−∫                                   (5) 

 
Then  
 
( ) ( ) ( ) ( ).1 tttt XRXAXHXH −+= −                                                                 (6) 

 
Define a cost function  
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In discreet time this becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( )∑∑ ∑
== =
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Assume that s sensors are available and that ( ) ( )j
s

j
j

t llRXR j ,,1 K=  where j
il is the resource committed 

to sensor i  at time .j  The resource optimization problem may then be expressed as  

          minimize C  subject to the  constraints .
1
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If the sensors share a common resource then the resource optimization problem may be expressed as 

                minimize C  subject to the  constraints .
1 1
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N

j

s

i

j
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Using Lagrange multipliers the solutions to problems (9) and (10) are found to be, assuming that the 
increment in entropy, ( ),tXA  is independent of past measurements.   
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respectively. 
 
In practice, R in Equations (5)—(12) is replaced with its expected value, which is equal to  the mutual 
information, defined in (28) below, between the state variable conditioned on past measurements and 
current measurements, i.e.,   
 
                                         ( ) ( )ttt YYXIRE ;| 1:0 −= .                                       (13) 
 
The PDf in state-space is represented as a Gaussian mixture 
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For each set, S, of sensors and each component, j, of the state space mixture define a set of target–sensor 
relations, ( )., jSΑ  The probability, ( ),,αjp  of any target-sensor relation, ( ),, jSΑ∈α  is determined by 
the target-sensor geometry and characteristics of the background and sensors.  Using a linearization of the 
measurement model about the mean of each mixture component, the measurement space density may be 
expressed as  
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where tt
j

|1ˆ +
αμ and tt

j
|1ˆ +Γ α are obtained by linearizing the measurement model about .|1 tt

j
+μ   The density 

in state space conditioned on the sensor set S and measurements 1+tY is approximated by  
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where t|1tt|1t ~ and ~ ++ Γ ααμ jj are the Kalman filter updates of , and , |1|1 tt

j
tt

j
++ Γμ  respectively [2].  Note that 

tt
j

|1~ +Γ α is independent of the measurements.  In going from (17) to (18), )(~ 1|1 ++ ttt
j Yαμ  is replaced with 

,|1 tt
j
+μ and on going from (18) to (19) the mixture terms for a given j are combined and approximated by 

the given normal.   
 
The entropy of a normal mixture distribution is replaced with the following upper bound on the entropy.   
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where jd  is the dimension of class j. 

( )XH~  is the entropy of the class weights, ,jω  plus the weighted entropy of the classes.  Note that  
 
( ) ( )( ),,~ jXHXH =                                                                                                (22) 

 
which might be called the complete entropy.  Overlapping classes are combined as described in [12], and 
the more distinct the classes, the tighter the bound.   
 
The mutual information is (see (28)) 
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and for computational purposes it is replaced with  
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Note that the difference of weighted normal entropies in (24) captures the reduction in the class 
covariance due to the measurements and the remaining term captures the reduction in the class 
ambiguities.  Presently, Monte Carlo integration is used to approximate the integral in (24).  
 
The search described above over all subsets of sensors grows exponentially with the number of sensors, 

,S  available.  However, the Mobius transformation [3,8] may be invoked to reduce the search to one that 

is of order 
kS for small k. Following [3], suppose that Θ is a finite set and that f and g are functions on 

,2Θ the set of subsets of .Θ  Then 

            ( ) ( ) Θ⊂= ∑
⊂

ABgAf
AB

 allfor  if and only if ( ) ( ) ( ) . allfor  1 Θ⊂−= ∑
⊂

− ABfAg
AB

BA     (25) 

If (25) holds, then g is the Mobius transform of f.  To reduce the computational complexity of optimizing 
a function over a discreet set, select 0>k  and define  
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⎩
⎨
⎧ ≤

=
   otherwise. ,0

 if )(~ kAAg
Ag                                                                                 (26) 

Define  
 
( ) ( ).~~ ∑

⊂

=
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AgAf                                                                                             (27) 

 
In applications to parameter estimation, k is chosen so that any parameter is well localized with k or fewer 
data.  For the example described below .2=k  
 
For certain applications, quadratic mutual information, TI , may be computed in closed form, whereas  
Shannon’s mutual information (I) often requires Monte Carlo techniques [6,7].  Shannon’s mutual 
information is defined as follows and may be expressed using the Kullback-Leibler metric, KL, between 
the joint density and the product density.  QMI is defined using the quadratic divergence between the joint 
density and the product density [10].  TI  provides a lower bound to I [10].   
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QMI substitutes the quadratic divergence for the KL metric [10].  The quadratic divergence between two 
probability densities f and g is [10] 
 

( ) ( )( ) ,),(
2
dxxgxfgfD ∫ −=                                                                                                          (29) 

 
and the QMI is [10] 
 
( ) ( ).,, YXXYT pppDYXI =                                                                                                               (30) 

 
Figure 1 illustrates the sensor subset selection procedure.  The bottom row illustrates the propagation of 
the state space density in the absence of additional measurements.  The top row illustrates for each 
selected subset the calculation of the expected information gain from measurements obtained with these 
sensors and the search over subsets of sensors.  Subset selection takes place by applying one or more 
thresholds in accordance with (11) or (12). 
 
3.0 APPLICATION 
 
MITRE’s Netted Sensor Program has deployed networks of radar, acoustic and imaging sensors and 
developed a simulation capability that is used to demonstrate the capabilities of sensors and algorithms. 
The methods described above were applied to the problem of tracking simulated vehicles traveling 
through a triangular mesh of roads as depicted in Figure 2(b).  Two range radars and four acoustic arrays 
that provide bearing estimates [12] were utilized, and they were positioned as shown in Figure 2(b).    The 
sensors in this study draw equal power, and are assumed to be connected to a common power supply, so 
that total energy consumption is the only constraint imposed.   
 
Each trial of the simulation has duration 40 seconds.  For this study, a target enters the mesh at location A 
at time  5 seconds and takes the direct path to location C where it exits;  a second target enters the 
network from location C a few seconds later and  takes the direct path to location B.    The FISST tracker, 
as described in [11,12] is used to estimate the location of the vehicles as a function of time, and more 
generally to compute the probability density function on the state space given the radar and acoustic 
measurements, which in this case are simulated.   
 
Subsets of sensors are selected using the following procedure.  At every fifth time instant, i.e., 1.25 
seconds, the entropy based resource manager described above computes the quadratic mutual information 
(30) for each subset of cardinality 1 and 2, sets the Mobius transform of sets with cardinality greater than 
two to zero, and uses (27) to approximate the quadratic mutual information of each possible subset of 
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sensors.  For each cardinality from one to the number of sensors, the maximal-qmi set is selected, and 
Shannon’s mutual information (SMI) is computed (24).  The derivative of SMI with respect to total 
energy consumption is computed, and a threshold is applied to select the sensor subset (12) as shown in 
Figure 2 (a).   In (12) the factor ( )1+− jN  is ignored. Figure 2(b) shows the sensors selected for a given 
configuration of targets and a threshold, as well as the target locations, estimated positions and 95% 
confidence ellipses.  Selected sensor subsets at higher thresholds are noted in the caption.  
 
The resource manager was run at a range of thresholds to determine the relationship between the entropy 
of the system and the number of sensors utilized.  Results are shown in Figures 3(a) and 3(b).  For each 
threshold setting, the simulation was run 10 times and the average entropy at each pulse for each 
threshold is plotted in Figure 3(a).  The average number of sensors utilized for each threshold was also 
determined and the plots in this figure are labeled by the corresponding average number of sensors 
utilized.  The entropy plots are only degraded minimally if as few as 2.4 sensors, on average, are selected.      
Figure 3(b) compares the average entropy across trials and across the duration of each run for each of the 
thresholds shown in Figure 3(a).  The average lifetime extension factor is the maximal number of sensors 
divided by the average number of sensors employed for the given threshold setting, and the average 
relative entropy is the ratio of the average entropy obtained using the resource manager to the average 
entropy if all available sensors are utilized.   One sees that the lifetime of the system can be extended by 
approximately a factor of three with minimal average degradation as measured by entropy.    
 
4.0 SUMMARY AND CONCLUSIONS 
 
A resource management algorithm, based on minimizing average entropy of the state space probability 
density function subject to constraints, that is applicable to tracking with a network of heterogeneous 
sensors multiple targets moving through a road mesh was developed and demonstrated.   For the problem 
considered, using on average 2.5 sensors out of a total of six resulted in little degradation in average 
entropy of the state space probability density function.  This work extends earlier work on entropy based 
resource management in that it applies to a varying number of targets tracked with heterogeneous sensors 
and allows for multiple sensor data to contribute at any time instant to the update of estimates of state 
space parameters.  Computational simplifications using quadratic mutual information and the Mobius 
transform were introduced and shown to be effective.  In particular, using the Mobius transform reduces 
the computational complexity from one that is exponential in the number of sensors to one that is 
polynomial in the number of sensors.  Future work will address remaining computational issues, 
incorporate identification along with kinematic variables, incorporate longer time horizons and address 
the relationships between resource allocation based on mutual information and Markov decision 
processes.   
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Figure 1.  Diagram of the resource management algorithm.

Density estimation with additional expected measurements 

     Density estimation without additional measurements 

Sensor 
Subset 

Selection 

State space 
PDF Measurements 

Update 
PDF 

Parameters 

Propagate 
PDF 

Uncertainty 
Metric 

tYY L1  tt YX :0|  tt YX :01 |+



 11

 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

2

4

6

8

10

12

Number of sensors

D
er

iv
at

iv
e 

of
 S

M
I

 
-60 -40 -20 0 20 40 60 80 100

-60

-40

-20

0

20

40

60

80

100

Meters

M
et

er
s

2

1

3

4
1

2

 
                                       (a)                                                                                 (b) 
 
Figure 2.  (a) The derivative of the mutual information curve with respect to energy used to select subsets 
of sensors.  (b) A snapshot of the tracking scenario showing the targets (magenta), 95% confidence 
ellipses, active arrays (larger green disks), active radar (larger red disk), inactive array (smaller green 
disk), inactive radar (smaller red disk).    Thus, arrays 1,2, and 4 and radar 1 are on, while radar 2 (R-2) 
and A-3 are off.   If the threshold had been set higher so that two sensors were selected they would have 
been R-1 and A-3, and if three sensors had been selected they would have been R-1, A-3, and A-4.   
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                                       (a)                                                                              (b)  
 
Figure 3.  (a) Average entropy curves for a range of threshold values are shown for each position in a run 
of the simulation.  The first target enters the system at 20 pulses and both targets have left by 120 pulses.  
Each graph corresponds to a particular threshold, and the labels show the correspondence between 
threshold and average number of sensors selected.  (b) The curves in 3(a) are further averaged and 
compared with the average entropy (red) measured if all of the sensors are utilized all of the time.  
Additionally, the average life time extension factor in comparison with using all sensors all of the time is 
shown in blue.     
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