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ABSTRACT 
 This paper describes the application of finite set statistics (FISST) to a real-time multiple 
target road constrained feature-aided tracking problem.  A vehicle of interest traverses the 
road network while other confuser vehicles cross paths with this vehicle.  Features 
extracted from sensors are used to disambiguate the vehicle of interest from the confuser 
vehicles.  The FISST formalism naturally leads to understanding ambiguity in the identity 
of targets. 
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1.0 Introduction 
Many tracking applications address the issue of monitoring one (or a few) vehicles of interest 
(VOI) in a background of confuser vehicles.  One such program is the DARPA Affordable 
Moving Surface Target Engagement (AMSTE) program [1, 2].  Monitoring vehicles traversing a 
dense road network poses several complications since target state vectors can change rapidly due 
to target maneuvers at intersections [1].  There is often an association ambiguity between the 
measurement and the target positions because multiple roads and targets are in the sensor’s field 
of view.  Adding false alarms and missed detection further increase the complexity of road 
tracking.  Since these confuser vehicles can cross paths with the VOI, ambiguity in the kinematic 
state of the VOI is unavoidable [2, 3].  Disambiguating the VOI from the confuser vehicle 
requires an ID process that verifies the position of the VOI  using  features that are unique to the 
VOI.   

Traditional Kalman filter based approaches using multiple target tracking methods have 
difficultly in kinematic tracking of a VOI in a background of confuser vehicles because of 
limitations in the association process.  The association process makes one or a few hard 
associations between targets and detections [4].  If incorrect, these hard associations lead to a 
greater certainty in target position than the data actually supports.  The result is a false continuity 
in the track that implies known target IDs.  This overly optimistic tracking result must be 
corrected by an algorithm introduced on top of the filter that accounts for confusion between 
tracks. 

We have introduced and tested a random set tracker (RST) that naturally avoids making these 
associations in purely kinematic applications [5].   The random set approaches do not explicitly 
define tracks and avoid the association ambiguity by statistically weighing all possible 
hypotheses and associations [5, 6,7].  As a result, it does not have the implicit track continuity 
that leads to difficulties in defining track ambiguity.  By Kronecker producting the kinematic 
space with a feature space, the RST incorporates ID into tracking problems without modifying the 
framework or introducing patches on top of an inadequate framework.  Similar to its tracking 
capabilities, the RST framework naturally accounts for ID ambiguity by avoiding hard 
associations between feature vectors and specific tracks. 

There are two basic feature-aided tracking applications that the current fusion algorithm can 
accommodate both applications [4]: 1)  The simplest is the tracking vehicles of various classes, 
pick-up trucks versus sedans.  In this application, the features of the various classes are pre-
defined.  Given a sensor measurement, the probability of a vehicle belonging to a specific class 
can be determined.  2)  Another application requires that the system acquire features that uniquely 
identify the vehicle, such as high range resolution radar profiles [2].   After these features are 
acquired, the tracking application reduces to the classification problem with the assumption that 
only one vehicle belongs to each class.  Determining when and how to acquire features is an 
inherent resource management issue.  This paper outlines utilization of incoming sensor 
measurements to maintain tracks without explicitly addressing the issue of sensor management.  
Once the fusion framework is developed, it will be possible to predict future system behaviors, 
which will allow future development of resource management algorithms.  The proposed RST 
implementation represents information in a framework that accommodates resource management 
algorithms performing both feature-aided tracking applications. 

The specific application we discuss in this paper assumes the existence of two classes of targets, a 
VOI class and confuser class.  As in the AMSTE program, we will assume the VOI class contains 
a unique target that is defined by its feature vector (FV), but unlike AMSTE, the FV of the VOI is 
known a priori.  The FV space we consider is a continuous vector space, such as length or color, 
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but the algorithm is easily modified to include a discrete FV.  Measurements are used to refine 
our estimates of these vectors.  The values of the FVs, along with kinematic discriminators such 
as speeds, are used to classify the vehicles into the VOI/confuser classes through traditional 
statistical classification processes, such as a support vector machine (SVM).  The proposed fusion 
algorithm is not limited to this scenario, but this simplest scenario allows us to discuss several of 
the properties of this fusion algorithm.   

2.0 Random Set Theory Tracking (RST) 
Traditional Kalman filters assume state variables, , and measurements, , are fixed length 
random vectors [6].  For traditional tracking applications, represents the targets’ geokinetic 
variables, and 

x y
x

y represents the measurements related to the geokinetic variables.  The state vector 
motion model is linear with Gaussian white noise, ttt dλΩxx +=+1 . Additionally, the 
measurements depend linearly on the state vectors with additive Gaussian white noise, 

.  The Kalman filter can be extended to non-Gaussian noise, non-linear 
measurements, and non-linear motion models through the Bayesian filter [6].   The Bayesian filter 
consists of two steps.  1)  Starting with a probability density conditioned on previous 
measurements, , a prediction step estimates the probability density of the vector at 
time step , 

ttt dδWxy +=

)|( 1:11 −− ttf yx
t

).|()|()|( 1:11111:1 −−−−− ∫= ttttttt ffdf yxxxxyx  (1) 

This new probability density is combined with a new set of measurements, , during the update 
step to determine the new estimate of the probability density, 

ty

),|()|()|( 1:1
1

:1 −
−= tttttt ffNf yxxyyx  (2) 

where N is a normalization factor.  The number of state variables and measurements is fixed and 
the mapping between the state variables and measurements is explicit.  The state variables, , 
can be expanded to include ID variables, FVs, such as length or color.  These feature vectors 
correspond to characteristics of the vehicles being tracked.  These FV variables allow us to 
discriminate targets that cannot be separated by kinematics alone.  Equation (1) and (2) do not 
need to be modified to incorporate either discrete or continuous features vectors.  Similar to the 
kinematic variables, FVs exist in a multidimensional space.  Most collected features are time 
invariant and the feature’s motion model is generally the identity operator, , 
while measurements reduce our uncertainty in their values.  Incorporating a time varying feature, 
such as temperature, is trivial.   

x

)()( 1 tt ff xx =−

Classification or identification, which generally results in a discrete set of states, is derived from 
the FVs through a partitioning of the FV space.  Integration (marginalization) of the probability 
distribution over the interior of the classification boundaries defines the probability of the target 
belonging to a certain class (see figure 1).  Defining the classification boundaries can be 
accomplished by several methodologies, including SVM.  The hard decision boundaries can be 
replaced by the probability of a feature vector corresponding to a vehicle in a specific class.  In 
this case, the classification is determined by .)()()()( ∑∫∫=

class
classclassclass PfdPfdP xxxxxx

 (3) 
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Figure 1:  A depiction of object classification.  The integral of the pdfs over the 
shaded portion of the vector space corresponds to the probability of being in class 1.  
The integral of the pdfs over the unshaded space corresponds to the probability of 
being in class 2.  Note that the classification may depend on the kinematic variables.  
The green pdf straddles the classification boundary and exists in an ambiguous 
classification state.  As discussed in section 4.0, the red pdf represents a hypothesis 
reduction that approximates the information contained in the the green and blue 
hypotheses.  The ambiguity in which hypothesis is true becomes a larger variance in 
the pdf. 

If  are mutually exclusive indicator functions, )(xclassP 1,0)( =xclassP  and 

2,121 )()( classclassclassclass PP δ=xx , the hard decision boundaries result.  The same arguments apply 
to a discrete feature vector space.  In many ways the discrete space is a simplification of the 
continuous framework and will not be directly addressed in this paper. 

Tracking multiple targets presents difficulties because the association of measurements with 
existing targets is often ambiguous [6,7].  Even if the state variables are linearly related to 
measurements with Gaussian errors, the ambiguity in associations produces non-Gaussian effects 
[3].  Missed detections, false alarms or clutter, and the birth and death of targets complicate the 
scenario.  In addition to their numerical values, the number of targets and measurements are also 
random variables, and the vectors  and y  must be replaced with random sets and .  The x }{x }{y
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state variables, , may take on the values }{x }{}{ φ=x ,  
 where , , denote the positions, velocities, and FV 

components of target , respectively.  The set of measurements, , are estimates of the 
geokinetic and feature variables recorded from various sensors and include clutter returns and 
missed detections.  

},,,{ 111 idvx
},...,,,,,{ 21 2211 idvxidvx ix iv iid

i }{y

Several methods address variable numbers of targets and detections with ambiguous associations, 
including joint integrated probabilistic data association (JIPDA) and jump Markov models (JMM) 
[10,11].  In this paper, we explore applications of finite set statistics (FISST) to road constrained 
multiple target tracking.  FISST is a generalization of the Bayesian equations to sets, equations 
(1) and (2).  The probability density, called the global density, is defined on the possible number 
and locations of targets.  For road networks, the global density has the form 
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where  is the probability of no targets,  is the probability density for n targets on roads 

 at , respectively.  The density is normalized with 
respect to a set integral  
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where the summation over n refers to the number and identity of possible roads.  Similar to the 
Bayesian filter one can define conditional probabilities, motion models, and measurement models 
to develop a set of recursive update equations [3, 7].  The prediction step includes propagation 
and birth and death processes so that the conditional expectation of the global density on previous 
measurements has the form 
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where the sum is over all possible roads, mrr ′′...1 .  The predicted density is then updated with the 
measurements at time step , t
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Summation over the associations makes these expressions more complicated than equations (1) 
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and (2).  The exact forms of the expressions for the sensors used in this experiment will be 
outlined below.  Similar to the Bayesian filter, the FISST tracker can be easily extended to 
applications with target ID by taking the Kronecker product of the FV space with the kinematic 
space.  The FV extension of this previously proposed tracker handles the ambiguities in FV space 
in a manner that is analogous to the kinematic trackers handling of ambiguities. 

3.0 Global Density Calculation 
The prediction and update equations for the road constrained network are complicated by the 
association ambiguity of the sensors.  In this section, we outline the expressions for these 
equations. 

3.1. Prediction  
The road networks we consider consist of road segments joined at intersections.  Vehicles can 
enter and leave the road network via certain road segments that terminate outside the network.  
These terminated roads are referred to as exit ends.  The prediction step includes propagation 
along a road, road switching, and birth and death processes.  The centerline of each road, i , is 

defined by a parametric curve,  and , with )(sxi )(syi ( ) ( ) 122 =+ dsdydsdx ii . The 
independent motion of targets along the arc length of a road is linear with Gaussian white noise 
acceleration, 

ii dvv

vs
ii

ii

Λ+−=

=

γ&

&
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Over a small time interval, the expected variance in the integral of the acceleration is 
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It is possible to include a FV dependence in the motion of the target. Target hypothesis branching 
at intersections is accomplished by allowing density to propagate beyond the end of the road.  
The overhanging density is truncated from the original road and equipartitioned among the 
connected roads (See Fig. (2)).  The velocity profile of the equipartitioned distribution is the same 
as the original density, with velocities pointing towards the intersection on the original road 
pointing away from the intersection on the new road. 

Death processes correspond to density that overhangs at exit ends in the road network.  Death 
processes result in marginalizing over the overhanging profile and adding the remaining density 
profile to the corresponding hypothesis.  For example, if Fig. (2) (b) corresponds to the projection 
of onto the coordinate at the exit end, the overhang would be  truncated and 

 is added to .  In the application we consider, the 

identity of targets does not vary over time and the FV component will not be affected by the 
target motion.  These assumptions can be easily modified. 
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Figure 2:  Road switching in the road network. (a) The intersection of ,  and . 

(b) Starting from a density on , the propagation step results in the density 
overhanging .  (c)  The new profile for  is created by truncating the overhanging 
portion of the density.  (d)  The overhanging density is equipartitioned between   
and . 

1r 2r 6r
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1r 1r
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Several birth processes are possible, such as coupling birth processes to measurements not 
associated with any previously detected targets [7].   Resource management of sensors requires 
knowledge of the rate of decay of information about the global density, which is greatly affected 
by birth processes.  To ensure that the birth processes reflect the decay in information, the birth 
processes correspond to adding targets to an exit end by a Poisson process with parameter, 

1<<
ir

λ .  The added target has a Gaussian position profile with a mean located near the end of 
the road and a road dependent standard deviation.  The velocity profile is a truncation of the 
steady state velocity profile that ensures the velocity points onto the road so that targets do not 
immediately depart upon entry. Birth targets will generally exist in an ambiguous classification 
state with a widely distributed FV that straddles both the VOI and confuser classifications (see 
figure 1). 
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3.2. Update  
A sensor is an instrument that returns detections based on data collected from the environment.  
The detections can contain both kinematic information and FV information.  The kinematic 
information will generally be in the form of range, azimuth, and elevation position and velocity 
information that is relative to the position of the sensor.  Two examples are a range radar that 
reports only a range from the radar to the target and an acoustic array that reports an angle from 
the sensor to the target.  Every sensor has a probability of detecting a target and errors in reported 
measurements.  The probability of detect and the errors in the measurement depend on the targets 
locations relative to the sensor and may even contain multi-body effects, such as occlusion of one 
target by another.  

As mentioned above, summation over the associations complicates updating the probability 
density.  For example, if a radar sensor reports the range measurement, }...{ 1 mρρ , the likelihood 
function becomes 
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In this expression, aρ  is the measurement (in the product and summation) and the association (in 
the indices).  The probability of a clutter return from bin b, , or from the target, , is 

spatially dependent.  The measurement model, , is often Normally distributed error around the 

point in the measurement space,  

)(bPc tP

rg
22 )()())(),(( sysxsysxhr += , which is a non-linear map 

between the state space and measurement space. 

Association ambiguities lead to non-Gaussian effects and make the Kalman filtering equations 
invalid even if  was linear,  is Normally distributed, and the detection probabilities are 
position independent constants.  The non-linear nature of the measurements and detection 
probabilities increases these complications. Various linear approximations, pruning, and 
measurement weighting strategies attempt to avoid this difficulty, but they may lead to poor 
tracking performance [3, 10]. 

rh rg

The association between a detection from a sensor and a target depends on both the sensor and 
the targets.  As an example, shot locating acoustic arrays have a markedly different association 
algorithm than radars.  The array often reports a single measurement, the angle to the loudest 
target in the sensors field of view (the direction to the shooter), although more complex behavior 
can sometimes result.  There are fewer associations to sum over, but the detection probabilities 
will depend on all coordinates of all possible shooters.  Neglecting elevation, the likelihood of 
detecting an azimuth of α is 
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where refers to the signal strength from the targets, clutter refers to background sound sources, 

and 
js

T is a threshold for reporting detections.  Similar to the radar model,  will typically be 
Normally distributed and the relation between road positions and angle, 

αg

))()((tan))(),(( 1 sxsysysxh −=α , is highly non-linear.  These types of instruments require 
many-body effects that cannot be captured by a PHD filter [12]. 

Variations transverse to the centerline of the road are also utilized in combining measurements 
with the priors.  These variations are assumed to be proportional to the width of the road.  The 
transverse variations allow the system to incorporate detections that are slightly off the road.  If 
the roads have significant changes in elevation, this component could be easily incorporated into 
these models by defining . )(sz

4.0 Numerical Implementation 
To make the random set implementation numerically feasible, we use a Gaussian Mixture 
approximation.  The Gaussian mixture model for this road network scenario also allows a scalable 
Gaussian sum particle filter (GSPF) representation [13].  The GSPF is similar to particle filter 
sampling methods, but the delta function kernel associated with each particle is replaced by a 
variable dimensional Gaussian.  The covariance and mean of each particle is propagated instead 
of simply the position of each particle.  Each term in the global density is represented by a finite 
number of Gaussians, 

∑ −=
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where  is a multidimensional Gaussian distribution, G )exp()2(),( 11
xCxCCx −−

= TDetG π  
which includes the FV.  The Gaussian mixture representation requires several approximations:  1) 
After combining detections with the Gaussian, the probability of detect is based on the mean 
value of each Gaussian component.  2) The non-linear maps between the coordinates and the 
measurements are Taylor expanded around the mean values, +≈ ))(( 0sxhh  

))())((( 00 ssssxh −∂∂  in directions parallel and transverse to the road network.  3)  The motion 
model is still linear.  4)  Instead of truncating overhanging density, road switching and death 
processes correspond to the mean of the mixture component overhanging the end of the road.  
The entire Gaussian component either switches roads or is marginalized.  5)  Birth processes 
correspond to adding mixture components to the ends of roads with a mean velocity pointing onto 
the roads and a fixed initial width.   

All of these approximations maintain the Gaussian mixture representation of the global density.   
The validity of these approximations depends on the Gaussian mixture components’ variances 
being much smaller than variations in the detection probabilities, the variations in , and the 
distance from the ends of the roads. We ensure the validity of these approximations by replacing 
components with large variances with several Gaussian components of smaller variances through 
a Kullback-Leibler measure.  Similarly, if a target is on the boundary of a classification, it is 
possible to split up a Gaussian into multiple Gaussian mixtures that do not straddle the boundary, 
but we have not implemented this approach [13].  

h

Although these approximations ensure that the global density maintains a Gaussian mixture 
functional form, the associations of the measurements result in a geometric explosion in the 
number of mixture components.  To avoid the geometric growth, the mixture components are 
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recombined based on the Kullback-Leibler metric.  The KL metric compares  with a new 

Gaussian mixture, 
nrrf ...1

nrrf ...1

~
, that contains two components with the same mean, variance and class 

probability [14], 
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The KL metric gives 
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where )(~ nμ and are the optimal mean and covariance, respectively. The combined mixture 
components that result in the smallest KL metric are combined until either the number of 
mixtures is smaller than a set maximum number or the KL metric for combining two mixtures is 
greater than a tolerance [14].  The procedure results in a reduction in the number of mixture 
components, as demonstrated in figure 1. 

)(~ nC

If the FV does not affect the kinematic model we may want to ignore cross terms in the 
information and evaluate the information about the feature and kinematic variables separately.  In 
this case, the KL metric will factorize into a FV component and a kinematic component. 
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The kin and id subscripts denote the kinematic and FV components of the Gaussian mixture, 
respectively.  The α  prefactor allows us to weigh the importance of the feature and kinematic 
information.  It is also possible to give different geokinetic variables, such as those corresponding 
to VOI, different weights as well.   

If the final distribution was reduced to a single Gaussian at each time step, the resulting filter 
would be similar to the JIPDA filter, which sums over associations to determine the best fitting 
Gaussian distribution [10].  Maintaining a finite number of mixture components gives greater 
flexibility and improves performance. Each mixture component is similar to a single hypothesis 
in a multiple hypothesis tracker (MHT) [15]. Unlike the MHT that performs branching and 
pruning procedures, the FISST tracker combines branches of the track estimates [14].  This 
procedure reduces the amount of information lost at each update step since the combined 
hypothesis contains information about the original hypotheses, but makes the definition of a track 
and track lifetime ambiguous since tracks with different lifetimes may be combined (see figure 3). 
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5.0 Discussion 
The random set tracker proposed in this paper is closely related to multi-threaded Kalman 
filtering methodologies such as MHT, but there are several distinctions that naturally lead to 
incorporation of target identity.   The linearization in measurement models is identical to the 
extended Kalman filter.  In fact, if there were no association ambiguities, (i.e. we knew which 
target creates each detection), the resulting algorithm would be an extended Kalman filter.  
Similarly, if we always reduced the distribution to a single Gaussian, a tracker similar to the 
JIPDA filter would result [10].   However, the random set tracker sums over associations, which 
avoids hard decisions made in many traditional Kalman Filter based approaches. A MHT 
attempts to track several possible hard associations, but introduces a pruning procedure to reduce 
the number of possible hypotheses.  Unlike MHT, the random set tracker avoids the exponential 
branching of hypotheses by reducing information (not the explicit number of hypotheses).  The 
number of hypotheses is allowed to vary as needed to maintain the appropriate level of 
information about the targets.  Figure 3 gives an illustration of the differences between MHT and 
RST.  Figure 3 (a) shows a path where a confuser vehicle will become confused with the VOI 
track at two points in time (1 and 3).    The multiple hypothesis tracker will have two branching 
processes, resulting in four hypotheses.  If the number of hypotheses maintained by the tracker is 
less than four, some of these hypotheses will be eliminated despite that the probability of each 
hypothesis may be close to equally likely.  The RST tracker would prevent this branching and 
pruning by determining that the hypotheses at time point 3 contain similar information and can be 
approximated by a single Gaussian with little loss of information.  This reduces the number of 
hypotheses handled by the tracker.  When the second branch occurs,  only two hypotheses result. 

Another example of the RST is a scenario where there are two hypotheses of a single target with 
distinct FVs.  This scenario can result if the kinematic detections suggest the existence of a single 
target, but FVs taken from different sensors are not complimentary.   In this case, it is most 
probable that only a single FV is correct.  Since we do not know the correct FV, our knowledge 
of the FV is diminished, which is captured by combining the Gaussians of the two FVs into one 
Gaussian with a larger variance (see figure 1).  The MHT would either prune one hypothesis and 
lose information or keep both hypotheses, which increases the cost of maintaining this 
information.  The RST’s ability to incorporate this FV ambiguity while reducing the computation 
of the hypotheses is a advantageous property of RST. 

Similar to MHT, the RST naturally deals with ambiguities in ID by leading to different 
hypotheses where the confuser and VOI position may be switched.  However, these multiple 
hypotheses are not the result of a few possible hard associations.  This scenario is quite different 
from traditional multiple thread Kalman filter algorithms that attach a track number and give a 
false continuity to the tracks.  It is important to emphasize the difference between classification 
(which also attaches a label to a track) versus the track label in multiple threaded Kalman 
filtering.  The classification label is not an intrinsic part of the fusion algorithm.  Instead, it is a 
refined data product output by the fusion algorithm.  This classification product would be 
important to a resource management algorithm or an end user, but it is not directly used by the 
fusion algorithm. 

The RST fusion algorithm also lacks the traditional concept of a track, which is a contiguous set 
of position estimates over time believed to be the result of a single vehicle.  Internally, the RST 
fusion algorithm simply reports the probability of a set of target with specific FVs and geokinetic 
variables at a specific time point.  A continuous track can be inferred from a MAP estimate 
performed on the global density, but this track is a refined data product that cannot be used 
internally by the fusion algorithm. 
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Figure 3:  (a)  A path where the VOI and confuser become entangled at points 1 and 
3.  If no ID measurements can be performed at point 2, a MHT will give 4 possible 
hypotheses at point 4 as shown in (b).  The random set tracker recombines the two 
hypotheses at point 3 so that only two hypotheses exist at point 4. 

The RST fusion algorithm is a promising candidate for feature-aided target tracking.  It naturally 
addresses branching processes and identity ambiguity within a computable framework.  We have  
currently implemented a RST on a small road network with 6 roads and 6 sensors including 
radars, acoustics and cameras.  The tracker can work at real time tracking up to 3 targets at a 2 Hz 
rate on a standard laptop computer.  Analysis of these results will be presented in future work.  
Extending this RST to larger applications requires development of algorithms such as windowing 
sensor detections and clustering of targets.  Because the RST framework closely resembles a 
MHT, these algorithms can be easily incorporated into RST and pose a future research direction. 
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