
Skeletons, Homomorphisms, and Shapes:

Characterizing Protocol Executions⋆

Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer

The MITRE Corporation
shaddin, guttman, jt@mitre.org

1 Introduction

Most protocol analysis tools and techniques operate by proving/disproving secu-
rity properties of a protocol formulated as predicates in a specific logic. Starting
from some initial assumptions, theorem proving or model checking (such as in
[8]) techniques can be used to check if a certain security property follows. In this
paper, we take a different approach to this problem.

Instead of checking each security property individually, our approach is to
characterize all protocol executions compatible with the initial assumptions. The
resulting characterization is a set of protocol runs that is representative of all
possible protocol runs. Some advantages of this approach are:

s

We find that the proofs for different security properties often duplicate the
same work. With this approach, all the work needed to characterize possible
runs can be done once. Then it is easy for a human analyst or simple tool to
“read off” the value of any security predicate from the characterization by
evaluating that predicate on each bundle in the characterization.

s

Security properties of the protocol that were not anticipated by the designer
will become apparant.

s

The analyst interested in a certain security property can see all the possible
attacks/counterexamples as opposed to a single attack.

s

Since all possible protocol runs are represented, this gives the protocol de-
signer more insight into the effect of different construction primitives used
in the protocol.

In this paper, we will present a framework, based on strand spaces, for analyz-
ing protocols and characterizing their executions. While a generalized notion of
our characterizations can capture both authentication and secrecy properties, we
will restrict this discussion to a simpler notion that exclusively capture authen-
tication properties. We will discuss the applicability to secrecy in future work.
Indeed, any algorithm for constructing characterizations must reason about both
secrecy and authentication.

As motivation this framework, consider a protocol analyst presented with
some initial assumptions about a protocol run. Often this is a single strand

⋆ Supported by the National Security Agency and by MITRE-Sponsored Research.

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 06-0642

with some secrecy/freshness assumptions. The analyst can then repeatedly apply
inference rules such as the authentication tests [3] in order to infer more about
the structure of the protocol run.

At any point in the analysis, the analyst is in possession of some partial in-
formation about the structure of the protocol runs possible. We will represent
this partial information as a structure we will call a skeleton. We will also de-
fine information preserving homomorphisms between skeletons. Thus, much of
protocol analysis can be expressed in terms of skeletons and homomorphisms
between them.

While we will relegate discussion of the actual algorithms used to construct
these characterizations to future work, we will define what we believe the result
should be. Given a set of initial assumptions (an initial skeleton), we will define
how a set of protocol runs can characterize all possible runs. Furthermore, we
will show that there is a minimum such characterization : the set of shapes.

2 Background

Terms form a free algebra A, built from atomic terms via constructors. The
atomic terms are partitioned into the types principals, texts, keys, and nonces.
An inverse operator is defined on keys. There may be additional operations
on atoms, such as an injective public key of function or an injective long term
shared key of function mapping principals to keys. Atoms serve as indeterminates
(variables), and are written in italics (e.g. a, Na, K−1). We assume A contains
infinitely many atoms of each type.

Terms in A are freely built from atoms using tagged concatenation and en-
cryption. The tags are chosen from a set of constants written in sans serif font
(e.g. tag). The tagged concatenation using tag of t0 and t1 is written tag ˆ t0 ˆ t1.
Tagged concatenation using the distinguished tag null of t0 and t1 is written
t0 ˆ t1. Encryption takes a term t and an atomic key K, and yields a term as
result written {|t|}K . Fix an A. Replacements have only atoms in their range:

Definition 1 (Replacement, Application). A replacement is a function α

mapping atoms to atoms, such that (1) for every atom a, α(a) is an atom of the
same type as a, and (2) α is a homomorphism with respect to the operations on
atoms, e.g. in the case of inverse keys, for every key K, K−1 · α = (K · α)−1.

The application of α to t, written t · α, homomorphically extends α’s action
on atoms. More explicitly, if t = a is an atom, then a · α = α(a); and:

(tag ˆ t0 ˆ t1) · α = tag ˆ (t0 · α) ˆ (t1 · α)

({|t|}K) · α = {|t · α|}K·α

Application distributes through pairing and sets. Thus, (x, y) · α = (x · α, y · α),
and S · α = {x · α: x ∈ S}. If x 6∈ A is a simple value such as an integer or a
symbol, then x · α = x.

Since replacements map atoms to atoms, not to compound terms, unification
is very simple. Two terms are unifiable if and only if they have the same ab-
stract syntax tree structure, with the same tags associated with corresponding
concatenations, and the same type for atoms at corresponding leaves. To unify
t1, t2 means to partition the atoms at the leaves; a most general unifier is a finest
partition that maps a, b to the same c whenever a appears at the end of a path
in t1 and b appears at the end of the same path in t2. If two terms t1, t2 are
unifiable, then t1 · α and t2 · β are unifiable.

The direction + means transmission, and the direction − means reception:

Definition 2 (Strand Spaces). A direction is one of the symbols +,−. A di-
rected term is a pair (d, t) with t ∈ A and d a direction, normally written +t,−t.
(±A)∗ is the set of finite sequences of directed terms.

A strand space over A is a structure containing a set Σ and two mappings: a
trace mapping tr : Σ → (±A)∗ and a replacement application operator (s, α) 7→
s · α such that (1) tr(s · α) = (tr(s)) · α, and (2) s · α = s′ · α implies s = s′.

By condition (2), Σ has infinitely many copies of each strand s, i.e. strands s′

with tr(s′) = tr(s).

Definition 3. A penetrator strand has trace of one of the following forms:
M: 〈+t〉 where t ∈text, principal,nonce K: 〈+K〉
C: 〈−g, −h, +g ˆ h〉 S: 〈−g ˆ h, +g, +h〉
E: 〈−K, −h, +{|h|}K〉 D: 〈−K−1, −{|h|}K , +h〉.

If s is a penetrator strand, then s · α is a penetrator strand of the same kind.

Definition 4 (Protocols). A protocol 〈Π, n, u〉 consists of (1) a finite set of
strands called the roles of the protocol, and (2) for each role r ∈ Π , two sets
of atoms nr, ur giving origination data for r. The regular strands ΣΠ over Π

consists of all instances r · α for r ∈ Π .

A node is a pair n = (s, i) where i ≤ length(tr(s)); strand(s, i) = s; and the
direction and term of n are those of tr(s)(i). We prefer to write s ↓ i for the node
n = (s, i). The set N of all nodes forms a directed graph G = 〈N , (→ ∪ ⇒)〉 with
edges n1 → n2 for communication (with the same term, directed from positive
to negative node) and n1 ⇒ n2 for succession on the same strand.

The subterm relation, written ⊏, is the least reflexive, transitive relation
such that (1) t0 ⊏ tag ˆ t0 ˆ t1; (2) t1 ⊏ tag ˆ t0 ˆ t1; and (3) t ⊏ {|t|}K . Notice,
however, K 6⊏ {|t|}K unless (anomalously) K ⊏ t. We say that a key K is used
for encryption in a term t if for some t0, {|t0|}K ⊏ t.

A term t originates at node n if n is positive, t ⊏ term(n), and t 6⊏ term(m)
whenever m ⇒+ n. Thus, t originates on n if t is part of a message transmitted
on n, and t was neither sent nor received previously on this strand.

Definition 5 (Bundle). A finite acyclic subgraph B = 〈NB, (→B ∪ ⇒B)〉 of G
is a bundle if (1) if n2 ∈ NB is negative, then there is a unique n1 ∈ NB with
n1 →B n2; and (2) if n2 ∈ NB and n1 ⇒ n2, then n1 ⇒B n2. When B is a
bundle, �B is the reflexive, transitive closure of (→B ∪ ⇒B).

A bundle B is over 〈Π, n, u〉 if for every s ↓ i ∈ B, (1) either s ∈ ΣΠ or s is
a penetrator strand; (2) if s = r · α and a ∈ nr · α, then a does not originate in
B; and (3) if s = r · α and a ∈ ur · α, then a originates at most once in B.

Proposition 1. Let B be a bundle. �B is a well-founded partial order. Every
non-empty set of nodes of B has �B-minimal members. If α is a replacement,
then B · α is a bundle.

We will also define the sub-bundle relation between bundles.

Definition 6. A bundle B1 is a sub-bundle of bundle B2 is B1 is a subgraph of
B2, up to (injective) renaming of nodes.

3 Skeletons and Homomorphisms

In this section we will define the framework of skeletons and homomorphisms.
A preskeleton describes the regular (honest) parts of a set of bundles. K is

used in t if, for some t0, {|t0|}K ⊏ t. If a occurs in t or is used in t, then a is
mentioned in t.

Definition 7. A four-tuple A = (node,�, non, unique) is a preskeleton if:

1. node is a finite set of regular nodes; n1 ∈ node and n0 ⇒+ n1 implies
n0 ∈ node;

2. � is a partial ordering on node such that n0 ⇒+ n1 implies n0 � n1;
3. non is a set of keys where if K ∈ non, then for all n ∈ node, K 6⊏ term(n),

and for some n′ ∈ node, either K or K−1 is used in term(n′);
4. unique is a set of atoms where if a ∈ unique, for some n ∈ node, a ⊏ term(n).

A preskeleton A is a skeleton if in addition:

4′. a ∈ unique implies a originates at no more than one n ∈ node.

A skeleton is similar to the notion of semi-bundle in [8].
We select components of a preskeleton using subscripts. For instance, if A =

(node, R, S, S′), then �A means R and uniqueA means S′. We write n ∈ A to
mean n ∈ nodeA, and we say that a strand s is in A when at least one node of s

is in A. The A-height of s is the number of nodes of s in A. By Clauses 3 and 4,
uniqueA ∩ nonA = ∅.

We will define the sub-[pre]skeleton relation analogously to the sub-bundle
relation:

Definition 8. A [pre]skeleton A is a sub-[pre]skeleton of A
′ if each of nodeA,�A

, nonA, uniqueA is a subset of nodeA′ ,�A′ , nonA′ , uniqueA′ respectively, up to (in-
jective) renaming of nodes.

Bundles correspond to certain skeletons:

Definition 9. Bundle B realizes skeleton A if (1) the nodes of A are precisely
the regular nodes of B; (2) n �A n′ just in case n, n′ ∈ nodeA and n �B n′; (3)
K ∈ nonA just in case K 6⊏ term(n) for any n ∈ B but K or K−1 is used in some
n′ ∈ B; (4) a ∈ uniqueA just in case a originates uniquely in B. if some B realizes
A we say that A is a realized skeleton

In fact, a bundle completely determines the skeleton it realizes.

Proposition 2. If B is a bundle, then there is a unique skeleton that it realizes.
By condition (4), B does not realize A if A is a preskeleton but not a skeleton.

Homomorphisms. Since preskeletons represent partial-information about a pro-
tocol run, it would be useful to define information-preserving maps between
them: homomorphisms

Definition 10. Let A0, A1 be preskeletons, α a replacement, φ: nodeA0
→ nodeA1

.
H = [φ, α] is a homomorphism if

1a. For all n ∈ A0, term(φ(n)) = term(n) · α;
1b. For all s, i, if s ↓ i ∈ A then there is an s′ s.t. for all j ≤ i, φ(s ↓ j) = (s′, j);
2. n �A0

m implies φ(n) �A1
φ(m);

3. nonA0
· α ⊂ nonA1

;
4. uniqueA0

· α ⊂ uniqueA1
.

We write H : A0 7→ A1 when H is a homomorphism from A0 to A1.
Homomorphisms can transform preskeletons to skeletons by contracting nodes

that originate the same a ∈ uniqueA. Furthermore, homomorphisms can trans-
form preskeletons to realized skeletons.

There are many runs of the protocol compatible with a set of starting as-
sumptions represented by a preskeleton A. Homomorphisms from A to realized
skeletons describe how A is part of a protocol run.

Definition 11. We say a homomorphism H realizes preskeleton A if it maps A

to a realized skeleton A
′. In this case, we say A is realizable. Realized skeletons

are preskeletons that are realizable via the identity homomorphism.

4 Degeneracy

We use the notion of unique-origination to represent fresh generation of values
such as nonces and session keys. This necessitates that we restrict the set of ho-
momorphisms we are interested in to homomorphisms that respect this intended
real-world meaning of unique-origination.

Definition 12 (Degenerate Homomorphism). A replacement α is degener-
ate for A if there are distinct atoms a, b and a strand s where (1) a ∈ uniqueA

originates at s ↓ i in A, (2) b occurs on s ↓ j for j ≤ i, and (3) a · α = b · α.
H = [φ, α]: A0 7→ A is degenerate if α is degenerate for A0.

A degenerate replacement identifies a uniquely originating atom with some other
atom already known at the time it is chosen. Degenerate homomorphisms are of
negligible probability relative to stochastic models for protocols [4]. In the rest
of this paper, the reader can assume every reference to homomorphisms is in
fact restricted to non-degenerate homomorphisms.

In the same spirit, we are only interested in [pre]skeletons/bundles that re-
spect the real-world meaning of unique-origination.

Definition 13 (Degenerate Preskeleton/Bundle). A [pre]skeleton/bundle
is degenerate if it contains a strand r ·α of role r such that (1) a ∈ ur originates
at r ↓ i (2) b occurs on r ↓ j for j ≤ i, and (3) a · α = b · α.

Likewise, the reader can assume that every mention of [pre]skeletons/bundles is
restricted to non-degenerate [pre]skeletons/bundles.

5 Shapes

Due to the existance of an infinite set of homomorphisms realizing any preskele-
ton A, it is useful to find a small subset of those that characterizes all the runs.
The notion of characterization is catered to an intuitive understanding of what
it means for a protocol run to be an extension of another protocol run. Here we
capture one notion of extension that we have, in our experience, found to be the
most natural and useful.

Definition 14. A bundle B2 extends a bundle B1 if there is an atom replacement
(note: not necessarily injective) α such that B1 ·α is a sub-bundle of B2. Likewise,
for [pre]skeletons: A [pre]skeleton A2 extends a [pre]skeleton A1 if there is a re-
placement α such that A1 ·α is a sub-[pre]skeleton of A2. Naturally extending this
to homomorphisms: A homomorphism H2 : A → A2 extends a homomorphism
H1 : A → A1 if there is an atom replacement α such that α ◦ H1 : A → A1 · α is
simply a codomain restriction of H2. (i.e. A1 · α is a sub-[pre]skeleton of A2.)

This notion of extension can be equivalently, and more formally, stated as
follows:

Proposition 3. [Pre]Skeleton A2 extends [pre]skeleton A1 if and only if there
is a node-injective homomorphism from A1 to A2.

Homomorphism H2 extends homomorphism H1 iff H2 = G ◦ H1 where G is
node-injective.

Proof. By definition of sub-[pre]skeleton and extends ⊓⊔
Now we can define what it means for a set of protocol runs (realized homo-

morphisms/skeletons) to be characterization for A.

Definition 15. A set X of homomorphisms is a characterization for A if

s

Each H ∈ X realizes A

s

Every homomorphism H ′ realizing A extends some H ∈ X

Clearly the set of all realizing homomorphisms for A is a characterization for
A. However, we seek a characterization as small as possible: a minimal charac-
terization, under some criterion of size (number of nodes, total size of messages...
etc). We will show later that there is a a single characterization that is a unique
minimum for all these definitions of size simultaneously.

This notion of extension described above captures what it means for one
protocol run to simply be an elaboration on another run. One can make an
argument for several alternative notions of extends, including not requiring node-
injectivity for G in 3 above, and/or requiring atom-injectivity of G. Any of these
definitions would yield characterizations that can be used to decide security
predicates. However, they differ in their size, the ease by which they can be
algorithmically constructed, and the ease by which an analyst can interpret the
set of all runs and make judgements based on them. We chose this notion of
extends based on our experience in automating protocol analysis, and we found
that the minimum characterizations it yields succinctly capture the intuitive
notion of “representative set of all protocol runs”.

Requiring node-injectivity in our definition of extends has another advantage,
in that it results in a partial order as opposed to a preorder. Furthermore, the
partial order is well-founded.

Definition 16. For skeletons, A1 ⊑ A2 iff A2 extends A1. Likewise for homo-
morphisms, H1 ⊑ H2 iff H2 extends H1.

Proposition 4. ⊑ is a well-founded partial order on skeletons (up to isomo-
morphism).

Proof. Clearly ⊑ is reflexive and transitive.
Antisymmetry: if A ⊑ A

′ via H = [φ, α] and A
′ ⊑ A via H ′ then both have

the same number of nodes. By considering th composition of H and H ′, we can
see that H is node-bijective (φ is bijective) and atom-bijective (α is bijective).
By considering the composition of H and H ′, we can also see that α is bijective
from nonA to nonA′ , and also from uniqueA to uniqueA′ . Likewise φ is a bijection
from the pairs in �A to �A′ . Therefore H−1 = [φ−1, α−1] is a homomorphism,
and is the inverse of H . H is an isomomorphism.
Well-foundedness: For a skeleton A, let Occ(A) be the number of atom occurences
in A. Let Atoms(A) be the number of distinct atoms in A, and define the atom-
redundancy of a skeleton as red(A) = Occ(A)−Atoms(A). Also, let nonOcc(A)
and uniqOcc(A) be the number of occurences in A of atoms in nonA and uniqueA,
respectively. We can show that |node|, red , nonOcc, uniqOcc and | � | are each
non-decreasing with ⊑ and lower bounded by 0. Let

Rank(A) = |nodeA| + red(A) + nonOcc(A) + uniqOcc(A) + | �A |

The rank of a skeleton is non-decreasing with ⊑ and lower bounded by 0. Fur-
thermore, we can show that if A ⊑ A

′, and Rank(A) = Rank(A′), then A and
A

′ are isomorphic. It follows that ⊑ is well-founded up to isomorphism.
⊓⊔

This extends analogously to homomorphisms.

Corollary 5. ⊑ is a well-founded partial order on homomorphisms (up to iso-
morphism)

We will define shapes as the minimal realizing homomorphisms in this well-
founded partial order

Definition 17. A homomorphism H is a shape for A if H realizes A and H is
minimal under ⊑ amongst homomorphisms realizing A. Let shapes(A) be the
set of distinct (up to isomorphism) shapes of A.

Next, it becomes apparent that that the set of shapes of A describes (can be
extended to) all runs compatible with A

Proposition 6. shapes(A) is a characterization for A

Proof. Since ⊑ is well-founded, for any H ′ realizing A there is an H ∈ shapes(A)
such that H ⊑ H ′, and H ′ extends H . ⊓⊔

In fact, the set of shapes is the minimum such set

Proposition 7. shapes(A) is a subset of any other characterization for A.
Hence shapes(A) is the minimum characterization for A.

Proof. Take any other characterization X for A. Take any shape H ∈ shapes(A).
Since X is a characterization, there must be some G ∈ X such that G ⊑ H .
Since H is minimal under ⊑ then G = H .

⊓⊔
From 7 we can see that shapes(A) is the smallest characterization for A under

most definitions of size (number of nodes, total length of messages... etc).

6 Examples

6.1 An ISO Candidate

The protocol shown in Figure 1 was a candidate considered by an iso committee
as a pure authentication protocol [2]. No shared secret is achieved. It was in-
tended merely to assure each principal that the expected partner was initiating
communications.

This protocol was rejected by the committee due to the discovery of an attack
[2], shown in Figure 2. Since it was discovered by the Canadian representatives
to the committee, it is sometimes called the Canadian attack [2]. The attacker
is denoted by P .

This attack constitutes a failure of authentication from the perspective of
responder B. Even if both B and A had uncompromised private keys, the pro-
tocol does not guarantee to the responder B that A is running a corresponding
instance of the initiator role. In this attack, A is running an instance of the
responder role.

init resp

•
Na, A

-

Na, A
- •

•

�

w

w

w

�

{|Nb, Na, A|}
K

−1

B
�

{|Nb, Na, A|}
K

−1

B •

�

w

w

w

•

�

w

w

w

{|N ′

a, Nb, B|}
K

−1

A
-

{|N ′

a, Nb, B|}
K

−1

A
- •

�

w

w

w

noninit = {K−1

A } nonresp = {K−1

B }

uniqueinit = {Na, N
′

a} uniqueresp = {Nb}

Fig. 1. An iso Candidate Protocol

P
Np, A

- B

•

�

w

w

�

{|Nb, Np, A|}
K

−1

B •

�

w

w

A �

Nb, B
•

�

w

•

�

w

w

{|Na, Nb, B|}
K

−1

A
- •

�

w

w

S

�

w

w

w

w

w

w

w

w

w

w

w

•

�

w

w

{|Na, Nb, B|}
K

−1

A
-

Fig. 2. Bundle: The Canadian Attack

Na, A
- B

�

{|Nb, Na, A|}
K

−1

B •

�

w

w

w

{|N ′

a, Nb, B|}
K

−1

A
- •

�

w

w

w

non = {K−1

A , K
−1

B }

unique = {Nb}

Fig. 3. ISO Candidate Responder Skeleton

To express the guarantees this protocol makes to the responder, we will use
the skeleton in Figure 3 as our starting set of assumptions.

It can be shown that there are two shapes for the above skeleton, one corre-
sponding to the intended run, and one corresponding to the attack. These shapes
are shown in Figures 4 and 5.

A
Na, A

- ..
� Na, A

- B

•

�

w

w

w

�

{|Nb, Na, A|}
K

−1

B ..
�

�

{|Nb, Na, A|}
K

−1

B •

�

w

w

w

•

�

w

w

w

{|N ′

a, Nb, B|}
K

−1

A
- ..

� {|N ′

a, Nb, B|}
K

−1

A
- •

�

w

w

w

non = {K−1

A , K
−1

B }

unique = {Na, Nb, N
′

a}

Fig. 4. ISO Candidate Shape 1 for Responder : Intended Run

Na, A
- B

A �

Nb, B
�

�

{|Nb, Na, A|}
K

−1

B •

�

w

w

w

•

�

w

w

w

{|N ′

a, Nb, B|}
K

−1

A
-

� {|N ′

a, Nb, B|}
K

−1

A
- •

�

w

w

w

non = {K−1

A , K
−1

B }

unique = {Nb, N
′

a}

Fig. 5. ISO Candidate Shape 2 for Responder : Attack

6.2 Needham Schroeder

The well-known Needham Schroeder protocol [6] shown in Figure 6 also suffers
from an attack [5] on authentication from the perspective of the responder. The
attack is shown in Figure 7.

We will start with a skeleton of the responder as our starting assumptions.
The skeleton is shown in Figure 8.

init resp

•
{|Na, A|}KB

-

{|Na, A|}KB
- •

•

�

w

w

�

{|Na, Nb|}KA
�

{|Na, Nb|}KA •

�

w

w

•

�

w

w

{|Nb|}KB
-

{|Nb|}KB
- •

�

w

w

noninit = {K−1

A } nonresp = {K−1

B }

uniqueinit = {Na} uniqueresp = {Nb}

Fig. 6. The Needham Schroeder Protocol

A
{|Na, A|}K

B′
- P

•

�

w

w

{|Na, A|}KB
- B

•

�

w

w

w

w

w

w

w

w

w

w

�

{|Na, Nb|}KA •

�

w

w

•

�

w

w

{|Nb|}K
B′

- P

•

�

w

w

{|Nb|}KB
- •

�

w

w

w

w

w

w

w

w

w

w

Fig. 7. Bundle: Man-in-the-Middle attack on Needham-Schroeder

{|Na, A|}KB
- B

�

{|Na, Nb|}KA •

�

w

w

{|Nb|}KB
- •

�

w

w

non = {K−1

A , K
−1

B }

unique = {Nb}

Fig. 8. Needham Shroeder Responder Skeleton

There is a subtlety here. Despite both the intended run and the attack being
possible executions, it turns out that the shape in Figure 9 is the only shape for
the skeleton in Figure 8.

A
{|Na, A|}K

B′
-

� {|Na, A|}KB
- B

•

�

w

w

w

�

{|Na, Nb|}KA
�

�

{|Na, Nb|}KA •

�

w

w

w

•

�

w

w

w

{|Nb|}K
B′
-

� {|Nb|}KB
- •

�

w

w

w

non = {K−1

A , K
−1

B }

unique = {Na, Nb}

Fig. 9. Only Shape for Needham Schroeder Responder

The reason for this is that the realized skeleton corresponding to the intended
run is not minimal under ⊑. It is in fact strictly greater under ⊑ than the
realized skeleton in figure 9. A node injective homomorphism identifying B and
B′ maps the shape to the intended run. Therefore, the intended run is simply
an elaboration of the shape in Figure 9.

7 Conclusions and Future Work

In cases where the set of shapes is finite, the shapes for a preskeleton A form a
succint representation of all protocol runs compatible with A. In most protocols
we have studied, we have found experimentally that any starting preskeleton
yields a finite set of shapes. However, it would be useful to identify a subclass
of protocols for which this is guaranteed. We expect that a subclass of protocols
similar to those defined in [1] and [7] has this property.

We are also developing an algorithm for constructing the set of shapes for
a preskeleton. At a high level, the algorithm starts with the initial preskeleton,
finds and solves an authentication test (see [3]) to yield a finite set of solution
preskeletons; then recurses on those. This results is a tree of preskeletons with
the shapes as the leaves. These shapes are annotated with secrecy information.
The algorithm reasons about secrecy by trying to construct a shape that discloses
a value. Details of the algorithm and an exploration of its formal properties will
be the subject of future work.

References

1. Bruno Blanchet and Andreas Podelski. Verification of cryptographic protocols:
Tagging enforces termination. In Andrew D. Gordon, editor, Foundations of Soft-

ware Science and Computation Structures, number 2620 in LNCS, pages 136–152.
Springer, April 2003.

2. Joshua D. Guttman. Security goals: Packet trajectories and strand spaces. In
Roberto Gorrieri and Riccardo Focardi, editors, Foundations of Security Analysis

and Design, volume 2171 of LNCS, pages 197–261. Springer Verlag, 2001.
3. Joshua D. Guttman and F. Javier Thayer. Authentication tests and the structure

of bundles. Theoretical Computer Science, 283(2):333–380, June 2002.
4. Joshua D. Guttman, F. Javier Thayer, and Lenore D. Zuck. The faithfulness of

abstract protocol analysis: Message authentication. Journal of Computer Security,
12(6):865–891, 2004.

5. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Proceeedings of tacas, volume 1055 of Lecture Notes in Computer Science,
pages 147–166. Springer Verlag, 1996.

6. Roger Needham and Michael Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12), 1978.

7. R. Ramanujam and S. P. Suresh. A decidable subclass of unbounded security proto-
col. In R. Gorrieri, editor, WITS ’03: Workshop on Issues in the Theory of Security,
pages 11–20, Warsaw, April 2003.

8. Dawn Xiaodong Song. Athena: a new efficient automated checker for security pro-
tocol analysis. In Proceedings of the 12th IEEE Computer Security Foundations

Workshop. IEEE Computer Society Press, June 1999.

