
 Version 14, 12 April 2006
POLICY-BASED MANAGEMENT OF THE FUTURE AIRBORNE NETWORK

VIA PEER-TO-PEER NETWORKING

Elizabeth G. Idhaw, Lucas M. Lam, Dylan Pecelli, and Steven V. Pizzi

The MITRE Corporation
202 Burlington Road
Bedford, MA 01730

ABSTRACT
In this paper we present two prototype

implementations of the policy-based network
management framework, using peer-to-peer (P2P)
protocols to improve policy distribution for the future
IP-based Airborne Network.

The policy-based management framework defines an
architecture that simplifies and distributes network
device configuration commands and thereby streamlines
deployment of a coherent network-wide configuration
scheme. The management capabilities offered by policy-
based management may enable consistent quality of
service (QoS) throughout the future Airborne Network,
which is particularly important because of its highly
dynamic topology and bandwidth limitations. However,
the current policy-based management applications that
have been developed for fixed-infrastructure networks
do not present an effective solution for the Airborne
Network.

A more suitable approach for policy-based
management of the future Airborne Network is a
distributed system that can dynamically discover
network devices. By providing distributed services and
peer-discovery mechanisms, peer-to-peer networking
appears to be an ideal candidate architecture for such a
system. In JXTA, which is an open set of P2P protocols,
there exists the potential to develop a more efficient
policy-based network management application designed
to meet the needs of the Airborne Network.

I INTRODUCTION

In this paper we present a prototype implementation of
the policy-based network management framework, using
peer-to-peer (P2P) protocols to improve policy distribution
for the future IP-based Airborne Network. Policy-based
network management [1]-[3] is a distribution methodology
to provide a formal, high-level, adaptive, uniform
management strategy across an entire network in order to
enable consistent network behavior. The policy-based
network management framework consists of the policy
management tool, the policy repository, the policy
decision point (PDP), and the policy enforcement points
(PEPs). The policy management tool provides a graphical
user interface for defining the policies, which are stored in
the policy repository. The PDPs distribute the policies in

the repository to the PEPs, which in turn implement them.
Figure 1 illustrates the framework.

NetworkNetwork

GUI
High-Level Policies
(Business, Mission)

Policy Management Tool
(e.g., Network Manager)

High (Business) Level-to-Low (Device) Level
Policy Transformation

Policy
Repository

(Common Format)

Policy Decision Point
(PDP)

Policy
Enforcement

Point
(PEP)

IETF Policy-Based Management Architecture:

- Ease of Use. High-level policy description requires less technical knowledge.
- Policy Distribution Mechanism provides consistency and uniformity across the network.

Policy Decision Point
(PDP)

Policy
Enforcement

Point
(PEP)

Policy
Enforcement

Point
(PEP)

Policy
Enforcement

Point
(PEP)

Policies

Defined Policies Stored

Policies Distributed

Devices Configured

Figure 1. Policy-Based Management Framework.
Current research and development in both P2P and

policy-based network management have yet to address the
issues the Airborne Network will need to confront. In [4]
P2P network management is explored as a means to
improve current network management approaches.
However, [4] focuses on fixed infrastructure networks and
interdomain routing.

From the viewpoint of the Airborne Network, the key

limitation with existing policy-based management systems
today is their reliance on contemporary fixed terrestrial
infrastructure networks. These management systems
typically lack the capacity to adapt to changing network
conditions and topologies. As a result these fixed-
infrastructure-based approaches are an ineffective solution
to providing consistent quality of service (QoS) for the
dynamic environment of the Airborne Network.

A promising alternative to such systems can be

found in Peer-to-Peer (P2P) networking. A P2P network
is defined as a distributed network with all nodes sharing
resources, such as processing power and storage
capacity, some or all of which can be directly accessed
by the other nodes in the network [11]. By sharing
resources, the nodes in a P2P system, called peers, are
able to provide particular services to one another, as
opposed to the traditional client-server architecture,
where each node plays only the client role or server role.

1 of 10 (10 pages Max)

SBORG
Text Box
Approved for Public Release; Distribution Unlimited
Case #06-0620

These peers cooperate to provide such services,
distributing burdens to available resources throughout,
and in so doing act as both client and server in
accordance with immediate needs. Peers dynamically
join and participate in the network, incrementally
increasing its capacity, and are also free to leave the
network without drastically diminishing the service
provided. Distributing the task of providing services
throughout all of the peers eliminates the danger of a
single critical point of failure at a central service
provider, providing more reliable service to all.

By providing distributed services and peer-discovery

mechanisms, peer-to-peer networking appears to be a
promising candidate architecture for the Airborne
Network. In JXTA [5]-[10], which is an open set of P2P
protocols, there exists the potential to develop a more
efficient policy-based network management application
which effectively addresses the needs of the Airborne
Network.

II APPROACH

The Peer-to-Peer (P2P) networking approach, at least
the one characterized by JXTA [5], appears to be a much
more effective architecture on which to build a policy-
based management application for the Airborne
Network.

Again P2P networks provide a more distributed

architecture, since each peer can communicate with any
other peer to provide a service. By implementing P2P to
create a distributed policy-based network management
application for policy-based network management, it is
not necessary for each PDP peer to communicate
directly with a central policy repository. Instead the
PDP peers can communicate with each other and
propagate the repository information throughout the
network. This approach provides a fully distributed
architecture. Clearly, a central repository may still exist,
but again it would be distributed to multiple PDP peers,
so that not every PDP peer would need to communicate
directly with the central repository itself to obtain or
update the policies.

A benefit to distributing the policy repository is that

the network traffic load can be shared through many
routes and peers, instead of through select routes to
central locations. This avoids single points of failure
and better utilizes the available network bandwidth,
thereby minimizing congestion [6]. In contrast,
contemporary client-server systems focus these burdens
on and around server nodes and leave no recourse when
conditions cause servers to become unreachable. Such
would be the case with a central policy repository. And

with the dynamic nature of the Airborne Network, the
central repository could often become unreachable.

Another feature that P2P protocols provide is a

discovery mechanism. This discovery mechanism
allows each peer to dynamically discover the other peers
within the network. We believe discovery to be an
extremely useful feature for the Airborne Network, since
we expect there to be situations where network nodes
will be entering and exiting, thus creating a continuously
changing topology. With this changing topology, it may
be less efficient to structure a policy-based network
management application based on predefined PDPs and
PEPs. Therefore, discovery of both PEPs and PDPs, as
opposed to having them statically defined, could provide
a more robust policy-based network management
application for the Airborne Network.

Typically, for protocols to provide a discovery

mechanism, they must use periodic messages, which
may not scale well in very dynamic environments.
However, scalability, a typical issue with most peer-to-
peer networks, may not be an issue here, since we expect
the number of peers to be relatively small and the
frequency of policy distributions to be limited. Further
research is necessary to clarify scalability concerns for
the Airborne Network environment.

Therefore, instead of directly modifying the Internet

Engineering Task Force (IETF) framework [1]-[3] to
provide a more suitable policy-based network
management approach for the Airborne Network, we
decided to implement the IETF policy-based
management framework atop existing P2P protocols.
The P2P protocols are more suitable for the Airborne
Network environment than the client-server architecture
typically used for fixed-infrastructure networks.

We selected the JXTA peer-to-peer architecture

implementation for policy-based airborne networking
[5]. JXTA is a P2P development platform (i.e., an API)
which provides discovery, advertisement, distribution,
and message exchange services, which are appropriate to
implement policy-based network management for the
Airborne Network. The availability of the API gives us
a head start on developing a P2P policy-based
management approach.

The key features of JXTA [8] which are used in most

JXTA applications are peers, peer groups, pipes,
advertisements, and discovery services. Peers are the
basic unit of JXTA and both produce and consume
services in P2P applications. Peers self-organize into
peer groups, which allow all the peers in a group to
communicate. The basic tool JXTA uses for

2 of 10 (10 pages max)

communication within the group are pipes; they allow
peers to send data messages to other peers, similar to a
transport-layer UDP socket [10]. The basic JXTA pipe
is asynchronous, unidirectional, and unreliable.
Therefore, a JXTA peer needs both an input pipe and an
output pipe to send and receive data from another JXTA
peer. The pipes are not considered reliable because the
JXTA protocol does not require receiving peers to
acknowledge messages it has received, so messages that
are lost will not be retransmitted by JXTA itself.
However, developers can build acknowledgements into
their applications to create the reliability required for
certain applications.

In order for peers to self-organize into groups, which
make communication possible, they need to advertise the
services they provide. For example, a peer providing
files would need to publish advertisements for both the
file-sharing service peer group and its own input pipe,
which it uses to receive request messages. Before being
able to make a request, a peer seeking a particular file
must first find and join the group that is performing the
file-sharing service, and then locate an available request
pipe. The peer seeking services solicits the network for
available peer groups and pipes, and as a response it
receives advertisements published by peers providing
services. Out of these advertisements, the seeking peer
selects peer groups appropriate to the desired services
and chooses pipes to which to send requests. These
advertisements are special XML documents that
announce the presence of JXTA resources. The process
of publishing, soliciting, and advertising resources is
called JXTA discovery. Further details on JXTA can be
found in [5].

From an Airborne Network perspective, the issues of

policy format, policy storage, and policy translation are
secondary to the issues of reliably distributing policies
throughout the network, effectively addressing dynamic
topology changes, and seamlessly allowing maximum
mission flexibility. The use of P2P enables us to address
these key issues first and foremost. Also the JXTA P2P
protocols are flexible enough to accept any message
format for policy-based management.

To implement the P2P architecture for policy-based

management we considered two approaches: (1) The
Low Overhead (LOH) Architecture and (2) The
Discovery-Based Distributed (DBD) Architecture. The
ultimate goal in implementing these two architectures
was to provide a capability as shown in Figure 2.
Specifically, we wanted the architectures to allow the
following basic sequence of events to occur:

1. Each of the PDPs in the network discovers each
other and distributes the policy repository.

2. Each of the PEPs discovers the PDPs within the
network.

3. Each of the discovered PDPs responds to the
PEPs.

4. Each PEP selects a PDP from which to obtain
policies.

5. Each PDP tabulates or logs its associated PEPs.
6. Each PEP requests a policy configuration.
7. Each PDP sends the appropriate policies to each of

its PEPs.
8. Each PDP monitors its associated PEP

configurations.

PDPPDP

PEP

PEP
PEP

PEPPEP

PEP

PEP

PEP

PDP Discovery

PEP searches for PDPs

PEP communicates
with selected PDP

PDPPDP

PEP

PEP
PEP

PEPPEP

PEP

PEP

PEP

PDP Discovery

PEP searches for PDPs

PEP communicates
with selected PDP

Figure 2. Message Exchange Implementation between

the PDPs and PEPs.

III LOW OVERHEAD (LOH) ARCHITECTURE
IMPLEMENTATION

The LOH architecture is based on the IETF framework
but uses the JXTA protocols as the data transportation
mechanism with minimal message exchange in order to
maintain low overhead. Basically, given the low
bandwidth of tactical links relative to the commercial
environment, performing polling or any complex
message exchanges was considered to be wasteful of the
limited available bandwidth. To help maintain a low
overhead, this approach used the more reliable
bidirectional pipe versus the unreliable unidirectional
pipe [5].

Assumptions and Limitations

In general the LOH architecture provides a very
simple method to implement policy-based management
via the JXTA P2P architecture. The LOH architecture
uses a single peer group, which includes both PDPs and
PEPs. The architecture allows only one PDP to be
active at any time. Any other PDPs would act as stand-
by PDPs. We assume that all PDP and PEP entities are
contained within the same subnet. The policy repository
is assumed to be in the same machine as the PDP. The
PDP and the PEPs will use the same pre-defined pipe
advertisement in XML format to establish a connection.
If a stand-by PDP takes over for the originally active

3 of 10 (10 pages max)

PDP, the same pipe advertisement is used by the PEPs
and the new PDP to establish a connection.

Clearly, the main assumption for this architecture is

that all PEPs can communicate with the single active
PDP in the subnetwork. This assumes that the PDP’s
pipe advertisement can be predefined. Predefinition of
the pipe advertisements may be a reasonable assumption
for the Airborne Network, where, most likely, the
widebody aircraft would be the PDPs. A predefined
pipe advertisement also addresses security concerns
within the DoD environment, where in this case the
nodes must know the “secure codes” (e.g., pipe
advertisements) before two-way communication can be
initiated. Since there are not many widebody aircraft,
predefining the PDPs may be a reasonable operational
scenario. This does limit the flexibility and the dynamic
capabilities of this architecture. However, this
architecture has limited overhead, since there is no
polling of the peers to determine their presence in the
network.

The architecture also assumes that if a PEP is in the

network, it will continue to look for the active PDP until
it finds it. The PDP responds to any requests for policy.
Also, for purposes of this architecture the policy
repository is assumed to be static. In which case, each
PDP must have the same policy file, with the capability
to update the policy file when necessary. Again this is a
reasonable assumption, depending on the operational
scenario. That is, if the operational scenario is such that
a comprehensive set of policies is loaded into each PDP
before a mission begins, then the PDPs simply provide
the appropriate policies to the PEPs. If a policy change
is needed, it is assumed that that policy change is
anticipated and is already in the comprehensive set
loaded in the PDPs; in which case the PDPs can “push” a
new policy to the PEPs. Again these policies have to be
known ahead of time. The most efficient way to perform
a “push” would be to have the repository send a policy
information change status message, including associated
files, to the PDPs; then the PDPs would “push” the
policy information to the corresponding PEPs for an
instantaneous policy change.

The LOH architecture is dynamic in the sense that the

PEPs can be updated with different policies from a
predefined or preloaded library of policies contained in
each PDP. The library does not change during a
mission, but different policies from the library can be
loaded into the PDPs for different mission phases. The
architecture is distributed in the sense that, if we assume
that different groups of PEPs (e.g., fighter groups)
operate within different subnets, then each subnet of

PEPs joins up with its associated PDP (e.g., a widebody)
and obtains the appropriate mission policy.

The difficulty here would be how effectively policies

could be changed on-the-fly. This gets into the issue of
the number of subnets, the number of PDPs per subnet,
operational scenarios for distributing policies, etc.,
which is beyond our scope at this point.

PDP Functionality

First, the PDP instantiates the JXTA platform and
creates the default net peer group. Then, it uses a server
pipe to accept connections from the other JXTA nodes.
There is only one active PDP within a subnet. Once the
PDP is up and running, it applies the JXTA discovery
service. By utilizing the JXTA discovery service, a PDP
searches for its peer neighbors: the PDPs or the PEPs.
From the response packets of the peer discovery, a PDP
becomes an active or a stand-by PDP. By reading in a
pre-defined pipe advertisement, the active PDP sets-up a
pipe listener within the group. The pipe advertisement
lists server name, type of connection, (e.g., unicast), and
the name of the server pipe etc.

PEP Functionality

Once a PEP is up, it uses the pipe advertisement (i.e.,
the same one that the PDP used) to set-up a connection
with the PDP. Once connectivity between the PDP and
the PEPs has been established, the PEP attempts to
obtain the policy file from the PDP by sending a request
packet. If there is any change in the policy file(s) in the
repository or a change in a mission, the network
management software initiates a “push” of the policy
from the PDP to the PEPs.

The PEP creates a directory with the configuration file

and the cached service advertisements from other peers.
Once the PEP receives its policy file, it executes the
script file in Linux tc format in our lab test scenarios.
Linux tc is a traffic control tool which is used to
configure the Linux kernel to accomplish the shaping,
scheduling, policing, and dropping of packets [7].

Interaction Between the PEPs and a PDP

There are three types of messages for the PEP, the
PDP and the network management console.

1) Policy Configuration Request: once
communication has been established between a PDP and
a PEP, the PEP will make a request to its PDP for the
policy configuration file. According to the router type
and the platform type, the corresponding policy file will
be sent to the PEP.

2) Peer Information Request: a network
management console could send out a peer information
request to a PDP for all activities between the PDP and

4 of 10 (10 pages max)

the PEPs. Transition between the PDP and its PEPs is
also logged to a file.

3) “Push” of the Policy Information: if there is a
change in any policy file or a change in a mission, a
network management console can connect to the PDP
and request to “push” the latest network policy files
from the PDP to all corresponding PEPs.

IV DISCOVERY-BASED DISTRIBUTED (DBD)
ARCHITECTURE IMPLEMENTATION

Discovery-Based Distributed (DBD) Architecture
The DBD architecture addresses some of the

limitations of the LOH architecture by introducing
JXTA discovery mechanisms to the process of forming
relationships among PDPs and PEPs. PDPs
automatically discover and join a peer group, into which
they publish self-generated pipe advertisements to be
used for policy repository requests. Meanwhile, PEPs
and PDPs together join a separate peer group, in which
PDPs publish pipe advertisements to receive platform
policy requests and PEPs discover them.

The DBD provides policy-based management by

taking advantage of the dynamic discovery features of
the JXTA protocols. Here, given the dynamic nature of
the Airborne Network, we wanted to develop a policy-
based management scheme that would provide a large
amount of flexibility, due to the dynamic nature of the
system.

Because PEPs dynamically solicit the network to
discover available PDPs, multiple PDPs can be active
within the same subnet. The self-generated pipe
advertisement of each PDP prevents the conflicts created
by the LOH architecture’s single, pre-generated
advertisement. This not only allows PEPs to select from
a redundant field of active PDPs, but also to seamlessly
transition from one PDP to another as network
conditions require. The resultant architecture distributes
the burden of policy distribution among all PDPs in the
network.

However, the drawback of such a dynamic system is

that it requires a measure of multicast soliciting and
unicast polling to permit nodes to locate one another and
to ensure that their own policy information is current.
Also, the unidirectional pipe used by the DBD
architecture is less reliable than the bidirectional pipe
used by the LOH architecture. While the LOH
architecture avoids the additional overhead from
multicast soliciting and unicast polling, the DBD
architecture’s added flexibility for dynamic self-
organization may make up for this shortcoming.

The high-level view of the DBD architecture is
diagramed in Figure 3. A key difference from the
policy-based management framework is that all PDPs
have their own individual copy of the policy repository
and respond to PEP policy requests with the policy
information from their own repository. The PDPs are
self-organized into two groups, the PDP and the PXP
group. The PDP group is only used for PDP-to-PDP
communication, which consists of requests for and
distribution of the policy repository. The policy
repository must be propagated to all PDPs whenever the
policy management tool modifies it. This action requires
that the policy management tool also be a member of the
PDP group. The second group that the PDPs belong to
is the PXP group. This group contains both PDPs and
PEPs, enabling communication between them.

Figure 3. Overview of the DBD P2P Policy-Based Network

Management Architecture.
Assumptions and Limitations

We made the following assumptions and design
limitations in the development of the prototype:

• All peers are in the same subnet. This allowed
us to avoid concerns about extra JXTA services, such as
rendezvous and relay peers [8], which provide the
necessary communications to discover JXTA peers
outside of a sub-network.
• Only one policy manager would make changes
to the policy repository at a given time. While the
policy propagation system is distributed, control of the
distributed policy database must be strictly managed.
This eliminates the issue of locking repository access to
prevent race conditions, if two managers make
simultaneous updates.

• The PEPs are Linux routers. Due to the open-
source nature of the Linux operating system, it is much
easier to build and test an application on a Linux router
than on a commercial router’s proprietary, integrated
operating system.

• The first PDP in the PDP group has a valid local
copy of the policy repository. This assumption allowed
us to focus development on the action of propagating the
repository, rather than generating it. In a deployable

5 of 10 (10 pages max)

system, a policy management tool would create the PDP
group, permitting the first PDPs to acquire the policy
repository from it.

• PEPs select pipe advertisements randomly. It
will most likely select the first pipe advertisement it
receives from the PDPs. The PEP does not make any
attempt to select the optimal PDP.

• Repository propagations between PDPs do not
fail. Our current policy repository distribution protocol
does not guarantee all PDPs have the most current policy
repository and assumes that they do.

• The size of policy repository is reasonably
small. Every PDP node can store a complete copy of the
repository, and it can be broadcast to all other PDP
nodes without severe network load.

• PEPs and PDPs do not use authentication when
joining the PXP and PDP groups. JXTA provides
authentication for joining groups, but to simplify the
implementation we did not incorporate authentication.
We assume adding it to the prototype would be fairly
straight-forward.

• PDP, PEP message exchanges use unreliable
unidirectional pipes. The basic JXTA pipe does not
acknowledge receipt of messages. The application is
responsible for providing some form of robustness.

PDP Functionality

The functions of the PDP are to discover and join the
PDP and PXP groups, to acquire or initialize the policy
repository, to process PDP policy repository requests
and updates, and to service PEP policy record requests.
The PDP has two main phases of operation, initialization
and run. During the initialization, the PDP finds or
creates the necessary groups and acquires the policy
repository. Following that, the run phase consists of the
PDP listening and responding to other PDP requests for
the repository, listening for policy repository updates
from other PDPs, and responding to PEP policy requests.

During initialization, the PDP dynamically discovers

the policy-based network management groups, PDP and
PXP. If the PDP cannot find either group it assumes that
it is the first PDP, which means the PDP and PXP
groups do not yet exist; thus, it creates them.

To find the necessary groups the PDP discovers peer

group advertisements for the PDP and PXP groups. The
discovery process is initialized with the JXTA discovery
service’s getRemoteAdvertisements method. The
responses, if there are any, from other peers are
advertisements matching the request. The discovery
responses are received asynchronously after the
discovery process is initialized, so the PDP waits a set
amount of time (i.e., approximately 30 seconds) to see if
it discovers the necessary group advertisements. If there

is no response, the PDP will then create and publish the
PDP and PXP groups. Figure 4 shows the interaction of
the PDPs to discover the PDP group.

After joining the two groups, the PDP initializes the

policy repository either from a local copy, if it is the first
PDP, or by requesting the repository from another PDP.

To request the policy repository from another PDP, the

new PDP needs to find another PDP who has the policy
repository and then request it. Figure 5 shows the policy
repository request pipe discovery and repository request
process performed by the new PDP. A PDP indicates
that it has a policy repository to provide by publishing a
dynamically generated advertisement for its policy
repository request input pipe, which it dynamically
created during initialization. The PDP’s policy request
pipe is simply an input pipe that it creates to listen for
repository requests. Similar to the process for
discovering peer group advertisements, the new PDP,
requesting the policy repository, uses the JXTA
discovery service to find policy request input pipe
advertisements. Upon receipt of the pipe
advertisements, the new PDP selects one from the
collection of responses. Using the newly discovered
input pipe the new PDP dynamically creates an output
pipe to send a request message to the PDP with the
repository.

However, before the new PDP can send the policy

repository request message it needs to have a means to
receive the response (i.e., the policy repository). All
PDPs receive policy repositories through the policy
distribution pipe. This pipe is a JXTA propagate pipe
whose static advertisement is preloaded as a file on all
PDPs. The propagate pipe is one of two modes of
communication provided by JXTA pipes. The first
mode is the standard point-to-point pipe, which connects
one input endpoint to one output endpoint. On the other
hand, the propagate pipe connects one output endpoint to
multiple input endpoints, effectively creating a method
to broadcast messages to all listening peers. Using the
propagate pipe provides a simple means for all PDPs to
receive policy repository updates with a single update
message.

6 of 10 (10 pages max)

Figure 4. PDP Group Discovery Process for the DBD
Architecture.

Even though the new PDP requested the policy
repository, all PDP peers will receive the policy
repository, because they all created input endpoints to
the policy repository distribution pipe. This adds some
robustness because pipes are unreliable and there is no
way for a PDP to determine or guarantee that its
repository is the current version. When a PDP receives a
policy repository due to a request from another PDP, it
can check the received version against the version of its
current repository. If its current repository is outdated
then it will update its repository with the received
version. If the received policy repository happens to be
older then the current one then the PDP will discard it.
Such a condition indicates the existence of a PDP that
failed to receive previous policy repository propagations,
and by chance it received a policy repository request and
distributed its outdated copy. Currently, the only
mechanism that can repair the PDP with an old policy
repository is to wait for it to receive future repository
distributions. We realize that this implementation does
not have acceptable functionality for a deployable
policy-based network manager; but for the proof-of-
concept prototype, it simply demonstrates the ability to
distribute the policy repository. Further research is
needed to develop a more robust repository distribution
protocol that can account for and correct all out-of-date
PDPs.

Now that the new PDP has set-up an input pipe to

receive the policy repository, it sends the request for the
repository through the policy request input pipe that it
discovered. Once the request message is received, the
policy repository is sent out through the policy
repository distribution pipe, and all PDPs including the
initializing PDP will receive the policy repository. Now
that the new PDP has a policy repository, it can begin
listening for policy repository requests. The PDP does
this by creating and publishing its policy repository
request pipe. At this point, the new PDP has its own
copy of the policy repository and is capable of receiving
requests for the repository from other PDPs. Figure 6,

provides a graphical representation of the PDP-to-PDP
communication pipes.

Figure 5. Policy Repository Request Process for the

DBD Architecture.

Figure 6. Detail of PDP-to-PDP Communications for

the DBD Architecture.
Once the PDP has acquired a policy repository, it now

has everything required to manage policies for PEPs.
However, before initialization is complete, the PDP must
create and publish a policy request input pipe
advertisement, in order to receive policy request
messages from the PEPs. After constructing the policy
request input pipe, the PDP enters the main phase of
operation.

The run phase is an execution loop that listens for PDP

policy repository requests and PEP policy requests on
the respective pipes. In the initialization phase, the PDP
first published its pipe advertisements informing other
PDPs and PEPs of its services. Because of the expected
dynamic nature of the network it is best to give these
advertisements a short lifetime to limit the number of
stale advertisements in the P2P network. So, at set
intervals during the run phase, the PDP freshly
republishes its pipe advertisements to the groups. This
ensures that other PDPs and PEPs know the PDP is still
present on the network and is listening for requests. Also
in the run phase, the main task of the PDP is to respond
to the requests it receives from other PDPs and PEPs.

Policy Repository Data Structure

The prototype system structures the policy repository
as a list of platform policies. This list is implemented as

7 of 10 (10 pages max)

a Java HashMap, which uses the platform type and
mission phase as the index to each platform policy. In
order to determine if a received policy repository is
newer than what the PDP already has, the policy
repository includes a version field which is merely a
timestamp.

The platform policy is an object that contains multiple

strings to hold the values for platform policy name,
version, platform type, platform ID, mission phase, and
router type. The different pieces of information
contained in the platform policy help to identify the
appropriate policy. Therefore, each individual aircraft
platform will have a policy for each possible phase of
the mission, and possibly for each type of router.

In addition to the platform information, the platform

policy also contains two policy objects: one for the In
policy and another for the Out policy. The In policy
applies the configuration contained in the policy object
to the incoming traffic and, conversely, the Out policy
applies the configuration to the outgoing traffic. The
configuration information contained in the policy object
is simply two text strings for both the filter command
and the action command. The Linux ‘tc’ and ‘ipfilter’
tools would be used to generate the appropriate filter and
action commands to implement the policy. Figure 7, is a
Unified Modeling Language (UML) diagram for the
policy repository data structure.

PEP Functionality

The functions of the PEP are to discover and join the
PXP group, and to discover a PDP. After a PDP has
been found, the PEP sends policy request messages to
the PDP on a configurable interval. If the PEP fails to
send a request message to the PDP, the PEP returns to
PDP discovery and waits until it has found another PDP.
Once one is found the PEP resumes sending policy
request messages.

Similar to the PDP, the PEP also has an initialization

phase and a run phase. The main purpose of the
initialization phase is to find and join the PXP group as
well as create its policy input message pipe. If the PXP
group cannot be found, the PEP remains in the
initialization phase until it locates the group. Once the
PEP has joined the group, the final initialization step is
for the PEP to create its policy input message pipe. The
PEP differs from the PDP in that the PEP’s policy input
message pipe does not need to be published, because the
PEP will send the pipe advertisement directly to the
PDP. The direct messaging of the advertisement means
this pipe will not be discovered; therefore the pipe
advertisement does not need to be published.

Figure 7. Policy Repository Data Structure for the DBD

Architecture.
Initialization is completed after the PEP has created its

policy input message pipe. After initialization, the PEP
enters the main mode of operation, which consists of an
execution loop with two states. The first state searches
for PDP policy input message pipe advertisements, and
uses the discovered advertisement to create an output
endpoint to the PDP’s policy input message pipe. The
second state uses the output pipe to periodically send
policy request messages to the PDP and check the
response to those messages. If the PEP fails to receive a
response from the PDP after time has elapsed for
sending another policy request, the connection to the
PDP is gone. When the connection to the PDP is lost the
PEP will return to the first state of the run phase to find
another PDP link.

PXP Group Discovery
The PXP group contains both PDPs and PEPs,

providing a means by which PDPs can advertise
platform policy request pipes and PEPs can locate them.
Similar to the PDP, the PEP uses the JXTA group
discovery process, illustrated in Figure 8, to join the
PXP group. However, if no pre-existing PXP group can
be found, the PEP group must simply continue to seek it,
as only a PDP can create the PXP group.

8 of 10 (10 pages max)

Figure 8. PXP Group Discovery for the DBD

Architecture.
Policy Request and Response Process

As mentioned previously, the PDP indicates that it has
a policy repository available for distribution with a
policy repository request pipe advertisement; similarly,
the PDP advertises the ability to manage policy for PEPs
with a policy input message pipe advertisement. The
PEP searches for PDP advertisements and selects a PDP
that can provide policies for its configuration
management.

Now that the PEP has the pipe advertisement from the
chosen PDP, it can create an output endpoint to the
PDP’s pipe and send it policy request messages at a set
interval. The PEP continues to send policy request
messages to the selected PDP until it fails to receive a
response. If the PDP does not respond to a policy
request by the end of the interval, the PEP infers that it
has lost connectivity to that PDP. Therefore, the PEP
returns to the policy input message pipe discovery state
and returns to the process of locating PDPs. The PEP
selects a new PDP and begins requesting policies from it
instead. Figure 9 illustrates the pipe discovery state and
the subsequent policy request and response state.

When the PEP has dynamically discovered the PDP
policy input message pipe it enters a loop where it sends
a policy request message to the PDP and then waits a
configurable period before sending the next policy
request. The policy request message sent by the PEP
basically tells the PDP the PEP’s platform information,
such as type and mission phase, along with the current
version of its platform policy. The PDP uses the
information received in the policy request message to
look up the appropriate platform policy in the policy
repository and determines if the PEP’s version is current.
If it is current the PDP simply replies with an
acknowledgement message to the PEP. Otherwise, the
PEP’s platform policy needs to be updated with the
version the PDP has in its repository.

To update the PEP, the PDP sends it an update

message, which includes the platform policy as a

serialized Java object. It is important to note that the
PDP is only able to respond to the PEP, because the PEP
included its own policy input message pipe
advertisement inside the policy request message it sent
to the PDP. Thus, the PDP can use the pipe
advertisement to create an output endpoint to the PEP’s
policy input message pipe and the PDP can then send the
appropriate response. The preceding PEP-PDP policy
request and response process is detailed in Figure 10.

Figure 9. PEP-PDP Policy Message Process for the DBD

Architecture.

Figure 10. PEP-PDP Detailed View of Policy Request and

Response for the DBD Architecture.
The PEP procedure of requesting policy updates from

the PDP at a set interval provides a mechanism for the
PEP to monitor its connection to a PDP. The monitoring
executed by the PEP is essentially the same as a router
sending out periodic “hello” messages. Since, the
Airborne Network is expected to be a dynamic
environment, and it is assumed that platform network
connections will be intermittent at times due to platform
mobility, it is important that the PEPs dynamically
locate PDPs. To maintain the link, the PEPs will also
need to monitor their connection with the PDP. In doing
so, the PEP will be able to receive policy updates in a
timely manner.

There are two possibilities for a PEP to receive a

policy update. First, the PEP may be simply joining a
network; or it may be changing mission phase; in either
case it will make a configuration request based on its

9 of 10 (10 pages max)

current state. This will be referred to as the PEP
“pulling” the configuration from the PDP. The second
possibility is that the policy was updated by the policy
management tool and the updates need to be deployed or
“pushed” to all the PEPs in the network. The current
PEP-PDP message procedure can accomplish both
pulling and pushing of policies even though it may not
be obvious at first glace. Clearly, the PEP will be
pulling the policy every time it sends a policy request
message to the PDP. It, of course, will only receive a
policy if the PDP has a newer version. Given that the
PEP is effectively attempting to pull a new policy every
message cycle, any policy repository updates that are
propagated to all the PDPs will be pushed to the PEP in
response to its continuous pulling. This mechanism in
fact creates a system that can monitor PDP connections,
pull policies from PDPs, and push policies to PEPs.

Observations
Some of the initial issues discovered while developing

the DBD system include the potential for PDPs to
possess out-of-date policy repositories, the inability of
PEPs to select optimal PDPs, our uncertainty about the
quantity of overhead generated by the JXTA discovery
service, and the use of unacknowledged messaging by
way of JXTA’s basic pipe. All of these concerns have
potential solutions, which would require further analysis
to determine their effectiveness.

Along with these issues it is also unknown how large a
policy repository will be for the Airborne Network. If
the Airborne Network requires a very large policy
repository, then we would need to look at distributing
portions of the policy repository to PDPs and ensuring
that the separate pieces of the repository have redundant
copies among the PDPs.

V CONCLUSIONS

Both the LOH and DBD architectures represent the first
steps towards developing a P2P-oriented policy-based
management system for the Airborne Network. Currently,
both architectures operate only on a single subnet. While
more development would be required to expand their
capabilities, both systems illustrate that the basic
capabilities of JXTA are well-matched towards providing
a P2P architecture for policy-based management in a
dynamic airborne networking environment. Again various
capabilities can be added to both architectures to take full
advantage of the JXTA P2P features, such as the
rendezvous and monitoring capabilities. For example, by
applying rendezvous service, PDPs would be able to
communicate with other PDPs across subnets. Also, with
the use of the JXTA monitoring API, we could observe the
performance of network devices. These features would
greatly enhance our policy-based network management

capability. Also, the performance of these architectures
over simulated wireless links needs to be investigated.

VI ACKNOWLEDGEMENT

The authors would like to thank Edward Palo,
Christopher Nissen, Randall Landry, and Kevin Grace of
the MITRE Corporation for encouraging us in this effort.

VII REFERENCES

[1] D.C. Verma, Policy-Based Networking:
Architecture and Algorithms, New Riders Publishing,
Indianapolis, IN , 2001.

[2] D. Kosiur, Understanding Policy-Based
Networking, Wiley, New York, 2001.

[3] R. Yavatkar, D. Pendarakis, and R. Gerin, “A
Framework for Policy-based Admission Control”, RFC
2753, January 2000.

[4] L. Zambenedetti, M.J.B. Almeida, and L.M.R.
Tarouco, “Managing Computer Networks Using Peer-to-
Peer Technologies,” IEEE Communications Magazine,
October 2005.

[5] www.jxta.org

[6] B. Wilson, “JXTA”, First Edition, New Riders
Publishing, Indianapolis, IN, June 2002.

[7] http://www.knowplace.org/shaper/examples.html

[8] http://www.jxta.org/docs/JxtaProgGuide_v2.3.pdf

[9] http://www.jxta.org/Tutorials.html

[10] S. Oaks, B. Traversat and L. Gong, “JXTA in a
Nutshell”, O’Reilly, Sebastopol, CA, 2002.

[11] R. Schollmeier, “A Definition of Peer-to-Peer
Networking for the Classification of Peer-to-Peer
Architectures and Applications”, First International
Conference on Peer-to-Peer Computing, August 2001.

10 of 10 (10 pages max)

http://www.jxta.org/
http://www.knowplace.org/shaper/examples.html
http://www.jxta.org/docs/JxtaProgGuide_v2.3.pdf
http://www.jxta.org/Tutorials.html

	ABSTRACT
	Figure 1. Policy-Based Management Framework.

