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Abstract 
This paper presents learning-based techniques that support 
the processing of tables in HTML publications.  We are 
concerned especially with classifying tables as to format and 
content, focusing on the domain of corporate financials.  We 
present performance results based on multiple classification 
methods, and make several novel methodological contribu-
tions.  These include a new evaluation corpus, a clever tech-
nique for creating the corpus, and an exhaustive approach 
to-wards sensitivity analysis for classification features. 

Introduction 
Tables matter.  In a text document, they serve many pur-
poses: they summarize, they aggregate, and they display 
change over time.  The essence is this: a table provides for 
a compact and readable representation of relational or at-
tributive information.  In many text sources, in fact, the 
most important information is found in tables.  This is cer-
tainly evident in financial domains, where tables of finan-
cial performance figures are the lingua franca of account-
ants and investors alike. 

We are concerned in our work with applying in-
formation extraction and data mining techniques to these 
kinds of financial documents.  In so doing, we have inves-
tigated an array of issues regarding tables, namely their 
identification, classification, and de-structuring.  In the 
present paper, we address in particular the issue of classify-
ing tables as they are found in HTML-based publications. 

The reason we focus so specifically on HTML-formatted 
tables is of course because the World-Wide Web has 
changed everything about how we communicate.  In our 
area of concern, corporate financials, companies increas-
ingly publish both their annual reports and regulatory fil-
ings as web pages.  The techniques we report on here are a 
direct outcome of this sea change in publication.  While we 
focus in particular on financial documents, the work speaks 
to the issue of processing HTML tables in all domains. 

Background: table processing 
A substantial body of work has already addressed the ques-
tion of processing tables in text documents.  The earliest 
such work, which predates the widespread use of HTML, 
was naturally concerned with processing ASCII-formatted 
tables, meaning tables whose horizontal and vertical rules 
are drawn with hyphens and the like, and whose alignment 
is controlled by tabs and space characters.  The primary 
challenge addressed by this work is that of de-structuring a 
table, meaning identifying its row and column headers, and 
delineating the content of its cells – see, for instance, Pinto 
et al. (2003), Hu et al. (2001), or Chen et al. (2000 

With the advent of HTML, the table de-structuring task 
shifted to accommodate HTML’s built-in table-creation con-
structs (which include header, row, and cell markup).  This 
new problem isn’t so much easier as it is richer.  Wrapper 
induction, as this problem has come to be called (Kushmer-
ick et al. 1997), has also proven a boon for the application 
of machine learning methods.  Approaches range from 
rule-based supervised methods (Knoblock et al. 2003, 
Lerman et al. 2004, and many more) through generative 
unsupervised ones (Grenager et al. 2005). 

In addition to recasting the problem of finding table 
structures, the introduction HTML tables has introduced a 
(surprisingly) more basic one: namely determining whether 
a table actually represents tabular data in the first place!  
The issue is that HTML’s <TABLE> construct provides a 
convenient framework for much more than the creation of 
conventional numeric tables.  In practice, <TABLE> is also 
widely used as a tabbing environment for the purpose of 
aligning columns of text, bullet symbols, footnote charac-
ters, and so forth.  This is particularly true given the wide-
spread use of page layout programs, as these often compile 
everything from bulleted lists to footnotes into <TABLE> 
constructs. 

Wang and Hu (2002) consequently formulated the prob-
lem of identifying whether a table is genuine.  By their 
definition, a genuine table is to be understood as a two-
dimensional encoding of relational information, e.g., bus 
schedules or stock market performance.  A table is non-
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genuine if it only presents a two-dimensional layout of 
unrelated elements that do not share an underlying relation 
such as time of arrival or price. 

Category Description
Data v. time Cell values are (mostly) numbers, 

rows are indexed to a quantity 
(e.g., income), columns are in-
dexed to a date

Time v. data Ibid, but rows are date-indexed, 
and columns quantity-indexed

Other num Number-valued cells with no 
chronological indexing of either 
rows or columns

Text Cell values are (mostly) text, 
meaning phrases, sentences, or 
even whole paragraphs

Table 1.  Major table categories.

Cohen et al. (2003) follow this notion, and distinguish 
true data tables from other uses of the HTML <TABLE> tag.  
They cast the task of identifying true tables as a classifica-
tion problem, and bring to bear the standard armamentar-
ium of successful classification methods, among others: 
decision trees, Winnow, and maximum entropy models.  
Further, they note that table classification is of much more 
than just academic interest.  Indeed, many table extraction 
methods based on wrapper induction depend critically on 
being presented the right kind of table.  So to succeed in 
practice, the enterprise of wrapper induction depends 
keenly on solving this basic table classification problem. 

Our approach here largely follows this path, but adapts it 
to the specific purpose of analyzing financial texts.  In-
deed, one of the key text sources in the financial area is 
corporate financial reports, in particular the annual 10-K 
filings submitted by publicly-traded companies in the 
United States.  As these filings have increasingly been pro-
vided in HTML, the problem of distinguishing genuine ta-
bles has become correspondingly acute. 

The need to make this distinction is several-fold.  For 
one, financial data mining applications, e.g., Chang et al, 
(2006), often provide interactive access to text based on a 
paragraph’s subject classification.  We therefore would like 
to provide an analogous access to tables through a fine-
grained categorization of table content.  In the case of fi-
nancial reports, for instance, one might want a table of 
tables that distinguishes income statements, stock histories, 
and other like-minded accounting constructs.  Part of our 
agenda is therefore to identify these distinctions through 
automatic classification methods. 

In addition, many non-genuine tables contain text pas-
sages of significant value to financial analysis—the devil 
in the financial details often hides in footnotes.  However, 
to productively apply our extraction and mining methods, 
we need to identify the format of these non-genuine tables, 

as listings of corporate officers, for instance, require a dif-
ferent treatment than do bulleted lists. 

Category Description
Numeric minor categories
Income statement
Balance sheet
Cash flows

The three major accounting 
views of a company’s finan-
cials 

Consol. inc. stmt.
Consol. bal. sh.
Consol. cash fl.

Consolidated versions of the 
above, typically produced by a 
company’s auditors

Stock info Value, shares outstanding…
Pension plan
Stock plan (esop)

Stock/pension plans often have 
their own financials

Misc. numeric Anything else
Text-related minor categories
Table of contents For sections, attachments…
Bullets Bulleted or numbered lists
Footnote Often linked to num. tables
Signatures page Auditor sign-off , etc.
Fat cats Board members, executives
Stock info Rare non-numeric tables
Text table Tables such as this one
Formatting Other alignment uses
Misc. text Anything else

Table 2.  Key minor table categories.  Gray text 
shows low-count categories that were folded into 
other categories in most experiments.

Finally, we also need to ensure that we not apply stan-
dard extraction methods to genuine financial tables.  A 
name-tagged income statement is not a pretty sight, as fi-
nancial tables often lack the contextual cues required for 
successful name tagging—even of money expressions. 

The financial table classification task 
The preceding discussion points to a need for two levels of 
table classification: a coarse distinction between genuine 
and non-genuine tables, as well as a fine-grained assign-
ment of table type.  Towards this end, we assign to a table 
both a major category and a minor category. 

Table categories 
To address the particulars of financial reports, we recog-
nize four major categories (see Table 1).  These broadly 
follow the division between genuine and non-genuine ta-
bles, where the first three categories taken together (the 
numeric categories) correspond to Wang and Hu’s genuine 
tables.  Text tables are our equivalent of non-genuine ta-
bles: for the most part they cannot comfortably be con-
strued as encoding an underlying semantic relation.  The 
special case of tables of contents, which could arguably be 
typed as either text or other num is, for our purposes, con-
sidered to be text-typed. 



In addition to a table’s major category, we recognize a 
range of minor categories, some of which are specific to 
numeric tables, and the others to text tables (see Table 2).  
For the numeric tables, the minor categories are defined on 
a primarily semantic basis, which is in keeping with our 
objective of extending subject classification from text to 
(genuine) tables.  They mostly include such accounting 
categories as income statement and the like. 

In contrast, the minor categories for text tables reflect 
our need to process specific table layouts in idiosyncratic 
ways.  As such, their distinctions are primarily syntactic in 
nature.  Among them is the particular category of Format-
ting, an undistinguished catch-all that captures the most 
egregious cases where <TABLE> is exploited for alignment 
purposes alone. 
The table omits a number of particularly low-count catego-
ries, which we lumped into the two Misc. categories for 
most of our experiments.  Among these rare tables were 
some that the annotators had marked as belonging to mul-
tiple minor categories, e.g., financial tables that included 
both balance sheet and income statement information.  In 
addition, rare examples of (e.g.) the fat cats minor category 
could arguably be seen as having either text or numeric 
major categories.  We resolved these potential confusions 
by convention, so (e.g.) fat cats tables were always taken 
to be text-typed for their major category. 

Corpus development 
After setting guidelines for annotation, we created a corpus 
of 10-K filings in which all tables are marked with both 
their major and minor category.  These documents vary a 
lot in length, though most are over 100 pages long.  They 
also vary significantly in the number of tables they contain, 
ranging from a low of 22 tables per filing to a high of 363.  
This huge variance (avg= 110, sd= 94) is due to differences 
in reporting styles on the part of the filing corporations.  In 
particular, some went to great length to provide multiple 
views of a particular financial table, broken down by geog-
raphy, business, area, and so forth.  Others provided only 
one such table, and yet others dispatched the bulk of their 
financial tables to their annual reports, and only cited them 
by reference. 

For our purposes, this variance in reporting styles had 
implications relative to the practicality of using sequence 
models—more on this below. 

For training and test purposes, we used 19 of these fil-
ings in the present study, with a total of 2,089 table in-
stances.  Most of our experiments defined a training-test 
split along document boundaries, collating enough 10-K’s 
into the training camp to create a roughly 70-30 split, with 
1,436 table instances for training and 633 for test. 

We deliberately chose this particular approach to divid-
ing training and test sets over the more conventional ap-
proach of N-fold cross-validation.  Because our source 
documents have such inconsistent table density, cross-
validation cannot be readily performed without splitting 
some documents up and assigning one part of their tables 
to training, and the other to test.  This is not representative 

of actual operational conditions, where the “test” tables are 
always drawn from documents with no overlap with the 
training set.  In this case, cross-validation measures are 
likely to overestimate actual runtime performance. 

To construct the corpus, we used a clever trick that al-
lowed us to mark up the filings in situ while reading them 
in a web browser.  This gave us a WYSIWYG annotation 
capability, which we found critically necessary, since the 
source code for HTML tables is essentially unintelligible on 
its own.  In our experience, efficiently and accurately judg-
ing the category of a table required that it be fully rendered 
by a browser.  Wang and Hu (2002) describe a non- 
WYSIWYG annotation tool that would have been extremely 
cumbersome for our needs. 

As to the clever trick, it worked as follows.  We modi-
fied the HTML source code of our corpus documents, and 
added a pair of HTML <SELECT> menus in front of each 
HTML table.  These pull-down menus allowed the annotator 
to indicate the major and minor categories of the table with 
no more than two mouse clicks.  The whole body of the 
document was then wrapped in an HTML <FORM> with a 
SUBMIT button to save the mark up.  A bit of HTML manipu-
lation, plus a few external scripts was all that was required. 

A preliminary round of annotation was performed by 
three project members, followed by a round of adjudication 
to resolve inter-annotator disagreements.  This helped iden-
tify annotation tough nuts that required further guidelines.  
The full corpus was then annotated by the most consis-
tently accurate annotator among the original three. 

Experimental preparation 
As noted, we cast the problem of identifying genuine fi-
nancial tables as a classification task, and exploited a num-
ber of machine learning packages to learn a range of table 
classifiers.  Prior to our experimental runs, we first fol-
lowed a procedure involving the following three steps: 
preprocessing, feature extraction, and category mapping. 

Preprocessing 
As is often the case with HTML documents in the wild (on 
the Web), our corpus of 10-K filings proved unwieldy in 
their raw form.  The issue is that they were difficult to 
parse due to unclosed tags and other factors.  As such, a 
first preprocessing step converted the HTML documents to 
XHTML using the program TagSoup.1  A second stage of 
preprocessing involved tokenizing the XHTML character 
data using a robust general-purpose tokenizer followed by 
some task-specific tokenization patch-up. 

Feature extraction 
We extracted a number of different classification features 
from the resulting XHTML documents.  As with most previ-
ous work, we identified a number of structural features, 
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such as the column or row count.  In keeping with the 
standard text-classification literature, we also extracted 
bag-of-word lexical inventories.  We also identified a 
number of features that attempted to model the lexical and 
structural context in which a table is found.  Finally, we 
extracted a number of features that were aimed specifically 
at distinguishing some of our fine-grained categories, e.g., 
counts of bullet-like or footnote-marking tokens, counts of 
date words or year numbers, and so forth.  We then 
grouped these features into the following clusters, which 
we could independently activate or disable in any given 
experimental run. 

Baseline. A baseline feature set was used in all experi-
ments.  It consists in part of bag-of-word counts of the to-
kens present in a table, as well as structural features, such 
as the number of rows and columns in the table as deter-
mined by the <TR> and <TD> HTML tags.  We identified 
three versions of the baseline, depending on whether the 
bags of words contained lexemes in their original case, in 
their uncased forms, or both. 

Column headers.  Column header features were in-
ferred from <TH> tags, when present, or by a heuristic that 
guessed potential column headers by examining whether 
the top two rows contained “real” alphabetic tokens (as 
opposed to only containing numbers).  Headers were then 
modeled as both header-specific bags of words and a spe-
cial feature that indicated whether headers were found and 
how the header bags were derived (by <TH> extraction, 
heuristically, and for some cases, both). 

Row headers.  These bag-of-word features selected the 
lexemes present in the row headers, i.e. the first non-empty 
column in a table (wholly-blank columns are often used for 
spacing purposes).  This was done only for rows that were 
not deemed column headers. 

Preceding table context.  A binary feature indicating 
whether a table is immediately preceded by another table 
(modulo horizontal rules, page numbers, and the like). 

Preceding lexical context.  These bag-of-word features 
capture the N words that precede a table.  We allowed for 
windows of either 0, 10, 50, or 100 words, each of which 
represented a separate experimental condition. 

Preceding table type.  This feature attempts to model 
sequencing effects that would be captured by sequence 
models such as generative (HMM) or discriminative (CRF) 
techniques.  In practice, the classification assigned to the 
nth table in a document would be passed as the preceding 
table type feature for the n+1th table.  For our experiments, 
however, we approximated this by simply passing in gold 
standard classifications as established by the annotators. 

Following context.  This group of features captures the 
context immediately following a table.  The group consists 
of both the binary table context and the bag-of-words lexi-
cal context features that are separated for the case of pre-
ceding contexts.  We lumped these together as preliminary 
experimentation showed that neither had especially signifi-
cant effect on classification accuracy. 

Section headers.  These features attempt to model 
document section headers.  Indeed, we had observed that in 

our corpus, certain tables occur more frequently in certain 
sections of the document than in others.  To capture this 
effect, we attempted to heuristically identify section head-
ers (via table-of-content lookup) and included their bag-of-
word distributions in this feature group. 

Task-specific tokenization.  This feature group, when 
activated, invoked an extra round of tokenization, in par-
ticular for number sequences that would otherwise be at-
omized, e.g., “(1.1)” “15 (c)” and the like.  It also intro-
duces a set of features that separately count the number of 
tokens that could be used as bullets, the number that could 
be used as footnote markers, and the number that could be 
used as table-of-contents entries.  Note that tokens like 
“(1)” could be used for all three of these purposes. 

Date and number normalization.  A group of features 
that counts the number of date words, year numbers, and 
plain numbers in the table.  This effectively normalizes 
these constructs, as if they were being replaced by a special 
DATE or NUMBER token. 

Bottom lines.  We attempted to implement a “bottom 
line” detector, as this can be a strong lexical cue for nu-
meric tables.  This was done by finding the bottom-most 
row header in a table, and creating separate bag-of-word 
features for this entry. 

Category mapping 
The result of all this feature extraction was to produce a 

collection of feature vectors labeled with the annotator’s 
judgment of their major and minor categories.  For actual 
experimentation, these categories were then remapped.  
The purpose of doing so stage is two-fold. 

First, as our original repertoire of minor text categories 
makes an impractically large set of distinctions (39, not all 
of which are shown Table 2), we needed to reduce their 
number to a more manageable level.  As noted earlier, we 
mapped a number of similar low-count categories to each 
other, producing a collapsed set of categories. 

Second, we also took advantage of the category-
remapping procedure to evaluate a range of possible use 
cases that so not require identifying the full set of minor 
categories.  The cases we considered were as follows. 

Plain (39 categories).  The labels consisted of the origi-
nal categories and sub-categories in the annotated data. 

Collapsed (15 categories).  A first round of category 
mapping that collapsed low-count minor categories. 

Numeric + collapsed text (8 categories).  A further 
round that collapses all the numeric minor categories to-
gether.  This corresponds to a text processing use case 
where one might ignore the numeric tables, but want to 
(e.g.) name-tag text in non-genuine (text) tables.  

Major category only (4 categories).  All the minor 
categories were ignored, and only the four major categories 
were considered. 

Numeric vs text (2 categories). The three number-
oriented major categories were further collapsed together.  
This condition effectively corresponds to making the same  
genuine vs. non-genuine distinction in previous work. 



Experimental results 
The bulk of our experiments were performed with a multi-
nomial maximum entropy classifier, using a Gaussian prior 
of 100.0 for all runs.  These are the results we report be-
low.  We additionally repeated all these experiments with 
the LibSVM implementation of support vector machines, 
but were unable to obtain comparably good results.  This 
should not be taken as the final word about SVMs on this 
task, as time limits prevented us from performing an ex-
haustive analysis of the hyper-parameter space.  Finally, 
we also tried some comparison experiments with condi-
tional random field classifiers.  We had hoped to see some 
sequence effects from these experiments, as mutual infor-
mation measures show significant predictiveness between 
sequential pairs of tables.  However, CRFs also under-
performed maximum entropy models. 

First experiments 
A first round of experiments yielded the following re-

sults for the five use cases under consideration. 

Use case Accuracy
Plain 71.72%
Collapsed 76.30%
Numeric + collapsed Text 89.73%
Major category 92.26%
Numeric vs. text 98.10%

These figures report the highest-performing classifier 
that was learned for each of these five cases.  For each use 
case, a large number of classifiers were learned, based on 
different configurations of activated or disabled feature 
groups.  We were encouraged by these performance fig-
ures, especially since the first three represent decisions 
between a relatively large number of classification labels 
(39, 15, and 8 respectively). 

Nonetheless, these figures do not tell the whole story.  
When probing the range of training configurations, we 
found surprisingly large variance between closely related 
configurations of features.  For example, the winning 15-
way classifier for the Collapsed use case relies on both 
case and uncased bag-of-word entries.  However, switch-
ing to a cased-only version of the bags of words, causes 
performance to drop by 5 points.  To understand this vari-
ance, we engaged in a comprehensive analysis of training 
configurations. 

Comprehensive configuration analysis 
This analysis explores the entire search space defined by 
the clusters of features we implemented for this task.  That 
is, we treated each of our φ1 φ2… φn feature clusters as a 
term in a giant φ1 × φ2 × … × φn cross product, and inde-
pendently activated or disabled each cluster so as to pro-
duce all kn different configurations of feature clusters.  
(Note that k≥2, as some of these clusters are either on or 
off, and some have several multiple configurations).  For 

our first round of experiments, this amounts to ±4,000 con-
figurations, i.e., 4,000 sets of training/test vectors. 

We then trained classifiers for each of these configura-
tions, a process that would be wholly impractical in most 
instances.  We were fortunate enough, however, to have 
access to a grid of twenty-six Apple Xserve computers.  
On this grid, training these several thousand classifiers was 
an overnight process that took on the order of 12-18 hours.  
The thousands of resulting evaluation scores were then 
entered into a relational database, which greatly simplified 
the subsequent process of analyzing configurations and 
identifying the best-performing ones.  The performance 
results we report here were obtained in this way. 

Observations 
We used these configuration analyses to drop some fea-
tures that proved to be poor performers in our first round of 
experiments, and to re-engineer and add others, resulting in 
the feature clusters that we report here.  We also performed 
a range of error-term analyses based of the confusion ma-
trices for high-performing configurations.  Two trends 
emerged in particular. 

First, among genuine financial tables, the most confu-
sions were between income statement tables and stock info 
tables.  We suspected that this was due to a peculiarity of 
our guidelines that required certain very short income ta-
bles to be classified as stock info.  On reflection, this re-
quirement seemed poorly conceived, so we re-annotated 
those tables as income statements.  Income statements 
were also prone to be misclassified as Misc and vice-versa.  
We suspected that this too was an experimental artifact, as 
we had chosen to map certain multi-category tables to 
Misc, as their counts were generally low.  Many of these 
tables, however, contained an income statement coupled to 
a balance sheet, so for subsequent experiments, we remap-
ped them to the Income statement category. 

A second trend in our first experiments, is that among 
non-genuine (text) tables, the largest number of confusions 
were between bulleted text, footnotes, and to a lesser de-
gree tables of content.  This observation caused us to intro-
duce a number of changes to the way bullet and footnote 
characters were tokenized, as well as to the way we calcu-
lated table adjacency. 

Finally, we decided to annotate a few more 10-K filings, 
in the hope that larger numbers of training instances would 
mean less variance between experimental conditions. 

Second experiments 
We performed a second round of experiments incorporat-
ing the engineering changes to the feature selection and 
category mapping.  These experiments also included the 
changes we made to the training data as well as the newly-
annotated 10-Ks (for an additional 231 training instances).  
Because of time considerations, we did not train or evalu-
ate the 39-way classifier for the Plain use case.  As before, 
we performed a brute force exploration of the feature 
space, yielding the following high-performing classifiers. 



Use case Accuracy Error ∆
Collapsed 81.74% -23%
Numeric + collapsed Text 92.39% -26%
Major category 92.39% -1.7%
Numeric vs. text 98.48% -20%

Clearly, the engineering and re-annotation effort paid off 
in terms of significant reductions in the error term for three 
out of the four use cases.  The final results also stand 
strongly on their own, as accuracies of 81% and 92% are 
considered very good for 15-way and 8-way text categori-
zations tasks (respectively). 

Discussion 
We would particularly like to point out our final result for 
the Numeric vs. Text use case, as this is our closest point 
of comparison with previously published work. For in-
stance, Wang and Hu (2002) report a best F of 95.89 for 
their genuine vs. non-genuine classification task.  Cohen et 
al report a best F of 95.9 for their task of finding true data 
tables.  There are of course significant differences between 
our financial tables task and those attempted by these other 
authors, so their results and ours are not wholly compara-
ble, but we would advance that our performance at this 
binary classification task is within the state of the art. 

As with our first round of experiments, we analyzed the 
contribution of our various feature clusters to the perform-
ance of the highest-ranked classifiers.  We were pleased to 
note that all four of the classifiers used substantially the 
same set of features.  They all used the cased and uncased 
bags of words, row headers, and some variant of the heu-
ristic column headers.  They all tested for the presence of a 
preceding table, and were all able to exploit the preceding 
table’s categorization.  For the most part (3 configurations 
out of 4), they used 10 or fewer words of lexical context, 
and did not bother to normalize dates or numbers.  They 
were split evenly as to whether to use the tokenization fea-
ture cluster. 

One point worth noting is that these results were all ob-
tained using gold standard labels for the contextually pre-
ceding table’s category.  In a running implementation, 
these would have to be filled in by the results of previous 
classifications.  To assess the degree to which performance 
may be impaired without gold standard table contexts, we 
considered the feature configurations that were identical to 
our winning ones, but with the preceding table type feature 
turned off (a simple database lookup, given our compre-
hensive analysis).  As expected performance is reduced 
without the preceding table class, but only slightly. 

Use case Accuracy 
w/ type

Accuracy 
w/out type

Collapsed 81.74% 81.33%
Numeric + collapsed Text 92.39% 90.32%
Major category 92.39% 92.26%
Numeric vs. text 98.48% 98.34%

Many more analyses of this kind remain possible.  One 
of the most interesting aspects of this work, however, is 
that our comprehensive (brute force) exploration of con-
figurations makes it possible to actually ask this kind of 
question and answer it quickly.  With the growing avail-
ability of grid computing, we expect this technique to catch 
on and prove highly valuable to practitioners of machine 
learning. 

We also hope that other researchers will be drawn to the 
financial tables classification task, what with its multiple 
levels of classification and its domain intricacies.  We look 
forward to the dialogue that we hope will follow. 
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