
Table Classification: an Application of Machine Learning
to Web-hosted Financial Documents

Marc Vilain, John Gibson, Benjamin Wellner, and Rob Quimby

The MITRE Corporation
202 Burlington Rd.

Bedford, Mass. 01730 USA
{wellner, jgibson, mbv}@mitre.org , rob.quimby@students.olin.edu

Abstract
This paper presents learning-based techniques that support
the processing of tables in HTML publications. We are
concerned especially with classifying tables as to format and
content, focusing on the domain of corporate financials. We
present performance results based on multiple classification
methods, and make several novel methodological contribu-
tions. These include a new evaluation corpus, a clever tech-
nique for creating the corpus, and an exhaustive approach
to-wards sensitivity analysis for classification features.

Introduction
Tables matter. In a text document, they serve many pur-
poses: they summarize, they aggregate, and they display
change over time. The essence is this: a table provides for
a compact and readable representation of relational or at-
tributive information. In many text sources, in fact, the
most important information is found in tables. This is cer-
tainly evident in financial domains, where tables of finan-
cial performance figures are the lingua franca of account-
ants and investors alike.

We are concerned in our work with applying in-
formation extraction and data mining techniques to these
kinds of financial documents. In so doing, we have inves-
tigated an array of issues regarding tables, namely their
identification, classification, and de-structuring. In the
present paper, we address in particular the issue of classify-
ing tables as they are found in HTML-based publications.

The reason we focus so specifically on HTML-formatted
tables is of course because the World-Wide Web has
changed everything about how we communicate. In our
area of concern, corporate financials, companies increas-
ingly publish both their annual reports and regulatory fil-
ings as web pages. The techniques we report on here are a
direct outcome of this sea change in publication. While we
focus in particular on financial documents, the work speaks
to the issue of processing HTML tables in all domains.

Background: table processing
A substantial body of work has already addressed the ques-
tion of processing tables in text documents. The earliest
such work, which predates the widespread use of HTML,
was naturally concerned with processing ASCII-formatted
tables, meaning tables whose horizontal and vertical rules
are drawn with hyphens and the like, and whose alignment
is controlled by tabs and space characters. The primary
challenge addressed by this work is that of de-structuring a
table, meaning identifying its row and column headers, and
delineating the content of its cells – see, for instance, Pinto
et al. (2003), Hu et al. (2001), or Chen et al. (2000

With the advent of HTML, the table de-structuring task
shifted to accommodate HTML’s built-in table-creation con-
structs (which include header, row, and cell markup). This
new problem isn’t so much easier as it is richer. Wrapper
induction, as this problem has come to be called (Kushmer-
ick et al. 1997), has also proven a boon for the application
of machine learning methods. Approaches range from
rule-based supervised methods (Knoblock et al. 2003,
Lerman et al. 2004, and many more) through generative
unsupervised ones (Grenager et al. 2005).

In addition to recasting the problem of finding table
structures, the introduction HTML tables has introduced a
(surprisingly) more basic one: namely determining whether
a table actually represents tabular data in the first place!
The issue is that HTML’s <TABLE> construct provides a
convenient framework for much more than the creation of
conventional numeric tables. In practice, <TABLE> is also
widely used as a tabbing environment for the purpose of
aligning columns of text, bullet symbols, footnote charac-
ters, and so forth. This is particularly true given the wide-
spread use of page layout programs, as these often compile
everything from bulleted lists to footnotes into <TABLE>
constructs.

Wang and Hu (2002) consequently formulated the prob-
lem of identifying whether a table is genuine. By their
definition, a genuine table is to be understood as a two-
dimensional encoding of relational information, e.g., bus
schedules or stock market performance. A table is non-

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 06-0314

genuine if it only presents a two-dimensional layout of
unrelated elements that do not share an underlying relation
such as time of arrival or price.

Category Description
Data v. time Cell values are (mostly) numbers,

rows are indexed to a quantity
(e.g., income), columns are in-
dexed to a date

Time v. data Ibid, but rows are date-indexed,
and columns quantity-indexed

Other num Number-valued cells with no
chronological indexing of either
rows or columns

Text Cell values are (mostly) text,
meaning phrases, sentences, or
even whole paragraphs

Table 1. Major table categories.

Cohen et al. (2003) follow this notion, and distinguish
true data tables from other uses of the HTML <TABLE> tag.
They cast the task of identifying true tables as a classifica-
tion problem, and bring to bear the standard armamentar-
ium of successful classification methods, among others:
decision trees, Winnow, and maximum entropy models.
Further, they note that table classification is of much more
than just academic interest. Indeed, many table extraction
methods based on wrapper induction depend critically on
being presented the right kind of table. So to succeed in
practice, the enterprise of wrapper induction depends
keenly on solving this basic table classification problem.

Our approach here largely follows this path, but adapts it
to the specific purpose of analyzing financial texts. In-
deed, one of the key text sources in the financial area is
corporate financial reports, in particular the annual 10-K
filings submitted by publicly-traded companies in the
United States. As these filings have increasingly been pro-
vided in HTML, the problem of distinguishing genuine ta-
bles has become correspondingly acute.

The need to make this distinction is several-fold. For
one, financial data mining applications, e.g., Chang et al,
(2006), often provide interactive access to text based on a
paragraph’s subject classification. We therefore would like
to provide an analogous access to tables through a fine-
grained categorization of table content. In the case of fi-
nancial reports, for instance, one might want a table of
tables that distinguishes income statements, stock histories,
and other like-minded accounting constructs. Part of our
agenda is therefore to identify these distinctions through
automatic classification methods.

In addition, many non-genuine tables contain text pas-
sages of significant value to financial analysis—the devil
in the financial details often hides in footnotes. However,
to productively apply our extraction and mining methods,
we need to identify the format of these non-genuine tables,

as listings of corporate officers, for instance, require a dif-
ferent treatment than do bulleted lists.

Category Description
Numeric minor categories
Income statement
Balance sheet
Cash flows

The three major accounting
views of a company’s finan-
cials

Consol. inc. stmt.
Consol. bal. sh.
Consol. cash fl.

Consolidated versions of the
above, typically produced by a
company’s auditors

Stock info Value, shares outstanding…
Pension plan
Stock plan (esop)

Stock/pension plans often have
their own financials

Misc. numeric Anything else
Text-related minor categories
Table of contents For sections, attachments…
Bullets Bulleted or numbered lists
Footnote Often linked to num. tables
Signatures page Auditor sign-off , etc.
Fat cats Board members, executives
Stock info Rare non-numeric tables
Text table Tables such as this one
Formatting Other alignment uses
Misc. text Anything else

Table 2. Key minor table categories. Gray text
shows low-count categories that were folded into
other categories in most experiments.

Finally, we also need to ensure that we not apply stan-
dard extraction methods to genuine financial tables. A
name-tagged income statement is not a pretty sight, as fi-
nancial tables often lack the contextual cues required for
successful name tagging—even of money expressions.

The financial table classification task
The preceding discussion points to a need for two levels of
table classification: a coarse distinction between genuine
and non-genuine tables, as well as a fine-grained assign-
ment of table type. Towards this end, we assign to a table
both a major category and a minor category.

Table categories
To address the particulars of financial reports, we recog-
nize four major categories (see Table 1). These broadly
follow the division between genuine and non-genuine ta-
bles, where the first three categories taken together (the
numeric categories) correspond to Wang and Hu’s genuine
tables. Text tables are our equivalent of non-genuine ta-
bles: for the most part they cannot comfortably be con-
strued as encoding an underlying semantic relation. The
special case of tables of contents, which could arguably be
typed as either text or other num is, for our purposes, con-
sidered to be text-typed.

In addition to a table’s major category, we recognize a
range of minor categories, some of which are specific to
numeric tables, and the others to text tables (see Table 2).
For the numeric tables, the minor categories are defined on
a primarily semantic basis, which is in keeping with our
objective of extending subject classification from text to
(genuine) tables. They mostly include such accounting
categories as income statement and the like.

In contrast, the minor categories for text tables reflect
our need to process specific table layouts in idiosyncratic
ways. As such, their distinctions are primarily syntactic in
nature. Among them is the particular category of Format-
ting, an undistinguished catch-all that captures the most
egregious cases where <TABLE> is exploited for alignment
purposes alone.
The table omits a number of particularly low-count catego-
ries, which we lumped into the two Misc. categories for
most of our experiments. Among these rare tables were
some that the annotators had marked as belonging to mul-
tiple minor categories, e.g., financial tables that included
both balance sheet and income statement information. In
addition, rare examples of (e.g.) the fat cats minor category
could arguably be seen as having either text or numeric
major categories. We resolved these potential confusions
by convention, so (e.g.) fat cats tables were always taken
to be text-typed for their major category.

Corpus development
After setting guidelines for annotation, we created a corpus
of 10-K filings in which all tables are marked with both
their major and minor category. These documents vary a
lot in length, though most are over 100 pages long. They
also vary significantly in the number of tables they contain,
ranging from a low of 22 tables per filing to a high of 363.
This huge variance (avg= 110, sd= 94) is due to differences
in reporting styles on the part of the filing corporations. In
particular, some went to great length to provide multiple
views of a particular financial table, broken down by geog-
raphy, business, area, and so forth. Others provided only
one such table, and yet others dispatched the bulk of their
financial tables to their annual reports, and only cited them
by reference.

For our purposes, this variance in reporting styles had
implications relative to the practicality of using sequence
models—more on this below.

For training and test purposes, we used 19 of these fil-
ings in the present study, with a total of 2,089 table in-
stances. Most of our experiments defined a training-test
split along document boundaries, collating enough 10-K’s
into the training camp to create a roughly 70-30 split, with
1,436 table instances for training and 633 for test.

We deliberately chose this particular approach to divid-
ing training and test sets over the more conventional ap-
proach of N-fold cross-validation. Because our source
documents have such inconsistent table density, cross-
validation cannot be readily performed without splitting
some documents up and assigning one part of their tables
to training, and the other to test. This is not representative

of actual operational conditions, where the “test” tables are
always drawn from documents with no overlap with the
training set. In this case, cross-validation measures are
likely to overestimate actual runtime performance.

To construct the corpus, we used a clever trick that al-
lowed us to mark up the filings in situ while reading them
in a web browser. This gave us a WYSIWYG annotation
capability, which we found critically necessary, since the
source code for HTML tables is essentially unintelligible on
its own. In our experience, efficiently and accurately judg-
ing the category of a table required that it be fully rendered
by a browser. Wang and Hu (2002) describe a non-
WYSIWYG annotation tool that would have been extremely
cumbersome for our needs.

As to the clever trick, it worked as follows. We modi-
fied the HTML source code of our corpus documents, and
added a pair of HTML <SELECT> menus in front of each
HTML table. These pull-down menus allowed the annotator
to indicate the major and minor categories of the table with
no more than two mouse clicks. The whole body of the
document was then wrapped in an HTML <FORM> with a
SUBMIT button to save the mark up. A bit of HTML manipu-
lation, plus a few external scripts was all that was required.

A preliminary round of annotation was performed by
three project members, followed by a round of adjudication
to resolve inter-annotator disagreements. This helped iden-
tify annotation tough nuts that required further guidelines.
The full corpus was then annotated by the most consis-
tently accurate annotator among the original three.

Experimental preparation
As noted, we cast the problem of identifying genuine fi-
nancial tables as a classification task, and exploited a num-
ber of machine learning packages to learn a range of table
classifiers. Prior to our experimental runs, we first fol-
lowed a procedure involving the following three steps:
preprocessing, feature extraction, and category mapping.

Preprocessing
As is often the case with HTML documents in the wild (on
the Web), our corpus of 10-K filings proved unwieldy in
their raw form. The issue is that they were difficult to
parse due to unclosed tags and other factors. As such, a
first preprocessing step converted the HTML documents to
XHTML using the program TagSoup.1 A second stage of
preprocessing involved tokenizing the XHTML character
data using a robust general-purpose tokenizer followed by
some task-specific tokenization patch-up.

Feature extraction
We extracted a number of different classification features
from the resulting XHTML documents. As with most previ-
ous work, we identified a number of structural features,

1 Source: http://mercury.ccil.org/~cowan/XML/tagsoup/

such as the column or row count. In keeping with the
standard text-classification literature, we also extracted
bag-of-word lexical inventories. We also identified a
number of features that attempted to model the lexical and
structural context in which a table is found. Finally, we
extracted a number of features that were aimed specifically
at distinguishing some of our fine-grained categories, e.g.,
counts of bullet-like or footnote-marking tokens, counts of
date words or year numbers, and so forth. We then
grouped these features into the following clusters, which
we could independently activate or disable in any given
experimental run.

Baseline. A baseline feature set was used in all experi-
ments. It consists in part of bag-of-word counts of the to-
kens present in a table, as well as structural features, such
as the number of rows and columns in the table as deter-
mined by the <TR> and <TD> HTML tags. We identified
three versions of the baseline, depending on whether the
bags of words contained lexemes in their original case, in
their uncased forms, or both.

Column headers. Column header features were in-
ferred from <TH> tags, when present, or by a heuristic that
guessed potential column headers by examining whether
the top two rows contained “real” alphabetic tokens (as
opposed to only containing numbers). Headers were then
modeled as both header-specific bags of words and a spe-
cial feature that indicated whether headers were found and
how the header bags were derived (by <TH> extraction,
heuristically, and for some cases, both).

Row headers. These bag-of-word features selected the
lexemes present in the row headers, i.e. the first non-empty
column in a table (wholly-blank columns are often used for
spacing purposes). This was done only for rows that were
not deemed column headers.

Preceding table context. A binary feature indicating
whether a table is immediately preceded by another table
(modulo horizontal rules, page numbers, and the like).

Preceding lexical context. These bag-of-word features
capture the N words that precede a table. We allowed for
windows of either 0, 10, 50, or 100 words, each of which
represented a separate experimental condition.

Preceding table type. This feature attempts to model
sequencing effects that would be captured by sequence
models such as generative (HMM) or discriminative (CRF)
techniques. In practice, the classification assigned to the
nth table in a document would be passed as the preceding
table type feature for the n+1th table. For our experiments,
however, we approximated this by simply passing in gold
standard classifications as established by the annotators.

Following context. This group of features captures the
context immediately following a table. The group consists
of both the binary table context and the bag-of-words lexi-
cal context features that are separated for the case of pre-
ceding contexts. We lumped these together as preliminary
experimentation showed that neither had especially signifi-
cant effect on classification accuracy.

Section headers. These features attempt to model
document section headers. Indeed, we had observed that in

our corpus, certain tables occur more frequently in certain
sections of the document than in others. To capture this
effect, we attempted to heuristically identify section head-
ers (via table-of-content lookup) and included their bag-of-
word distributions in this feature group.

Task-specific tokenization. This feature group, when
activated, invoked an extra round of tokenization, in par-
ticular for number sequences that would otherwise be at-
omized, e.g., “(1.1)” “15 (c)” and the like. It also intro-
duces a set of features that separately count the number of
tokens that could be used as bullets, the number that could
be used as footnote markers, and the number that could be
used as table-of-contents entries. Note that tokens like
“(1)” could be used for all three of these purposes.

Date and number normalization. A group of features
that counts the number of date words, year numbers, and
plain numbers in the table. This effectively normalizes
these constructs, as if they were being replaced by a special
DATE or NUMBER token.

Bottom lines. We attempted to implement a “bottom
line” detector, as this can be a strong lexical cue for nu-
meric tables. This was done by finding the bottom-most
row header in a table, and creating separate bag-of-word
features for this entry.

Category mapping
The result of all this feature extraction was to produce a

collection of feature vectors labeled with the annotator’s
judgment of their major and minor categories. For actual
experimentation, these categories were then remapped.
The purpose of doing so stage is two-fold.

First, as our original repertoire of minor text categories
makes an impractically large set of distinctions (39, not all
of which are shown Table 2), we needed to reduce their
number to a more manageable level. As noted earlier, we
mapped a number of similar low-count categories to each
other, producing a collapsed set of categories.

Second, we also took advantage of the category-
remapping procedure to evaluate a range of possible use
cases that so not require identifying the full set of minor
categories. The cases we considered were as follows.

Plain (39 categories). The labels consisted of the origi-
nal categories and sub-categories in the annotated data.

Collapsed (15 categories). A first round of category
mapping that collapsed low-count minor categories.

Numeric + collapsed text (8 categories). A further
round that collapses all the numeric minor categories to-
gether. This corresponds to a text processing use case
where one might ignore the numeric tables, but want to
(e.g.) name-tag text in non-genuine (text) tables.

Major category only (4 categories). All the minor
categories were ignored, and only the four major categories
were considered.

Numeric vs text (2 categories). The three number-
oriented major categories were further collapsed together.
This condition effectively corresponds to making the same
genuine vs. non-genuine distinction in previous work.

Experimental results
The bulk of our experiments were performed with a multi-
nomial maximum entropy classifier, using a Gaussian prior
of 100.0 for all runs. These are the results we report be-
low. We additionally repeated all these experiments with
the LibSVM implementation of support vector machines,
but were unable to obtain comparably good results. This
should not be taken as the final word about SVMs on this
task, as time limits prevented us from performing an ex-
haustive analysis of the hyper-parameter space. Finally,
we also tried some comparison experiments with condi-
tional random field classifiers. We had hoped to see some
sequence effects from these experiments, as mutual infor-
mation measures show significant predictiveness between
sequential pairs of tables. However, CRFs also under-
performed maximum entropy models.

First experiments
A first round of experiments yielded the following re-

sults for the five use cases under consideration.

Use case Accuracy
Plain 71.72%
Collapsed 76.30%
Numeric + collapsed Text 89.73%
Major category 92.26%
Numeric vs. text 98.10%

These figures report the highest-performing classifier
that was learned for each of these five cases. For each use
case, a large number of classifiers were learned, based on
different configurations of activated or disabled feature
groups. We were encouraged by these performance fig-
ures, especially since the first three represent decisions
between a relatively large number of classification labels
(39, 15, and 8 respectively).

Nonetheless, these figures do not tell the whole story.
When probing the range of training configurations, we
found surprisingly large variance between closely related
configurations of features. For example, the winning 15-
way classifier for the Collapsed use case relies on both
case and uncased bag-of-word entries. However, switch-
ing to a cased-only version of the bags of words, causes
performance to drop by 5 points. To understand this vari-
ance, we engaged in a comprehensive analysis of training
configurations.

Comprehensive configuration analysis
This analysis explores the entire search space defined by
the clusters of features we implemented for this task. That
is, we treated each of our φ1 φ2… φn feature clusters as a
term in a giant φ1 × φ2 × … × φn cross product, and inde-
pendently activated or disabled each cluster so as to pro-
duce all kn different configurations of feature clusters.
(Note that k≥2, as some of these clusters are either on or
off, and some have several multiple configurations). For

our first round of experiments, this amounts to ±4,000 con-
figurations, i.e., 4,000 sets of training/test vectors.

We then trained classifiers for each of these configura-
tions, a process that would be wholly impractical in most
instances. We were fortunate enough, however, to have
access to a grid of twenty-six Apple Xserve computers.
On this grid, training these several thousand classifiers was
an overnight process that took on the order of 12-18 hours.
The thousands of resulting evaluation scores were then
entered into a relational database, which greatly simplified
the subsequent process of analyzing configurations and
identifying the best-performing ones. The performance
results we report here were obtained in this way.

Observations
We used these configuration analyses to drop some fea-
tures that proved to be poor performers in our first round of
experiments, and to re-engineer and add others, resulting in
the feature clusters that we report here. We also performed
a range of error-term analyses based of the confusion ma-
trices for high-performing configurations. Two trends
emerged in particular.

First, among genuine financial tables, the most confu-
sions were between income statement tables and stock info
tables. We suspected that this was due to a peculiarity of
our guidelines that required certain very short income ta-
bles to be classified as stock info. On reflection, this re-
quirement seemed poorly conceived, so we re-annotated
those tables as income statements. Income statements
were also prone to be misclassified as Misc and vice-versa.
We suspected that this too was an experimental artifact, as
we had chosen to map certain multi-category tables to
Misc, as their counts were generally low. Many of these
tables, however, contained an income statement coupled to
a balance sheet, so for subsequent experiments, we remap-
ped them to the Income statement category.

A second trend in our first experiments, is that among
non-genuine (text) tables, the largest number of confusions
were between bulleted text, footnotes, and to a lesser de-
gree tables of content. This observation caused us to intro-
duce a number of changes to the way bullet and footnote
characters were tokenized, as well as to the way we calcu-
lated table adjacency.

Finally, we decided to annotate a few more 10-K filings,
in the hope that larger numbers of training instances would
mean less variance between experimental conditions.

Second experiments
We performed a second round of experiments incorporat-
ing the engineering changes to the feature selection and
category mapping. These experiments also included the
changes we made to the training data as well as the newly-
annotated 10-Ks (for an additional 231 training instances).
Because of time considerations, we did not train or evalu-
ate the 39-way classifier for the Plain use case. As before,
we performed a brute force exploration of the feature
space, yielding the following high-performing classifiers.

Use case Accuracy Error ∆
Collapsed 81.74% -23%
Numeric + collapsed Text 92.39% -26%
Major category 92.39% -1.7%
Numeric vs. text 98.48% -20%

Clearly, the engineering and re-annotation effort paid off
in terms of significant reductions in the error term for three
out of the four use cases. The final results also stand
strongly on their own, as accuracies of 81% and 92% are
considered very good for 15-way and 8-way text categori-
zations tasks (respectively).

Discussion
We would particularly like to point out our final result for
the Numeric vs. Text use case, as this is our closest point
of comparison with previously published work. For in-
stance, Wang and Hu (2002) report a best F of 95.89 for
their genuine vs. non-genuine classification task. Cohen et
al report a best F of 95.9 for their task of finding true data
tables. There are of course significant differences between
our financial tables task and those attempted by these other
authors, so their results and ours are not wholly compara-
ble, but we would advance that our performance at this
binary classification task is within the state of the art.

As with our first round of experiments, we analyzed the
contribution of our various feature clusters to the perform-
ance of the highest-ranked classifiers. We were pleased to
note that all four of the classifiers used substantially the
same set of features. They all used the cased and uncased
bags of words, row headers, and some variant of the heu-
ristic column headers. They all tested for the presence of a
preceding table, and were all able to exploit the preceding
table’s categorization. For the most part (3 configurations
out of 4), they used 10 or fewer words of lexical context,
and did not bother to normalize dates or numbers. They
were split evenly as to whether to use the tokenization fea-
ture cluster.

One point worth noting is that these results were all ob-
tained using gold standard labels for the contextually pre-
ceding table’s category. In a running implementation,
these would have to be filled in by the results of previous
classifications. To assess the degree to which performance
may be impaired without gold standard table contexts, we
considered the feature configurations that were identical to
our winning ones, but with the preceding table type feature
turned off (a simple database lookup, given our compre-
hensive analysis). As expected performance is reduced
without the preceding table class, but only slightly.

Use case Accuracy
w/ type

Accuracy
w/out type

Collapsed 81.74% 81.33%
Numeric + collapsed Text 92.39% 90.32%
Major category 92.39% 92.26%
Numeric vs. text 98.48% 98.34%

Many more analyses of this kind remain possible. One
of the most interesting aspects of this work, however, is
that our comprehensive (brute force) exploration of con-
figurations makes it possible to actually ask this kind of
question and answer it quickly. With the growing avail-
ability of grid computing, we expect this technique to catch
on and prove highly valuable to practitioners of machine
learning.

We also hope that other researchers will be drawn to the
financial tables classification task, what with its multiple
levels of classification and its domain intricacies. We look
forward to the dialogue that we hope will follow.

References
Chen, H, Tsai, S, and Tsai, J. 2000. Mining tables from
large scale HTML texts. In Proc. of the 18th Int. Conf. on
Computational Linguistics (COLING 2000) , pp. 166-172.
Cohen, W, Hurst, M, & Jensen, L. (2003): A Flexible
Learning System for Wrapping Tables and Lists in HTML
Documents. In Antonacopoulos, A, & Hu, J. (eds.) Web
Document Analysis: Challenges and Opportunities, World
Scientific Publishing.
Grenager, T, Klein, D, & Manning C. 2005. Unsupervised
learning of field segmentation models for information ex-
traction. In Proc. of ACL 2005, pp. 371-378, Ann Arbor.
Hu, J, Kashi, R, Lolpresti, G, & Wilfon, G. 2001. Table
Structure Recognition and Its Evaluation, In Proc. Docu-
ment Recognition and Retrieval VIII, pp. 44-55.
Hurst, M. 2001. Layout and language: Challenges for table
understanding on the web. In Proc. 1st Intl. Wkshp. on Web
Document Analysis, pp. 27-30, Seattle, WA.
Knoblock, C, Lerman, K, Minton, S, & Muslea, I. 2003.
Accurately and reliably extracting data from the web: A
machine learning approach, In Szczepaniak, P, Segovia, J,
Kacprzyk, J, & Zadeh, L (eds.) Intelligent Exploration of
the Web, Springer-Verlag.
Kushmerick, N, Weld D, & Doorenbos, R. 1997. Wrapper
induction for information extraction, In Proc. of IJCAI-97.
Lerman, K, Getoot, L, Minton, S, & Knoblock, C. 2004.
Using the structure of web sites for automatic segmentation
of tables. In Proc. of ACM SIG on Management of Data
(SIGMOD-2004).
Pinto, D, McCallum, A, Wei, X, & Croft, W. B. 2003. Ta-
ble Extraction Using Conditional Random Fields. In Pro-
ceedings of the 2003 ACM SIGIR Conference.
Wang, Y. and Hu, J. 2002 A machine learning based ap-
proach for table detection on the Web. In Proc. of the
WWW 2002 Conference.
Yoshida, M, Torisawa, K, & Tsujii, J. 2001. A method to
integrate tables of the world wide web. In Proc. 1st Intl.
Wkshp. on Web Document Analysis, pp. 31-34.

