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Abstract – This paper describes the application of finite 
set statistics (FISST) to real-time multiple target road 
constrained tracking problems. We studied specific test 
problems where multiple modality wireless sensor 
networks monitored road networks of interest.  Acoustic 
and radar detections updated a global density that 
tracked the number and positions of targets. The global 
density determines “information states” that form the 
basis of a closed-loop Markov Decision Process 
resource management procedure that controls sensor 
operation. 
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1 Introduction 
Recent interest in netted-sensors technology is partially 

motivated by the potential of obtaining information about 
targets and their environments on length and time scales 
that are not easily accessed by traditional standoff 
sensors. Obtaining this information requires efficient 
methods to fuse measurements from multiple in situ 
sensors, often operating over a wide range of sensing 
modalities. Among applications of interest are dense road 
networks, where target state vectors can change rapidly 
due to target maneuvers at intersections [1]. Wireless 
sensor networks with in situ sensors at intersections 
would be advantageous in these tracking applications. 

Traditional Kalman Filter target tracking methods have 
difficultly tracking targets in dense road networks, where 
several roads are in a sensor’s field of view.  
Measurements can correspond to several different roads 
and lead to an association ambiguity between the 
measurement and the target position [2]. Random set 
approaches avoid the association ambiguity by 
statistically weighing all possible hypotheses and 
associations [3,4]. 

While a large number of publications describe random 
set tracker performance in simulation studies, only a 
limited number of real-time implementations using field 
data have been reported [5].  In this paper, we use a 
random set tracker to fuse data from a wireless network of 
in situ sensors deployed within road networks of interest.  
An additional consideration is the desire to minimize 
sensor energy expenditure and correspondingly maximize 
network operational lifetime [6]. Energy conservation is 
enhanced through statistically based resource 
management algorithms that determine an optimal subset 
of sensor measurements to achieve monitoring objectives 

by combining the tracker’s knowledge about target 
locations with sensor characteristics, including energy 
consumption.  

This paper is organized as follows:  Section 2 is an 
overview of the applications of the FISST to target 
tracking in dense road networks.  Section 3 discusses the 
scenarios examined in this paper. This discussion includes 
sensor modalities and the geometry of the road networks. 
Section 4 outlines the motion models and update 
equations for the global density fusion algorithm while 
Section 5 gives numerical approximations to the 
algorithms.  Section 6 discusses deriving “information 
states” from the global density, which forms the basis of a 
closed-loop Markov Decision Process resource 
management procedure to control sensor operation.   
Section 7 discusses results from simulations and live 
scenarios before concluding in Section 8. 

2 FISST 
Traditional Kalman filters assume that state variables, 
, and measurements, x y , are fixed length random 

vectors [3].  For traditional tracking applications, 
represents the targets’ geokinetic variables, and 
represents the measurements related to the geokinetic 

variables.  The state vector motion is linear with Gaussian 
white noise, 

x
y

ttxt dλΩx +=+1 . Additionally, the 
measurements depend linearly on the state vectors with 
additive Gaussian white noise, .  The 
Kalman filter can be extended to non-Gaussian noise, 
non-linear measurements, and non-linear motion models 
through the Bayesian filter [3].   The Bayesian filter 
consists of two steps.  1)  Starting with a probability 
density conditioned on previous measurements, 

, a prediction step estimates the 
probability density of the vector at time step t , 
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This new probability density is combined with a new 
set of measurements, , during the update step to 
determine the new estimate of the probability density, 
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where N is a normalization factor.  The number of state 
variables and measurements is fixed and the mapping 
between the state variables and measurements is explicit. 

Tracking multiple targets presents difficulties because 
association of measurements with existing targets is often 
ambiguous [3, 4].  Even if the state variables are linearly 
related to measurements with Gaussian errors, the 
ambiguity in associations produces non-Gaussian effects 
[3].  Missed detections, false alarms or clutter, and the 
birth and death of targets complicate the scenario.  In 
addition to their numerical values, the number of targets 
and measurements are also random variables, and the 
vectors  and  must be replaced with random sets 

and .  The geokinetic state, , may take on 

the values 

x y
}{x }{y }{x

}{}{ φ=x ,   

where and denote the positions and velocities of 
target i .  The set of measurements, , are estimates of 
the geokinetic variables recorded from various sensors 
and include clutter returns and missed detections.  
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Several methods address variable numbers of targets 
and detections with ambiguous associations, including 
joint integrated probabilistic data association (JIPDA) and 
jump Markov models (JMM) [7, 8].  In this paper, we 
explore applications of finite set statistics (FISST) to road 
constrained multiple target tracking.  FISST is a 
generalization of the Bayesian equations, Eq. (1) and (2), 
to sets.  The probability density, called the global density, 
is defined on the possible number and locations of targets.  
For road networks, the global density has the form 
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where  is the probability of no targets,  is the 

probability density for targets on roads  at 

, respectively.  The density 
is normalized with respect to a set integral 
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where the summation is over the number and identity of 
possible roads.  Similar to the Bayesian filter one can 
define conditional probabilities, motion models, and 
measurement models to develop a set of recursive update 
equations [3, 4].  The prediction step includes propagation 
and birth and death processes so that the conditional 
expectation of the global density on previous 
measurements has the form 
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where the sum is over all possible roads, mrr ′′...1 .  The 
predicted density is then updated with the measurements 
at time step t , 
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Summation over the associations makes these expressions 
more complicated than Eq. (1) and (2).  For calculations, 
we assume 0...1

=
nrrf for , which places a 

cutoff in the possible number of targets. The exact forms 
of the expressions for the sensors used in this experiment 
will be outlined in Section 3 after introducing the 
particular road network scenarios. 

Nn >

3 Road Network Scenarios 
The road network geometries depicted in Fig. (1) and 

(2) were examined using simulation and live experiments.   
Each road network is decomposed into six road segments.  
Sensors probing the road networks include monostatic 
range radars (red circles) and multiple element acoustic 
arrays (green circles).  The performances of these sensors 
are outlined in Section 3.1 and 3.2.  The targets were 
commercial motor vehicles instrumented with GPS 
receivers allowing comparison of the tracker’s predicted 
vehicle locations with ground truth.  
3.1 Range Radars 

The range radars were built by Multispectral Solutions, 
Inc. (Germantown, MD) and have a detection range of 
512 ft (156 m) and a 24 degree beam pattern.  Detections 
are recorded by determining background clutter statistics 
and detecting statistically significant blocks of range cells 
that exceed the background clutter.  The detection  
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Figure 1:  Triangle road network geometry.  The axes 

are topocentric with distances in meters. 
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Figure 2:  The straight line road network geometry. The 

axes are topocentric with distances in meters. 
 
Probabilities are calculated from the signal, S, using the 
Swerling I model, 

)))(1/(exp()( '/44
0

2
0

rrerrTTSP −+−=> θσ , 

where T  is a threshold,  r is the range,  is a reference 

range, and  is the mean signal returned at the 

reference range and angle 

0r
)(2

0 θσ
θ  with respect to the aim of 

the radar beam.  The term is a correction for 
deficiencies in the detector.  In the center of the beam, the 
detection probability is around 0.75 at 150 ft (45 m) .  The 
errors in the reported ranges are approximately Normally 
distributed with a standard deviation of around 2m for 
simple targets. 
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3.2  Acoustic Arrays 

The acoustic arrays consist of four microphones spaced 
8 inches apart in a square planar configuration.  Angles 
are reported when the sound level exceeds a threshold, T 
defined relative to the background.  The time delays 
between the different microphones determine the incident 
angle sines and cosines of the sound source, 
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where τΔ  are the time delays calculated by maximizing 
the cross-correlation between the signals from the 
microphones, 
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the spacing,  is the velocity of sound, sv A  is a matrix of 

the displacements, and λ  is a Lagrange multiplier that 
ensures .  Experiments show a 

Normally distributed error with  accuracy and a 
detection range of 10-15 meters.  The estimated bearing 
angle generally points to the loudest (and often closest) 
vehicle, although more complicated behaviors 
occasionally occur.  The detection probability model is a 
passive version of the Swerling I model, 

1)(sin)(cos 22 =+ θθ
o5

)))(1/(exp()( '/22
0

2
0

rrerrTTSP −+−=> θσ , 

where 0σ is velocity dependent, but only weakly vehicle 
dependent for non-diesel passenger motor vehicles.    
However, only the loudest object is reported so the 
probability of the angle from source i  being returned is 
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where s stands for the source, which may be clutter, and 

, , and are source dependent.  The 
probability of no return is 

)(2
0 θσ i 0'ir 0ir
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ijii sTsPsTP ),(1)( .  Because the 

acoustic measurements require multi-target information, 
the probability hypothesis density PHD approximation to 
the FISST cannot be implemented on this system, and a 
full random set implementation is necessary [9].  

4 Global Density Calculation 
The prediction and update equations for the road 

constrained network are complicated by the association 
ambiguity of the sensors.  In this section, we outline the 
expressions for these equations. 

 
4.1 Prediction 

  The prediction step includes propagation along a road, 
road switching, and birth and death processes.  The 
centerline of each road, i , is defined by a parametric 
curve,  and , with )(sxi )(syi

( ) ( ) 122 =+ dsdydsdx ii . The assumed 
independent motion of targets along the arc length of a 
road is linear with Gaussian white noise acceleration , 

ii dvv

vs
ii

ii

Λ+−=

=

γ&

&
.    (9) 

Over a small time interval, the expected variance in the 

integral of the acceleration is td
t
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The model’s steady state root mean square velocity 

is ivss
γσσ 22

Λ= .  Since the roads have a finite 
length, the propagated density will extend beyond the end 
of the road.  The overhanging density is truncated from 
the original road and equipartitioned among the 
connected roads (See Fig. (3)).  The velocity profile of the 
equipartitioned distribution is the same as the original 
density, with velocities pointing towards the intersection 
on the original road pointing away from the intersection 
on the new road. 

Death processes correspond to density that overhangs at 
dead ends in the road network such as roads 1, 3 , and 5  
in Fig.  (1).  Death processes result in marginalizing over 
the overhanging profile and adding the remaining density 
profile to the corresponding hypothesis.  For example, if 
Fig. (3) (b) corresponds to the projection of onto the 

road segment, the overhang would be  
21rrf
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Figure 3:  Road switching in the network. (a) The 
intersection of ,  and   in the upper left intersection 

in Fig. (1). (b) Starting from a density on , the 

propagation step results in the density overhanging .  

(c)  The new profile for  is created by truncating the 
overhanging portion of the density.  (d)  The overhanging 

density is equipartitioned between   and . 
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Several birth processes are possible, such as coupling 

birth processes to measurements not associated with any 
previously detected targets [4].   Resource management of 
sensors requires knowledge of the rate of decay of 
information about the global density, which is greatly 
affected by birth processes. 

To ensure that the birth processes reflect the decay in 
information, the birth processes correspond to adding 
targets to a road segment by a Poisson process with 
parameter, .  The added target has a Gaussian 
position profile with a mean located near the end of the 
road and a road dependent standard deviation.  The 
velocity profile is a truncation of the steady state velocity 
profile that ensures the velocity points onto the road so 
that targets do not immediately depart upon entry. 
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4.2 Update 
As mentioned above, summation over the associations 

complicates updating the probability density.  For 
example, if a radar sensor reports the range 
measurement, }...{ 1 mρρ , the likelihood function 
becomes 
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In this expression, aρ  is the measurement (in the 
product and summation) and the association (in the 
indices).  The probability of a clutter return from bin b, 

, or from the target, , is spatially dependent.  

The measurement model, , is a Normally distributed 
error around the point in the measurement space,  

)(bPc tP

rg

22 )()())(),(( sysxsysxhr += , which is a non-
linear map between the state space and measurement 
space. 

Association ambiguities lead to non-Gaussian effects 
and make the Kalman filtering equations invalid even if 

 was linear,  is Normally distributed, and the 
detection probabilities are position independent constants.  
The non-linear nature of the measurements and detection 
probabilities increases these complications. Various linear 
approximations, pruning, and measurement weighting 
strategies attempt to avoid this difficulty, but they may 
lead to poor tracking performance [3, 7]. 

rh rg

Since the acoustic array only reports a single 
measurement, there are fewer associations to sum over, 
but the detection probabilities depends on all coordinates 
Eq. (8), and the likelihood of detecting an angle α is 
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Similar to the radar model,  is Normally distributed 
and the relation between roads positions and angle, 

αg

))()((tan))(),(( 1 sxsysysxh −=α , is highly non-
linear. 

5 Numerical Implementation 
We used a Gaussian Mixture approximation to 

implement a computationally tractable random set fusion 
algorithm.   The Gaussian mixture model for this road 
network scenario also allows a scalable Gaussian sum 
particle filter (GSPF) representation [10].  The GSPF is 
similar to particle filter sampling methods, but the delta 
function kernel associated with each particle is replaced 
by a variable dimensional Gaussian.  The covariance and 
mean of each particle is propagated instead of simply the 
position of each particle.  Each term in the global density 
is represented by a finite number of Gaussians, 
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where  is a multidimensional Gaussian distribution, G

).exp()2(),( 11
xCxCDetCxG T −−

= π   The 
Gaussian mixture representation requires several 
approximations:  1) After combining detections with the 
Gaussian, the probability of detect is based on the mean 
value of each Gaussian component.  2) The non-linear 
maps between the coordinates and the measurements are 
Taylor expanded around the mean values, 

+≈ ))(( 0sxhh  ))())((( 00 ssssxh −∂∂ .  Gaussian 



displacements transverse to the road centerline are also 
considered.  3)  The motion model is still linear.  4)  
Instead of truncating overhanging density, road switching 
and death processes correspond to the mean of the 
mixture component overhanging the end of the road.  The 
entire Gaussian component either switches roads or is 
marginalized.  5)  Birth processes correspond to adding 
mixture components to the ends of roads with a mean 
velocity pointing onto the roads and a fixed initial width.   

All of these approximations maintain the Gaussian 
mixture representation of the global density.   The validity 
of these approximations depends on the Gaussian mixture 
components’ variances being much smaller than 
variations in the detection probabilities, the variations in 

, and the distance from the ends of the roads. We 
ensure the validity of these approximations by replacing 
components with large variances with several Gaussian 
components of smaller variances through a Kullback-
Leibler measure.  

h

Although these approximations ensure that the global 
density maintains a Gaussian mixture functional form, the 
associations of the measurements result in a geometric 
explosion in the number of mixture components.  To 
avoid the geometric growth, the mixture components are 
recombined based on the Kullback-Leibler metric.  The 
KL metric compares  with a new Gaussian 

mixture, 
nrrf ...1

nrrf ...1

~
, that contains two components with the 

same  mean and variance [11], 
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The KL metric gives 
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where )(~ nμ and are the optimal mean and covariance 
for combining the two mixtures.  The combined mixture 
components that result in the smallest KL metric are 
combined until the number of mixtures is smaller than a 
set maximum number and the KL metric for combining 
two mixtures is greater than a tolerance [11]. 

)(~ nC

If the final distribution was reduced to a single 
Gaussian at each time step, the resulting filter would be 
similar to the JIPDA filter, which sums over associations 
to determine the best fitting Gaussian distribution [7].  
Maintaining a finite number of mixture components gives 

greater flexibility and hopefully improves performance. 
Each mixture component is similar to a single hypothesis 
in a multiple hypothesis tracker (MHT) [12]. Unlike the 
MHT that performs branching and pruning procedures, 
the FISST tracker combines branches of the track 
estimates [11].  This procedure reduces the amount of 
information lost at each update step since a hypothesis 
with low probability may contain a significant amount of 
information, but makes the definition of a track and track 
lifetime ambiguous since tracks with different lifetimes 
may be combined. 

6 Resource Management 
Sensor network efficiency is optimized with a Markov 

decision process resource management algorithm. The 
objective of the sensor network is to maintain knowledge 
of the surveillance area while maximizing the sensor’s 
battery lifetime. Excessive use can also compromise the 
sensor network by increasing the probability of hostile 
entities detecting and disabling the sensor network.  

The resource management is based on considering each 
of the road segments as tasks.  The global density 
determines the “information state” of each task, which 
reflect our confidence in a set of mutually exclusive and 
exhaustive hypotheses.  For a maximum of two targets 
per road segment the hypotheses are listed in Table (1). 

 
Table 1:  The states calculated from the global density 

and used to determine resource management. 
 

1−S  Not sure of any other hypothesis 

0S  >95% positive no targets on road 
segment 

1S  >95% positive 1 target on road 
segment, but 0σσ >  

2S  >95% positive 1 target on road 
segment and 0σσ <  

3S  >95% positive 2 targets on road 
segment, but 0σσ > for at least one 
target 

4S  >95% positive 2 targets on road 
segment, and 0σσ <  for all targets 

 
Defining these states allows us to cast the resource 

management algorithms into the restless bandit 
formulation [13].  Each task area can be actively probed 
by a set of sensors.  A probed task is active ,“a”, and an 
inactive task is passive, “p”.  An active or passive task i 
that is in state, , results in a reward or  and 
a transition between states denoted by Markov transition 
matrix or .  Actively working on tasks results in 

transitions from states of relative ignorance, , , 

and , to states of relative knowledge , , and .  
Tasks that remain passive produce transitions that 
degrade knowledge.  The Markovian transition 
probabilities are not exact, since the real transitions 
depend on , which has many more degrees of 

ijS )(a
ijR )( p

ijR

)(a
iP )( p

iP

1−S 1S

3S 0S 2S 4S

gf



freedom, but these transitions can be approximated from 
average behaviors of the global density. 

The major barrier to the restless bandit formulation is 
the determination of the appropriate rewards structure.  
The rewards are chosen to obtain desired behavior from 
the system, including discovery of new targets and 
tracking known targets.  The rewards are obtained from 
the guidelines listed below.  1)  States of high knowledge, 

, , and , do not require much additional 
information so the active rewards are low for these states 
and the passive rewards are high.  2)  States of high 
ignorance, , require a large amount of additional 
information, so the active rewards are high while the 
passive rewards are low.  

0S 2S 4S

1−S

A policy that adaptively controls the sensors consists of 
a precomputed set of performance measures and a 
heuristic rule that uses the performance measures to 
determine the optimal set of actions given the current 
state of the system. The performance measures are 
determined by solving for the maximum expected infinite 
time horizon discounted reward through a linear 
programming solution [13]. The original restless bandit 
heuristic described in [14] selects the best m tasks to be 
active at each discrete time step since the number of 
active tasks is fixed in that application.  

While this heuristic is applicable to a limited resource 
with the capability to activate only m tasks at a time, the 
sensor network application has a flexible number of 
active tasks at each time step.  The netted sensors 
scenario better corresponds to the linear programming 
solution for the performance measures, which assumes a 
fixed discounted time averaged number of active tasks 
that prevents excessive use of any single set of sensors.  
In the netted sensor heuristic, the active tasks are selected 
by comparing the performance measure with a threshold 
at each time step.  

7 Result 
To analyze the tracking performance, we instrumented 

a vehicle with a GPS.  This vehicle traversed the linear 
road network in Fig. (2) while targets of opportunity enter 
the road network and act as decoys.  We examined the 
ability of the fusion algorithm to track the true target 
while missed detections and false alarms from the clutter 
and the decoys create association ambiguities.  The 
FISST tracker and resource manager were run at a 3 Hz 
rate.  During each iteration, the global density was 
calculated, which subsequently determined sensor 
alocation through the resource manager.  To aid initial 
development on the straight road network and reduce 
computational time, a diffusion approximation was 
applied to the motion model to eliminate the velocity.  

The FISST global density reported tracks determined 
by: 1) determining the most likely hypothesis through 
marginalizing over the geokinetic variables, 
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summation is performed over the permutations of .  
Selecting hypotheses by marginalizing over the 
geokinetic variables avoids incommensurable units.  2)  

The most likely positions of the most likely hypothesis 
(the MAP estimate) are reported, 
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Fig. (4) compares a typical track on the linear road 
network for the fusion algorithm with all sensors 
collecting data at every time step in (a) against a typical 
track for the fusion algorithm with the resource manager.  
The measured distance corresponds to the distance from 
the radar to the target or track.  Continuously employing 
all sensors results in longer track lifetimes at the expense 
of energy usage and a reduced sensor lifetime.   Track 
lifetime is difficult to define for FISST since the 
information associated with the true track may still be 
present in global density even if it may not be the most 
likely hypothesis.  Similar behavior is found in MHT, 
where the true hypothesis may not be the most likely 
hypothesis, but it is still being tracked [12].   
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Figure 4:  Tracking on the linear road network in Fig. 
(2).  (a)  Tracking with all sensors running at 3 Hertz.  (b)  

Tracking with the resource manager.  Distances are 
measured in meters from the radar (see Fig. (2)).  Errors 
in tracks vary with time and the measurements, but are 
around 4m in (a) and 6-8m in (b).  Truth error estimates 

are around 3m, and may be systematic, due to GPS. 
 
In the absence of targets, the resource manager runs 

sensors at around ½ Hz, which is six times lower than the 
continuous running rate.  When targets are present, the 
resource manager approximately increases the rate to 1½ 
to 2 Hz, which is still less than the maximum rate of 3 Hz.  
The rate changes depending on the quality of the previous 



measurements by allowing good tracks to coast for a time 
step, which conserves the sensor’s battery.  Using the 
resource management, a typical track error  is around 6-
8m compared to 4m  for the continuously run sensors. 

The resource manager also displays a sentinel behavior.  
The rate of decay of the information in the global density 
affects “information states”, which alters the resource 
allocation.  The global density information degrades the 
most rapidly at intersections (due to road switching 
events), and dead ends (due to birth processes).  As a 
result, the acquisition rates are the largest for sensors near 
dead end road segments or intersections approached by 
targets.  These behaviors were not explicitly programmed 
into the resource manager, but are reasonable 
consequences of the restless bandit rewards structure 
discussed in Section 6.  

To demonstrate that the FISST tracker can be applied to 
more complicated road networks, we examined 
simulations on the road network in Fig.(1) (see Fig. (5)).  
The results from our initial linear road network 
experiment were used to increase the fidelity of sensor 
models by adjusting parameters such as false alarm rates, 
spatial detection probabilities, and measurement 
accuracy.  With the improved sensor models, we were 
able to address the more challenging road network 
depicted in Fig. (1).   A typical simulation run is depicted 
in Fig. (5).  

The tracker can readily handle the more complicated 
road network.  The resource manager greatly reduced 
sensor operation while slightly degrading tracking 
performance.  The MAP output temporarily dropped more 
tracks (~10% versus ~5%), and the MAP output may 
initially follow the wrong road segments at intersections.  
However, the FISST tracker does correct itself and 
resume the correct MAP estimates, while reducing energy 
usage.  Most tracks are only dropped for one time step. 
The correction is due to the nature of the FISST tracker.  
The track output is a MAP estimate and the true target 
positions might not always be the most likely positions, 
but they are almost always very probable positions.  The 
likelihood of the true position may be the best measure of 
FISST tracker performance.  The error variances are 
similar to those reported for the straight line network with 
variable errors around 4m for the continuously run 
sensors and 6m for the resource managed network. 

8 Conclusions 
FISST trackers are ideal for dense road networks.  Every 
intersection creates a bifurcation in the target trajectory 
and makes simple Kalman filtering impossible.  A MHT 
can track branching processes if intelligent pruning is 
possible [12], but the FISST tracker examined in this 
paper introduces hypothesis branching reduction through 
merging similar hypotheses, which avoids information 
loss from pruning processes. The multi-body nature of the 
acoustic sensors prevents use of the PHD tracker, a 
simplified FISST tracker that neglects multi-body 
information [9]. 

The FISST tracker performed well in live experiments 
using a simple scenario and in our simulation experiments 
using a more complex scenario.  Initial applications to the 
triangle network and other road networks show 
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Figure 5:  Simulation of the network in Fig. (1).  (a) 
The paths of two targets entering the networks.  (b)  The 

true target paths are compared with estimates from 
continuously running all sensors and running the sensors 

with a resource manager.  The resource managed 
simulation shows an initial adoption of a wrong 

hypothesis at a road intersection before correcting itself.  
Similar to Figure 4, errors vary with time, but are around 
4 meters for the continuously run sensors and 6m for the 
resource managed simulation.  The target positions are 

exact. 
 
successful tracking capabilities, which will be quantified 
in future publications.  This success is encouraging since 
the tracker is not specifically optimized to a single 
geometry and the other examined intersections are near 
major roads and in uncontrolled environments.   The 
application to several experimental scenarios 
demonstrates that the algorithm does not depend on the 
specifics of the road network and is extensible. 

Although we only reported MAP estimates, complete 
target information is retained and tracks can be re-
established or corrections can be made for initially taking 
the wrong branch at an intersection.  Quantifying the 
ability to correct hypotheses will be explored in the 
future.   

The resource manager only slightly degrades tracker 
performance by reducing the amount of data collected, 
but  substantially reduces sensor operation rates hence 
greatly increasing network lifetime.  The resource 
manager creates a feedback mechanism, where 
inadequate information in the global density (areas of 
high entropy) determine the course of action. 



The approximate Gaussian mixture fusion algorithm 
also lends itself to a Gaussian Sum Particle Filtering 
implementation (GSPF).  GSPF will greatly increase the 
number of tracked targets[10].  The particle filter can be 
computationally distributed, since different processors 
can perform the calculation on different Gaussian 
particles [15].  If the sensors are independent, the FISST 
tracker also shows the ability to distribute computation 
through a hierarchy since the log-likelihood will be a sum 
of independent terms that can be added through the 
hierarchy. 

Another interesting observation is the similar 
performances of the full motion model and the diffusion 
approximation.  Since velocity is not directly measured in 
our system, the velocity simply carries information about 
past positions.  The performance of the diffusion model 
implies that the sensor measurements frequency and 
quality makes velocity information unnecessary.   This 
result suggests that velocity information may allow 
further reduction in sensor utilization at the expense of 
the higher computational cost associated with solving a 
more complex model.  The trade-off between these two 
aspects of tracking should be explored. 

The live data experiment examined in this paper is an 
important first step in developing a FISST tracker for 
netted-sensor monitoring of dense road networks.  Our 
experiments demonstrated the capabilities of the FISST 
tracker.  The fusion algorithm can be combined with 
resource management to optimally control sensor 
networks, and a GSPF will distribute computing and 
insure scalability. 
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