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Abstract

Alignment of DNA segments containing repetitive nucleotide base patterns is an important task

in several genomics applications, including DNA sequencing, DNA �ngerprinting, pathogen de-

tection, and gene �nding. One of the most eÆcient procedures used for this task is the cross-

correlation method. The main computations of the procedure are the discrete Fourier transform

and a pointwise multiplication of two complex Fourier transform sequences. In this work the

standard magnitude-and-phase cross-correlation technique is compared with the lesser known but

closely related phase-only cross-correlation method. It is shown that for a periodic DNA sequence

the standard approach leads to signi�cant sidelobes in the cross-correlation, the magnitude of which

increases with sequence length, while the phase-only approach yields a perfect cross-correlation

with zero sidelobes. For a DNA sequence that contains both irregularly distributed symbols and

periodic patterns the di�erence in performance is less pronounced, but still signi�cant. Numerical

experiments on synthesized and real data demonstrate that the phase-only approach is robust to

isolated symbol insertions and deletions, and that it is capable of identifying positions of matching
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segments in the sequence.

Index Terms: DNA sequence alignment, DNA symbol repeat, cross-correlation, matched �lter,

phase-only �ltering.

1 Introduction

DNA sequence alignment is one of the most important data processing tasks in computational

genomics. The task appears in several applications, where eÆcient manipulation of large data

records arranged in several di�erent ways is required. In DNA �ngerprinting [11], for example,

an unknown collection of DNA fragments is acquired, typically few tens to few thousands of

bases long. This unknown collection is then compared with one of several known collections of

DNA fragments contained in a library. Either or both of these collections might be incomplete,

unordered, or contain errors, including symbol insertions and symbol deletions. Finding a match

between collections establishes genome identity.

A di�erent challenge is posed by the problems of pathogen detection and gene �nding. In these

cases, instead of a library of known DNA fragments, a speci�c DNA pattern is often given. The

pattern may be a part of pathogen signature or may indicate the start of a coding region. This

relatively short sequence is then compared with a sequence that can be several millions of bases

long. A match of the pattern with a speci�c region of the analyzed sequence con�rms previous

pathogen exposure or identi�es an exon [45].

Related problems occur in comparative genomics and evolutionary tree reconstruction. The

goal in these applications is to identify and align islands of similarity in two or more long DNA

sequences [46], [36], [4]. Consensus between signi�cant parts of sequences, including coding and

conserved non-coding regions, indicates functional relationship or evolutionary proximity.

Many approaches to DNA sequence alignment have been proposed over the last two decades.
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Among the best known are the Needleman-Wunsch (NW) algorithm [37], the Smith-Waterman

(SW) algorithm [43], FASTA [33], BLAST [2], MUMmer [17], REPuter [29], and MAFFT [26].

NW, SW, and FASTA are based on dynamic programming; BLAST utilizes a heuristic search;

MUMmer and REPuter rely on suÆx trees; and MAFFT performs an FFT-based cross-correlation.

Many other methods belong to one of these four groups. The methods vary in terms of the length

of query sequence allowed, the degree of sequence similarity required, treatment of gaps, type of

alignment (global or local), and speed and accuracy. While a detailed comparative study of the

di�erent procedures would be useful, this is beyond the scope of this work; for a glimpse at the

state-of-the-art, the reader is referred to [38] and [35]. Since each of the methods has shortcomings,

and since the amount of genomic data grows at a much faster rate than improvements in computing

technology, investigation of new techniques that could deliver both computational eÆciency and

alignment accuracy continues to be an active area of research.

In this paper we investigate the cross-correlation approach to DNA sequence alignment [14],

[39], [26], [44]. This choice is mainly motivated by the low computational complexity of the method,

which is of the order of M log2N operations (where M and N are the lengths of library and

query sequences). This is in contrast to O(MN) operations required by most sequence alignment

approaches, especially the ones relying on dynamic programming and suÆx trees. The popular

BLASTn and MegaBLAST algorithms (of the BLAST family) are reputed to be faster; however,

complexity of these methods is diÆcult to evaluate since the number of computations required

depends on many parameters, including the length of the seed sequence, the drop-o� value for seed

extension, treatment of gaps, sequence similarity, etc. [34], [31], [28]. Computational complexity

of the cross-correlation approach, on the other hand, is easily quanti�able, it does not depend on

the data, and it does not have inherent limitations on the sequence size. The approach is the basis

of several existing algorithms, of which the best known is perhaps MAFFT [26]. Since eÆciency

of the cross-correlation approach is well established [14], [18], [26], [27], [39], we focus here on
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performance.

The two main deÆciencies of the cross-correlation method are: (1) the inability to handle

symbol insertions and deletions, and (2) poor performance when applied to the local alignment

problem [26]. In this work we attempt to address these two problems. We focus our analyses on

periodic sequences.

Although, in general, the distribution of symbols in a DNA sequence might appear to be irreg-

ular, many relevant genetic phenomena can be associated with occurrence of periodically-spaced

DNA symbols. Well known examples include mutations and genetic diseases [45], [6], [41], start of

a coding region [22], [42], 10.5-base repeats that are due to a 3.5 amino acid repeat in alpha-helical

coiled-coil regions in proteins [47], transposon-derived Alu repeats [21], and interspersed repeats

occurring in multi-species conserved sequences [46]. In fact, since DNA repeats are estimated to

comprise more than one half of the human genome [30], most sequences of interest are likely to

contain some periodic repetitions.

The main goal of this paper is to demonstrate the performance gain achieved in the analysis of

periodic and semi-periodic DNA data by replacing the standard cross-correlation procedure with

the lesser known phase-only cross-correlation approach. The �rst method is frequently referred to

as a matched �lter (MF), and the second one as a symmetric phase-only matched �lter (SPOMF).

We analyze the performance of both methods. First, using simple models of the DNA data, we

show that the MF of a periodic sequence often does not produce a unique alignment, and that the

computation of a SPOMF is unstable. We suggest a remedy in the form of a prime length cross-

correlation. Subsequently, we prove that while this modi�ed approach leads to unique alignment

of identical sequences, MF produces large sidelobes arising from partial matches of shifts of the

periodic sequence. Since magnitude of these sidelobes is proportional to the length of the sequence,

MF of a long sequence produces sidelobes that obscure the main detection peak. Conversely, the

use of a SPOMF yields a perfect cross-correlation with zero sidelobes in case of identical sequences,
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and a relatively artifact-free cross-correlation in case of sequences with moderate contaminations,

thereby mitigating the aforementioned diÆculties.

As an additional bene�t of the analyses, removal of sidelobes allows identi�cation of detection

peaks corresponding to alignments of distinct sequence segments and enables construction of a

new local alignment algorithm. A key feature of this algorithm is the ability to obtain positional

information about the matching segments. It has been often observed that the cross-correlation

sequence produced by the standard approach does not encode positional information about mis-

aligned segments. In the case of a single matching segment, the alignment peak conveys information

about how much the analyzed sequence needs to be shifted to produce segment alignment, but

not about the position of the segment within the sequence. In case of multiple matching segments

the diÆculty is compounded, since sidelobes of the dominant segment compete with mainlobes of

smaller segments. In [26], a remedy to this problem has been suggested in the form of the short

time Fourier transform. Here we show that information about position of the segment can be easily

extracted from the phase-only cross-correlation sequence in a single step (i.e., without splitting the

analyzed sequence into smaller sections), by identifying consecutive symbol matches in the product

of the aligned sequences.

The content of this paper is as follows: in Section II we introduce the SPOMF approach, in

Section III we analyze periodic DNA sequences and motivate the use of prime length Fourier trans-

form; in Section IV we state the main theoretical result of the paper that quanti�es performance

of MF and SPOMF, in Section V we perform numerical experiments on synthesized and real data,

compare the two methods in robustness to symbol contaminations, and outline the new local align-

ment algorithm, and in Section VI we give a brief comparison of SPOMF with BLAST.
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2 MF and SPOMF

De�ne the cyclic cross-correlation, or MF, of two real discrete sequences x and y by

z(n) = x(n) � y(n) =
N�1X
m=0

x(n+m)y(m); 0 � n < N; (1)

where n +m is taken modulo N . Take x;y, and z to be the discrete Fourier transforms of x; y,

and z, respectively, e.g.,

x(k) = DFTfx(n)g =

N�1X
n=0

x(n)e2�ink=N ; 0 � k < N: (2)

Since

z(k) = x(k)�y(k); (3)

(1) can be eÆciently implemented by using the Fourier transformed sequences, i.e.,

z(n) = DFT�1 fx(k)�y(k)g ; (4)

where computation of each DFT requires N log2N operations.

Recently, a di�erent procedure, known as the symmetric phase-only �lter (SPOMF), has been

introduced and found useful in several applications. The SPOMF of two discrete sequences x and

y is given by the formula

w(n) = DFT�1

�
x(k)�y(k)

jx(k)�y(k)j

�
; x(k) and �y(k) 6= 0: (5)

SPOMF had been proposed two decades ago in optical signal processing [23], and heuristic ar-

guments have been made that the method is superior to the standard approach in terms of mis-

alignment resolution and robustness to noise. Since then it has been successfully applied to image

registration [15], watermarking [25], and sonar [13], among others. Several 
avors of the basic

formulation (5) of SPOMF have been suggested in literature, including a version where the norm

in the denominator is taken with a fractional power and the reduced complexity binary and ternary

�lters [24].
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3 Regular periodic DNA sequences

DNA sequence is a symbolic string of characters `a', `c', `g', and `t' denoting the four nucleotides

that make up the genetic code: adenine, cytosine, guanine, and thymine. Various methods of

mapping a symbolic DNA sequence to a numeric sequence have been proposed, including the use

of complex and hypercomplex number systems [3], [9], [14]. For the sake of simplicity, but without

a loss of generality, in the next two sections we will consider only single-symbol DNA sequences

represented by binary numbers. Furthermore, we will only consider periodic sequences (in the

sense speci�ed below). In Section V we apply the developed formalism to the 4-symbol DNA data

and discuss processing of semi-periodic and non-periodic DNA sequences.

De�nition 1 Take N; P; S 2 Z+, such that P is a divisor of N , and 0 � S < N . A regular

P -periodic comb shifted by S is an N -point sequence

xN;P;S(n) =

8<
:

1; (n� S) � 0 (mod P );

0; otherwise:
(6)

We have xN;P;S = xN;P;S mod P . The �rst result shows that if x(n) is a comb, then x(k) is also a

comb.

Theorem 1 Take N; P; S 2 Z+, such that �P = N=P 2 Z, 0 � S < P . The Fourier transform of

an S-shift of a P -periodic comb, xN;P;S, is a scaled and modulated �P -periodic comb �Pe2�ikS=NxN; �P .
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Proof

xN;P;S(k) =

N�1X
n=0

xN;P;S(n)e
2�ink=N

= e2�ikS=N
�P�1X
s=0

e2�isk=
�P ;

=

8<
:

�Pe2�ikS=N ; k � 0 (mod �P );

0; otherwise: �

We are now ready to compute the MF and SPOMF of regular combs.

Theorem 2 The MF of a regular P -periodic comb xN;P;S is a P -periodic comb

z(n) =

8<
:

�P ; (S � n) � 0 (mod P );

0; otherwise:
(7)

Proof Using theorem 1 and equation (4) we have

z(n) =
1

N

N�1X
k=0

e�2�ink=Nx(k)�y(k) =
�P 2

N

P�1X
l=0

e2�il(S�n)=P ;

which leads to (7). �

Theorem 2 shows that the MF of a regular comb provides a measure of DNA sequence misalign-

ment, provided S < P , which is of limited use. Due to theorem 1 the SPOMF of a regular comb is

not de�ned, since insertion of xN;P into (5) results in division by zero. One way to circumvent this

problem is to assign to the `divide by zero' points some small �xed value. Like the MF however,

SPOMF may provide a measure of DNA sequence misalignment only when S < P . Moreover,

there is a performance penalty associated with zeroes of the DFT of a comb, manifesting itself in

sidelobes of the cross-correlation sequence. As will be shown in the next section, both obstructions

will be removed by restricting the length of the comb to a prime number.
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4 Irregular periodic DNA sequences

De�nition 2 Take N; P; S 2 Z+, N an odd prime. An irregular P -periodic comb shifted by S

is an N -point sequence

x0N;P;S(n) =

8<
:

1; (n� S) � 0 (mod P );

0; otherwise:
(8)

The restriction of N to primes is not very severe. For example, there are 25 primes between

1 and 100, 21 primes between 101 and 200, and 18 primes between 201 and 300, all of them

fairly uniformly distributed [1].1 Moreover, as with the power-of-two length DFT, there are fast

algorithms for computing a prime length DFT. We will consider the DFT of an irregular comb next.

Theorem 3 Take N; P; S 2 Z+, N an odd prime. The Fourier transform of an irregular P -

periodic comb x0N;P;S is

x0N;P;S(k) =

8><
>:
bNP c+ 1; k = 0;

1�exp(2�ikP (bN=P c+1)=N )
1�exp(2�ikP=N) e2�ikS=N ; otherwise;

(9)

where bN=P c is the largest integer not greater than N=P .

Proof We have

x0N;P;S(k) =
N�1X
n=0

x0N;P;S(n)e
2�ink=N = e2�ikS=N

bN
P
cX

s=0

e2�iskP=N ;

which leads to (9). �

Corollary 1 x0N;P;S(k) 6= 0 8k.

1Distribution of primes does become sparser for very large numbers. However, it's the relative, not absolute,
increase in the sequence size that matters (i.e., N0�N

N0
, where N0 is the size of the data and N � N0 is the nearest

prime). Moreover, the analysis of DNA sequences is typically restricted to sequence segments of length N < 106.
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Proof Follows directly from theorem 3. �

In e�ect, by selecting a prime N , the zero obstruction is removed. The next result character-

izes performance of the MF of an irregular comb and is key in this paper.

Theorem 4 Set Æ = bNP c+ 1. The MF z0 of an irregular P -periodic comb x0N;P;S is given by2

z0(n) =
Æ2

N
+

1

N

N�1X
k=1

e2�ik(S�n)=N 1� cos(2�kPÆ=N )

1� cos(2�kP=N )
(10)

The mainlobe of z0 is given by

M = z0(n = S) = Æ; (11)

and the largest sidelobe of z0 is given by

S = z0(n = S + P ) = Æ � 1: (12)

Proof (10) follows directly from inserting x0N;P;S and the conjugate of x0N;P (theorem 3) into (4).

(11) follows from (1) and (8). To obtain (12) take

M�S =
1

N

N�1X
k=1

(1� e�2�ikP=N )
1� cos(2�kÆP=N)

1� cos(2�kP=N)

=
1

N

N�1X
k=1

[R(k) + iI(k)];

where

R(k) = 1� cos(2�kÆP=N)

2Incidentally, this result suggests several surprisingly non-trivial trigonometric sum evaluations that seem to be
related to the Gaussian sum. The simplest of these sums is

N�1X
k=1

1

cos(2�k=N)
=

�
N � 1; N � 1 (mod 4);
�N � 1; N � 3 (mod 4);

where N is an odd integer, N � 3. These evaluations will be addressed in a separate work.
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and

I(k) = � sin(2�kP=N)
1 � cos(2�kÆP=N)

1� cos(2�kP=N)
:

Since I(k) = �I(N � k) for 1 � k � (N � 1)=2, then
PN�1

k=1 I(k) = 0. Moreover, we have

N�1X
k=1

R(k) =
N�1X
k=1

[1� cos(2�kÆP=N)] = N:

In e�ect S =M� (M�S) = Æ � 1. �

The performance of the MF of an irregular comb is summarized by the following corollary.

Corollary 2 The ratio of the mainlobe to the largest sidelobe of the MF of an irregular P -periodic

comb is given by

z0(S)

z0(S + P )
=

Æ

Æ � 1
: (13)

The well-known next result characterizes the performance of SPOMF of an arbitrary non-trivial

prime length binary sequence, which includes the case of an irregular P -periodic comb.

Theorem 5 Take N to be an odd prime number and S to be an integer, 0 � S < N . The SPOMF

of an N -point binary sequence, shifted by S, that is not all-zero or all-one, is given by

w0(n) =

8<
:

1; n = S;

0; otherwise:
(14)

Proof The conditions x(n) is not all-zero or all-one and N is an odd prime guarantee that x(k) 6= 0

8k. Then it follows from (5) and from the shift property of the Fourier transform that

w0(n) =
1

N

N�1X
k=0

e�2�ikn=N
x(k)�y(k)

jx(k)�y(k)j
=

1

N

N�1X
k=0

e2�ik(S�n)=N =

8<
:

1; n = S;

0; otherwise: �
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As can be seen from theorems 4 and 5, when the DNA sequence is an irregular P -periodic comb,

then the SPOMF signi�cantly outperforms the MF. While the SPOMF yields a perfect cross-

correlation sequence, the MF gives rise to sidelobes, the largest of which approaches the magni-

tude of cross-correlation mainlobe as N increases and P remains constant. Conversely, decreasing

the length of the P -periodic comb and maintaining a constant period reduces the sidelobes of the

MF cross-correlation sequence. Since a real DNA sequence is never purely periodic, and many

sequences contain a limited number of symbol repeats (although some repeats are always present

in a suÆciently long sequence due to the roughly equal distribution of symbols a, c, g, and t, and

the three-base encoding of amino acids in exons), a question arises as to how the performance

of a MF algorithm scales with the decreasing content of periodic symbols. This question is not

easy to answer, in part because of the diÆculty of de�ning the opposite of a periodic sequence.

Although many authors contrast occurrence of patterns with random symbol distribution, this is

not a true dichotomy; moreover, it is questionable whether the distribution of symbols in a DNA

sequence can ever be random. A more suitable de�nition of a non-periodic binary sequence might

include a rule requiring the di�erence between positions of any two symbols to be unique. An

additional constraint could be added that this set of di�erences be exhaustive.3 We can state this

more formally as follows.

De�nition 3 An N -point binary sequence x0; :::; xi; :::; xj ; :::; xN�1 having 2 � L < N non-zero

elements is non-periodic, i� for all distinct pairs of non-zero elements xi and xj , i 6= j, the set of

values (i� j) (mod N) is identical with the set of integers 1 � k � N .

De�nition 3 is in fact used in the construction of special sequences having an ideal two-valued

3Less restrictive criteria of randomness of a genomic sequence are possible to state, including the well-known
Lempel-Ziv complexity measure [32], however, the construction described here is unique in the sense that it removes
all periodic behavior.
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auto-correlation,

z0(n) =

8<
:

L; n = 0;

1; otherwise:
(15)

These special sequences are known as modular Golomb rulers in communications [7], and as

cyclic di�erence sets (CDS) in combinatorics [5].4 Simple examples of CDS include the sequences

'0110100' and '1101000001000'. In general CDS are not easy to obtain, and for many sequence

sizes CDS do not exist. For example, the CDS given above are the only ones for a seven- and a

thirteen-base sequence. The scarcity of CDS implies that perfectly irregular DNA sequences are

relatively rare, and therefore most DNA sequences can be considered semi-periodic.

Equipped with the concept of CDS as a model for a non-periodic sequence, the two cross-

correlation approaches can be more easily compared. From theorem 5, the SPOMF of any binary

sequence (including periodic and non-periodic sequences), for which it can be de�ned, yields a per-

fect cross-correlation. Assuming a �xed frequency of DNA symbols, the MF of a periodic sequence

yields a cross-correlation with the ratio M=S tending to one, as N increases. In contrast, the MF

of a non-periodic sequence yields a two-valued cross-correlation, with the ratio M=S tending to

in�nity as N increases. When a sequence is neither periodic nor non-periodic, it is called semi-

periodic. In general a semi-periodic sequence might contain multiple segments, some periodic and

some irregular. In a simpli�ed model a semi-periodic sequence will contain only two segments: a

truncation of a periodic sequence and a cyclic di�erence set (when it exists). Since performance

of the MF of a non-periodic sequence is optimal, cross-correlation of a semi-periodic sequence can

be expected to depend mainly on the length of its periodic component. 5 This prediction has

been con�rmed by experiments (not included here due to lack of space); the results indicate that

sidelobes of the MF decrease when sequences become more irregular, and that performance of the

two methods becomes comparable when sequences have no obvious periodic component.

4The author is grateful to Joe Rushanan for bringing the concept of Golomb rulers to his attention.
5A rigorous determination of the MF of a semi-periodic sequence would require evaluation of the product of

Fourier transforms of the two components. This evaluation will be given in a sequel.
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5 Comparison of SPOMF and MF

In this section we give examples of SPOMF and MF of several synthesized and real DNA sequences

of increasing complexity. To illustrate the theoretical results of the previous section, we begin

with cyclicly shifted, purely periodic sequences. Later, we investigate cross-correlations of linearly

shifted semi-periodic sequences, and test robustness of the SPOMF approach to single and multiple

symbol insertions and deletions, and symbol mismatches.

Since the intention here is to provide a proof of concept for the SPOMF approach, and to

illustrate the key aspects of the alignment problem in a manner that facilitates visual inspection,

most examples are limited to relatively short sequences. The small size of the sequences does not

limit the generality of the examples, since in practice DNA data is often processed in segments of

a few hundred to a few tousand bases at a time. The examples include moderately homologous

sequences (50%-100% homology), that are typical in many applications, including cross-species

sequence comparisons [19]. In the later part of subsection 5.2 and in subsection 5.3, where the

construction of a novel local alignment algorithm is discussed, two examples of more complex DNA

sequences are given, the second one having no signi�cant periodic component.

The implicit focus of this paper up to now has been on global sequence alignment. This section

will begin with examples of a global alignment, and then it will gradually progress toward the more

general case (in the sense explained below) of a local alignment. Since the terms `global' and `local'

are often used rather casually in the literature, a brief discussion of the two concepts is included.

The goal of the global alignment is to maximize the total number of symbol matches in the two

sequences, regardless of the relative position of symbols within the sequence. For example, when

sequences are long and not closely related, then the matching symbols are likely to be distributed

throughout the sequence. In contrast, the goal of the local alignment is to identify a smaller section

of the sequence that contains a large number of matching symbols, even if the number of matching
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symbols in that section is less than the number of matching symbols in the entire sequence (in

the global alignment). In general, there might be more than one region of this type, and the

distance between these regions in two sequences might be not preserved. In such a case multiple

local alignments need to be performed. Moreover, in both local and global alignments symbol

insertions or deletions (the so-called indels) in the sequences might be allowed, thereby blurring

the distinction between the two alignments.

For the purpose of this text we will adopt a narrow de�nition of the local alignment. We will

assume that indels can occur between matching regions, but not within a region, and that matching

symbols within a region are consecutive. We believe that this condition is not necessary for our

approach to be e�ective; however, the assumption will signi�cantly simplify analysis of the results,

and we deem it is reasonable, since our focus is on sequences with a signi�cant content of periodic

motifs.

5.1 Synthesized data

Example 1

In the �rst experiment the two approaches were applied to a composite, four-symbol periodic

sequence, consisting of �ve individual combs, x29;5. The constituent a, c, g, and t sequences were

chosen to create a repetitive pattern `acagt' (plot one in Figure 1). The query sequence was

identical to the cyclicly shifted by 3 symbols library sequence, y29;5 = x29;5;3 (plot two in Figure

1; the indices of x are as in de�nition 1). The symbols `a', `c', `g', and `t' were marked in the plots

with stems equal to 1, 2, 3, and 4, respectively. The cross-correlations shown (plots three and four

in Figure 1) are the sums of cross-correlations performed on individual symbol sequences.

The use of SPOMF produced a perfect cross-correlation sequence with no sidelobes. The use

of MF produced a cross-correlation sequence with a peak at n = S = 3, equal to Æ = b295 c+1 = 6,

and multiple sidelobes. The largest sidelobe was equal to Æ�1 = 5, and occured at n = S+P = 8,

as predicted by theorem 4. The magnitudes of MF and SPOMF sequences shown in Figure 1 (and
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subsequently) were normalized to facilitate visual comparison of results.
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Figure 1: EÆcacy of the two alignment approaches in application to a four-symbol periodic se-

quence. Top to bottom: the composite DNA sequence x29;5, the misaligned by 3 symbols DNA

sequence y29;5, MF, and SPOMF.

Example 2

The �rst experiment have shown an example of sequence alignment performed on purely periodic,

perfectly matched data. In practice, in addition to periodic motifs, DNA sequences often contain

segments of irregularly distributed symbols and segments that do not match. Figure 2 shows an

example of such a case. The two misaligned sequences, x61 and y61, share a 46-base segment,

the �rst 16 bases of which are random, while the remaining 30 bases contain a repetitive pattern

`acagt'. The library sequence, x61, is appended by a random 15-base segment, and the query

sequence, y61, is concatenated to a di�erent random 15-base segment. In e�ect, x61 and y61 are

misaligned by 15 bases, and mismatched (when aligned) at 15 bases. The cross-correlation peak

in both MF and SPOMF occurs at n = S = 15. While due to the 15-base segment mismatch the

SPOMF sequence does not produce an ideal cross-correlation sequence in this case, its sidelobes

are signi�cantly smaller than the sidelobes of the MF (the largest sidelobe of SPOMF equal to
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0.238 occurs at n = 39, and the largest sidelobe of MF equal to 0.736 occurs at n = 10).
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Figure 2: Alignment of semi-periodic DNA sequences containing a repetitive pattern, random

symbols, and a mismatching segment. Top to bottom: the synthesized DNA sequence x61, the

misaligned by 15 symbols DNA sequence y61, MF, and SPOMF.

5.2 Real data

In the second part of this section we describe experiments performed on two real DNA sequences

selected from GenBank: Mus musculus BAC clone RP23-1I16, locus AC098708, bp 46101:46502

(x401 and y401), and Mus musculus, chromosome 9, locus AC103610, bp 143101:144114 (x523 and

y523). Both DNA sequences contained about 200-base long segments of three to six bases long

repetitive patterns of two (a and g) or three (a, c and g) symbols. Insertions and deletions were

not part of the original data, but were induced arti�cially. MF and SPOMF computations in all

experiments were performed using a linear cross-correlation of length that was twice the length

of the analyzed sequence; however, to fascilitate visual comparisons only the relevant half of the

cross-correlation sequence samples is shown in the plots.
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Example 3

In the �rst experiment of this subsection we have analyzed two linearly shifted sequences, x401 and

y401 = x401;170, derived from the GenBank sequence AC098708. The sequences contained 231 con-

tiguous matching symbols, including a 190-base repetitive pattern `accagg', and 170 mismatching

symbols. No deletions or insertions were applied to the sequences. The MF approach produced a

cross-correlation sequence having the ratio of magnitudes of the largest sidelobe (occuring due to a

partial match of the shifted pattern) and the mainlobe equal to 0.69. The SPOMF approach pro-

duced a cross-correlation sequence having the ratio of magnitudes of the largest sidelobe (occuring

due to a 170-base segment mismatch) and the mainlobe equal to 0.19 (Figure 3).
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Figure 3: Alignment of semi-periodic contiguous DNA sequences containing a 190-base repetitive

segment, GenBank AC098708. Top to bottom: the DNA sequence x401, the misaligned by 170

symbols DNA sequence y401, MF, and SPOMF.

Example 4

In the previous experiment the matching symbols in the two sequences were contiguous. In many

practical applications the matching segments may contain contaminations, including symbol inser-
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tions, deletions and substitutions. This situation is addressed in this experiment.

The sequences, x401 and y401 (plots one and two in Figure 4), are similar to the ones used in

the previous experiment, except for two modi�cations. First, the second sequence was shifted by

70 symbols rather than by 170 symbols with respect to the �rst sequence (y401 = x401;70). This

produced a matching segment containing a signi�cant number of both repetitions and irregular

symbols. Second, the sequence x401 was modi�ed by a deletion of three symbols at bp 177:179 (the

number of consecutive deletions is irrelevant here, except for providing a more convenient display of

alignment results). The deletion e�ectively split the library sequence x401 into two segments. The

shorter one (105 bases) was comprised of a largely random DNA symbol assembly. The longer one

(220 bases) was comprised mostly of a complex repetitive motif with a predominance of symbols

`c' and `g'.

In e�ect, a perfect (global) alignment of the entire 331 base segment was impossible, i.e., either

only the sequence segment prior to the deletion could be matched (in one local alignment), or only

the sequence segment following the deletion could be matched (in another local alignment). To

identify both segments, the cross-correlation sequence needs to produce two distinct peaks. Both

approaches do produce two such peaks, one at n = 70 and one at n = 73. However, while the two

peaks can be clearly identi�ed in the SPOMF plot (magnitudes 0:9 and 1:0, plot four in Figure 4),

in the MF plot the peak corresponding to the second alignment is much smaller (magnitude 0:19,

plot three in Figure 4), and is obscured by multiple large sidelobes.
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Figure 4: Alignment of semi-periodic DNA sequences containing a 190-base repetitive segment

preceded by a symbol deletion, GenBank AC098708. Top to bottom: the DNA sequence x401, the

DNA sequence y401 with two segments misaligned with respect to x401 by 70 and 73 symbols, MF,

and SPOMF.

Example 5

In the third experiment a more elaborate case of non-contiguous matching segments was consid-

ered. Two linearly shifted sequences, x523 and y523 = x523;60, derived from the GenBank sequence

AC103610, were used. The matching 463 bases included both repetitive and irregular symbols.

While in example 4 only one of the sequences had an insertion, here each sequence contained a

unique insertion: x523 had a 5-symbol insertion at n = 21, and y523 had a 5-symbol insertion at

n = 401. As in experiment 4, the insertions had an e�ect of splitting the sequences into two match-

ing segments. Unlike in experiment 4, however, one of the segments contained a gap. The case

can be best explained symbolically. Take as the �rst sequence the string `a1xbbba2a2' and as the

second sequence the string `a1bbbxa2a2', where x denotes deletion, and a1, a2 and b are arbitrary

symbols. Both sequences contain two identical segments, i.e., 'bbb' and 'a1::::a2a2'. However, the

second segment is not contiguous. This is illustrated in more detail in Figure 6. The �rst segment
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(in the middle of the sequence, marked with a bar in the second plot), is comprised mostly of

periodic repetitions of symbols `a' and `g'. The second, composite segment (having one component

at the beginning of the sequence, and another component in the later part of the sequence, marked

with bars in the third plot), is comprised of an assembly of mostly irregular DNA symbols.

Alignments of both segments can be easily discerned in the SPOMF sequence (detection peaks

at n = 55 and at n = 60 of magnitude 1.0 and 0.843, respectively, in plot four of Figure 5). Note,

that SPOMF detects both segments, even though the second segment is non-contiguous and non-

periodic. In contrast, only one of the alignments can be identi�ed in the MF sequence (a detection

peak at n = 55 in plot three of Figure 5). The second alignment in the MF sequence (at n = 60,

equal to 0.531) is obscured by sidelobes. Moreover, the MF produces an anomalous correlation

peak (the second largest in the correlation sequence, at n = 43), that corresponds to a shift of the

�rst segment (plot four of Figure 6).

0 100 200 300 400 500
0

2

4

DN
A 

sy
mb

ol

0 100 200 300 400 500
0

2

4

DN
A 

sy
mb

ol

0 100 200 300 400 500
0

0.5

1

ma
gn

itu
de

0 100 200 300 400 500
0

0.5

1

position

ma
gn

itu
de

Figure 5: Alignment of semi-periodic DNA sequences with symbol insertions, GenBank AC103610.

Top to bottom: the DNA sequence x523 with an insertion, the DNA sequence y523 with a distinct

insertion, MF, and SPOMF. Detection peaks at n = 55 and n = 60 in the SPOMF plot identify

the two matching segments.
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Figure 6: Alignment of semi-periodic DNA sequences with symbol insertions, GenBank AC103610.

Top to bottom: the DNA sequence x523, and the three matching subsequences of y523. The

subsequences correspond to the two largest peaks of SPOMF and the two largest peaks of MF

(since the dominant peaks in the two cross-correlations coincide, and the second largest ones

do not, hence three subsequences). The subsequences are shifted by n = 55 (MF and SPOMF

dominant peaks, second plot of Figure 5), by n = 60 (SPOMF second peak, third plot of Figure

5), and by n = 43 (MF second, anomalous peak, fourth plot of Figure 5). Bars denote matching

segments of x523.

5.3 Local alignment

The results of the experiments warrant several observations. The robustness of the phase-only

method to partial matches of shifts of periodic DNA segments results in the removal of sidelobes

and an improved readability of the SPOMF cross-correlation plot. Removal of sidelobes is particu-

larly important in the analyses of multi-component sequences. Multi-components occur, e.g., when

a contiguous matching segment becomes contaminated by a symbol deletion or insertion. The seg-

ment may then be partitioned into several components, each requiring a separate local alignment.

Since the SPOMF sequence does not produce anomalous partial match sidelobes, peaks of the

SPOMF cross-correlation sequence can be associated with these local alignments.
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The decomposition of y523 in the last experiment into two almost orthogonal subsequences

(Figure 6, plots two and three) corresponding to the two distinct peaks of the SPOMF sequence

(Figure 5, plot four) suggests that not only can local alignment of the individual segments be

performed, but positional information about the individual segments within a sequence can be ex-

tracted as well. An outline of one such possible procedure tuned to the last example is given below.

Local alignment algorithm:

� Normalize sequences x and y, for each of the four symbols independently,

� Form auxiliary sequences y1(n) = y(n � S1) and y2(n) = y(n � S2), where S1 and S2 are

sequence shifts corresponding to locations of the two distinct peaks in the SPOMF sequence,

� Compute the point-wise products z1 = xy1 and z2 = xy2,

� Identify location of individual segments with contiguous non-negative subsequences of z1 and

z2,

� Align segments identi�ed in the previous step by shifting them by S1 and S2.

Normalization replaces the assignment of binary values, marking symbol occurrence at a given

position in a sequence, with an assignment of some positive/negative values (that depend on the

total count of symbols in the sequence). If symbols match, then all four sequences, za, zc, zg, zt, are

positively valued. Conversely, if symbols mismatch, then two of the four sequences are negatively

valued. In e�ect, detection of a symbol mismatch is equivalent to the identi�cation of a negatively

valued sequence. Note, that the normalization step is included here to facilitate visual evaluation

of the alignment, but is not essential in the algorithm.

Results of the processing are illustrated in Figure 7. An important advantage of this proce-

dure is that it does not rely on windowing, as does the method described in [26], and therefore
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resolution of the positional information is not limited by the window width. Further details of the

implementation of the algorithm will be given elsewhere.
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Figure 7: An illustration of the local alignment procedure. The �rst two plots show the auxiliary

sequences z1 and z2. The non-negative values mark the locations of the two constituent segments

of the DNA sequence x523. Segment 1 (the top plot) corresponds to the SPOMF peak at n = 55

in Figure 5. Segment 2 (the middle plot) corresponds to the SPOMF peak at n = 60 in Figure 5.

The bottom plot shows the composite alignment of the two sequences. The �rst gap in the plot is

due to the symbol insertion in x523, the second gap is due to the symbol insertion in y523, and the

segment of sixty zeros at the end of the sequence re
ects sequence mismatch due to the shift by

60 symbols.
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Figure 8: Local alignment of two homologous fruit
y sequences. From top to bottom: sequences

J01125 and V00225, matching segments of the �rst sequence produced by the local alignment al-

gorithm, and the SPOMF sequence. The SPOMF approach produces detection peaks at n = 6

and at n = 105, corresponding to the locations of matching segments in the second sequence.

Example 6

In the last experiment we have performed an alignment of two homologous sequences of satellite

DNA molecules from the fruit
y. The data has been described in [12] and analyzed in [20]. The

example demonstrates the eÆcacy of the phase-only algorithm in the alignment of two- and three-

segment weakly semi-periodic DNA sequences, with 76% homology in the two matching segments.

The �rst sequence, GenBank J01125, was 253 bp long, and contained two segments. The second

sequence, GenBank V00225, was 359 bp long, and contained three segments. The �rst and last

segments of both sequences were roughly matched. No signi�cant periodic component was present

in either sequence. Results of the alignment are shown in Figure 8. The SPOMF approach produced

two peaks in the cross-correlation sequence corresponding to sequence shifts S1 = 6 and S2 = 105

(bottom plot in Figure 8). The third plot in Figure 8 shows (appropriately shifted by S1 and

S1 + S2) the matching segments of the �rst sequence, produced by the local alignment algorithm.

The �rst segment starts at base 27 and ends at base 90 (relative to the second sequence). The

second segment starts at base 215 and ends at base 357. Neither of the two segments of the �rst

sequence matches exactly the segments of the second sequence; in both cases there are multiple

single and double symbol mismatches. Moreover, the matching segments are preceded by 20- and

25-base long mini-segments that match the second sequence very poorly (the matching strings

`t:a' and `ca::tttttg:::a', respectively). Despite the relatively large number of mismatching symbols

in the two segments, the SPOMF approach succeeds in producing a local alignment of the two

sequences.
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6 Comparison of SPOMF and BLAST

The validation part of this work focused on performance comparison of the proposed approach

with the closely related matched �lter technique. The later was previously considered by several

researchers [14], [18], [26], [27], [39], and its advantages and disadvantages vis �a vis the standard

methods were discussed. It has been acknowledged that the principal advantage of the Fourier-

based approach is its computational eÆciency. Moreover, the approach: (1) is easily adoptable

to include certain frequently performed sequence manipulation tasks, such as symbol repetition

detection and �ltering [14], (2) can re-use computations from the identical base search in the search

of complementary bases [14], and (3) can be extended to an eÆcient multiple sequence alignment

procedure [26], [39]. On the other hand, the utility of the Fourier-based approach is limited by a

number of obstructions. These include the inabilities: to align sequences with gaps, to di�erentiate

between contiguous and non-contiguous patterns, and to produce a local alignment. For a detailed

discussion of these issues, the reader is directed to [14], [18], and [39].

While these obstructions are inherent in the direct implementation of MF, they can be mediated

by various adaptations of the algorithm. Recently, Cheever et al [14], Rajasekaran et al [39],

and Katoh et al [26] have shown that the last two of these problems can be partly overcome by

windowing the query sequence. In this paper a di�erent approach was proposed, based on the

phase-only �lter. It was shown that much of the diÆculty in obtaining a local alignment derives

from the occurrence of ambiguous sidelobes in the cross-correlation sequence. Subsequently, it

was demonstrated that the phase-only �lter substantially reduces these sidelobes, thus improving

readability of the global alignment plot, and facilitating the local alignment procedure. The phase-

only approach can be used alternatively or complementarily to the windowing approach of Cheever.

While other problems associated with the Fourier-based approach, including the treatment of gaps,

remain unsolved, it is hoped that this result will stimulate further research.

The di�erences between methods have been previously discussed in computational molecular
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biology literature; however, since the Fourier-based approach is not, in general, as well-known as

some other sequence alignment techniques, especially the industry standard, BLAST, a limited

comparison of the two methods can be useful. This is not an easy task. First, the two approaches

are based on two very di�erent philosophies. BLAST uses a heuristic search to identify local

matches, evaluates symbol similarity according to statistical signi�cance, and focuses on short

strings, which are subsequently extended to longer segments. MF and SPOMF, on the other hand,

exhaustively search for the best global match, do not, in general, use statistical criteria in ranking

of alignment scores, and perform computations of all alignments at once. Second, both resolution

and eÆciency of BLAST, while considered to be well-balanced, when compared to other sequence

alignment tools, depends on many parameters and on the data. Hence theoretical computational

complexity bounds for BLAST are diÆcult to obtain, and results of experimental evaluations can

be misleading. Third, while BLAST is a mature tool, the phase-only �lter is still in a prototype

stage. In e�ect, a comparison of the two approaches has to be limited and the results tentative.6

Nevertheless, we have attempted to draw some inferences about the relative advantages and

disadvantages of the two methods. Since the performance issues were addressed in previous section,

we decided to focus on computational eÆciency.

We have chosen from the BLAST family the fastest program, called MegaBLAST, which has

been designed for a rapid comparison of large, closely related sequences. Furthermore, also for

eÆciency, we have set the MegaBLAST parameters to perform un�ltered (-F F) and ungapped

(-g F) search. Since BLAST, unlike the phase-only �lter, does not compare two sequences directly

in its entirety, but instead selects a short, adjustable-length fragment from the query sequence,

called a seed, running BLAST requires specifying the seed length. We have chosen the two most

often used seed sizes, 11 and 28 (the later being the longest allowed) [28]. Seed size 28 delivers a

faster but less sensitive search than seed size 11, since the matching pattern in the library sequence

6A comparison of a Fourier-based approach with other standard tools (ClustalW and T-Co�ee) have been given
by Katoh [26] in the context of multiple sequence alignment.
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needs to be at least 28 symbols long. For example, when applied to the sequences analyzed in

experiment 6 of the previous section, MegaBLAST-11 identi�ed both matching segments, while

MegaBLAST-28 detected only the longer, second segment. We have included both versions in our

comparison for completeness, however we found that sensitivity did not play a major role in the

results of alignment of relatively long, highly homologous sequences.

Experiments were performed on 1.6 GHz Pentium PC with 1 GB of memory, running Microsoft

Windows XP. MegaBLAST was run as part of the latest version of the Bl2seq code, obtained from

the NCBI website on November 20, 2005. SPOMF was run in MATLAB 7.0.1 (R14). For the

data we used subsets of sequences Arabidopsis thaliana (chromosome 2 and 4) and Homo sapiens

(chromosome 21 and 22), analyzed in [34], of lengths ranging from 65 � 103 to 16 � 106 bp. The

full sizes of the Arabidopsis thaliana sequences were 19.6 and 17:5 � 106 bp; the full sizes of the

longest contigs of Homo sapiens sequences were 28.6 and 23:3 � 106 bp, respectively. The results

of the experiment are summarized in Figure 9. Several conclusions can be drawn.
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Figure 9: Sequence alignment runtimes (in seconds) of two versions of BLAST and SPOMF for sub-

sets of Arabidopsis thaliana (chromosomes 2 and 4) and Homo sapiens (chromosomes 21 and 22).
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First, the runtime and the runtime scalability with sequence size of both versions of MegaBLAST

are not data-independent. For example, the runtime of MegaBLAST-28 for Arabidopsis thaliana

increases almost 6-fold with a 4-fold increase in sequence length (from 4 � 106 to 16 � 106 bp).

In contrast, the runtime of MegaBLAST-28 for Homo sapiens increases almost 14-fold for the

same sequence lengths. For sequences of length 16� 106 bp the runtimes of MegaBLAST-28 di�er

by a factor of 5. The dependence of BLAST performance on the data is well-known: in [16] an

example of DNA sequences was given where the runtimes di�ered by more than a factor of 100.

This is in contrast to SPOMF, whose performance depends solely on the data length. The reasons

for the content dependence of BLAST performance are complex, and include, among others, the

algorithm's sensitivity to sequence homology.

Second, the performance of MegaBLAST-11 scales very poorly with the sequence length. A 4-

fold increase in sequence length (from 2�106 to 8�106 bp) leads to a 16-fold increase in runtime for

the �rst sequence, and an almost 45-fold increase in runtime for the second sequence. In e�ect, while

MegaBLAST-11 can be useful in the analysis of genes and smaller chromosomes, only MegaBLAST-

28 and SPOMF are likely to perform well in large searches, such as genome-wide alignments. The

results of the comparison of these two methods were mixed. For the Homo sapiens sequence

SPOMF scaled better than MegaBLAST-28, and therefore it is likely to outperform MegaBLAST-

28 for sequences longer than 16 � 106 bp. For the Arabidopsis thaliana sequence both SPOMF

and MegaBLAST-28 scaled nearly linearly with the size of the data (although MegaBLAST-28

runtimes increase faster). As MegaBLAST-28 is roughly four times faster than SPOMF, it can

be expected that the phase-only �lter will not be competitive with BLAST for sequences of the

Arabidopsis thaliana type, at least for lengths less than 108 bp.

The results of the experiment do not show a clear eÆciency advantage of the SPOMF approach.

This is in part due to the limited range of sequence lengths tested. As the rate of increase of

computational complexity for both sequences grows faster for BLAST, it can be expected that

29



SPOMF will perform better for sequence lengths in the range of 108 to 109 bp. Moreover, the

comparison made was not entirely fair. While BLAST is a mature product, developed and re�ned

over �fteen years, SPOMF was implemented as a prototype MATLAB code, and incorporates

a number of ineÆciencies. For example, a future C-code version should improve computational

eÆciency of SPOMF by making a better use of computer memory. Reductions in the number of

required operations due to complex encoding of DNA sequences, suggested in [14], could further

bring at least a two-fold improvement in eÆciency. Other possible encoding schemes that could

be used alternatively or complementarily to the complex encoding include schemes based on gap

coding [44], Hu�man coding [40], and hypercomplex algebra [9]. Cumulatively, these re�nements

should make SPOMF competitive with BLAST over a wider range of sequence lengths. While this

prediction will need to be validated using a more mature version of the current code and much more

extensive testing on the data, it is congruent with observations made elsewhere. Perhaps more

importantly, since FFT is one of the most common tasks in signal processing, PCI accelerator

boards are commercially available, and can speed-up the computation of SPOMF signi�cantly.

In a 2003 paper [27], Kauer and Bl�ocker remark that the "Cheetah" card a�ords performing 5.2

million operations in about 1ms. Extrapolating this number to 384 million� N log2N, where N=16

million is the length of one of the sequences used in our experiment, yields 0.074s per a 16000000-

point FFT. This translates to about a 50-fold reduction in the execution time of the phase-only

algorithm (in addition to the speed-up due to the coding improvements and algorithmic complexity

reductions mentioned above). Finally, since the phase-only �lter concept have been conceived in

the �eld of optical signal processing, one has to consider a potential optical implementation of the

SPOMF sequence aligner. Such an implementation was in fact proposed several years ago [10],

and if technologically feasible, might deliver the most eÆcient solution to the sequence alignment

problem.
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7 Summary

We have shown that the SPOMF approach signi�cantly outperforms the standard magnitude-and-

phase MF method, when applied to periodic and semi-periodic DNA data, and performs similarly

to MF with irregular data. Experiments on real DNA sequences indicate that the new approach

is robust to isolated symbol insertions, symbol deletions, and symbol mismatches, and that local

alignment of closely related DNA sequences (i.e., of 50%-100% homology) is feasible. In a limited

experiment we have compared the current prototype version of the SPOMF code with the fastest

version of BLAST. The results of the experiment appear to con�rm the potential computational

eÆciency advantage of the FFT-based approach, especially when applied to sequences longer than

107 bp. A number of issues remain to be explored. Is the phase-only �lter applicable to analysis

of dissimilar sequences? Can the seed extension method [28] be adopted from BLAST to increase

sensitivity of SPOMF to inexact matches? Can the approach be modi�ed to allow a fully uncon-

strained gapped alignment? These issues will need to be answered in future research.
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