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Abstract 
 
We consider pragmatic issues in applying constraint-based 
theories (such as that developed for data exchange) to a 
variety of problems. We identify disconnects between 
theoreticians and tool developers, and propose principles 
for creating problem units that are appropriate for tools. 
Our Downstream Principle then explains why automated 
schema mapping is a prerequisite to transitioning schema-
matching prototypes. Next, we compare concerns, 
strengths, and weaknesses of database and AI approaches 
to data exchange. Finally, we discuss how constrained 
update by business processes is a central difficulty in 
maintaining n-tier applications, and compare the 
challenges with data exchange and conventional view 
update. 
 
 

1. Introduction 
 

We examine pragmatics of applying constraint-based 
theories (such as that developed for data exchange) to a 
variety of problems. We identify barriers to employing the 
results of the theory as is, and ask what repackaging and 
additional results would be helpful for a variety of problems. 
In doing so, we assess the needs and predilections of several 
communities who ought to be consumers of the theory: 
• Developers of direct database-to-database exchange 

tools, both matchers and mappers 
• Data mediation researchers and developers in the AI 

community 
• Creators of update methods and processes for business 

objects, a task that can involve both view definitions and 
constraints on the base tables. 

Data exchange theory has provided very useful insights 
for builders of schema mapping and integration tools. For 
years, tool researchers had sought to find matching attributes 
across schemas [RaBe01], or to reuse known matches 
[RoSe94, MRB03]. Data exchange theory, which emerged 
over the past five years (extending Local As View), 
complements these heuristics by asking “what do the 
matches mean?” and “what do matches have to do with 
mappings of instance sets?” It answers these questions by 
examining the consequences of constraints among loosely 
coupled schemas for tables or documents. 

Data exchange has since become a major topic at 
conferences, e.g., [Bert05, Ko05]. It is formulated in ways 
that facilitate stating general research problems and 
comparing research results -- proper concerns of database 
theorists. Unfortunately, the research may not be readily 
accessible to practitioners.  

We believe the practical value would increase greatly if 
the results were repackaged and extended to apply directly to 
problems addressed by several other potential consumer 
communities -- and conversely if these development and 
administration communities factored their work to better 
exploit theory.  

To this end, we identify gaps (in technology or in 
understanding) that currently discourage technology transfer, 
but should be easy for theorists to bridge. We consider 
concerns of tool developers, application developers, AI 
researchers doing information integration, and providers of 
business object systems. 

Standing somewhere between PODS theorists and 
commercial system builders, we will attempt to build a 
bridge that influences agendas and catalyzes progress. 
Specifically, we:  
• Explain important practitioner concerns, including some 

that theorists could meet easily.   
o Suggest tactics for tweaking theory and systems 

to obtain a better fit 
o Why it is appropriate for theorists  to play a 

larger role in technology transfer 
• State a “Downstream Principle” to clarify why tools that 

address later stages of the integration process (i.e., 
mapping) transfer to industry before more “upstream” 
tools (i.e., matching). 

• Examine the tradeoffs between DB-style and ontology-
based data exchange. 

• Discuss the applications (worth $millions) and 
challenges of handling updatable business objects.  

 

2. Making Data Exchange Theory More Useful 
 

Data exchange theory has recently provided a formal 
basis for using schema matching knowledge to obtain 
instance set  and query mappings. In particular, it has 
contributed to IBM Almaden’s CLIO system [HMH01].  

Yet much of the theory seems difficult to apply. Imagine 
writing product documentation telling an application 
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developer that they are seeing the intersection of all “certain” 
answers to their query, or explaining the concept of a “core” 
to a domain expert assigned to do integration. Then imagine 
explaining how to write applications that tolerate these 
difficulties.  

To assist practitioners, we must decompose their 
problems into a piece that tools can help solve (with theory 
that supports the tools) and a residue problem that requires 
human intervention. For the tools to be valuable to a user, 
the residue problem must be  
• smaller than the original task 
• understandable to the intended user 

We also want to exploit humans’ strengths. Today, 
formally intractable problems are routinely solved by people 
who write programs, based on domain knowledge or finding 
tractable cases. A fine goal for tools is to do solid formal 
inference for pieces where it is feasible, so humans do not 
need to do such tasks (and redo them each time 
circumstances change). 

A residue that is not acceptable is to return a data 
mapping, with a set of caveats about not having a unique 
minimal certain answer. Few application administrators 
today understand these concepts. Calls to train them better 
are futile. Tools should support an ever expanding set of 
users, empowering domain experts rather than just computer 
scientists. 

One better alternative for data exchange tools is to 
generate an intermediate schema (e.g., with some constraints 
omitted) and pose the problem of exchanging data between 
the intermediate and the desired target. When determining 
how much to do in one stage, consider splitting at the point 
where a different human has the needed skills. For example, 
the person who understands attribute semantics might be 
different from the one who has the identifier and quality 
knowledge needed to drive data cleaning [MRS+05]. 

Another alternative is to formulate the residue as a 
(smaller) knowledge capture problem. In such cases, you 
may want to insist that the desired knowledge be phrased in 
terms of a schema the user intuitively understands—i.e., 
typically that of the source or target. 

We now give some examples of how hard problems might 
be decomposed so that humans can assist appropriately. 

Researchers report that they cannot get a unique solution 
when there are key constraints on the target but not on the 
source. For users, the operative explanation is not formal -- it 
is that distinctions that require real world knowledge cannot 
be made by generic tools. If a source states two different eye 
colors for me and the target wants a unique value, of course 
the theory can’t decide which matches the real world. One 
would not want a theory that gave a unique answer.1 Instead, 
theory can help create tools that treat target constraints as 
heuristics, and help identify which constraints to defer. That 
is, one would generate a data exchange mapping to a schema 
that omits the objectionable constraints. One would then 

                                                 
1 Our warning is in the same spirit as [MS89], which observed there was 
no reason to believe that users’ intent was preserved by heuristics to 
remove ambiguity in “abbreviated” queries. 

support humans and other tools (e.g., data cleaning) in 
dealing with the residue.  

Data exchange theory may be profitably combined with 
view update (Section 5). In particular, both can benefit from 
having a staging area (intermediate result) that holds only 
problematic tuples. For many information feeds, atomicity is 
not vital; one prefers to immediately assimilate correct 
instances. 

We conclude this section with three caveats.  
Completeness is nice to have, but is not crucial. 

Generally, data is incomplete (we do not know all sufferers 
from disease X), and constructs that prevent completeness 
nevertheless provide useful knowledge. Applications and 
business procedure are tolerant of incomplete results. 

Administrators are expert only about schemas they use.  
They lack instinctive feel for properties of an unfamiliar 
virtual database. Consequently, it may be better to capture 
their knowledge in terms of familiar relation schemes (or 
subsets thereof), perhaps abstracting a bit to hide details of 
value representations (e.g., lengths as feet vs. meters) and 
constraints.  A research challenge is to use source metadata 
to infer metadata for the intermediate schema. One does not 
want to tell the user to drill down back to the original to 
determine an attribute’s measurement units.  For metadata 
that cannot be inferred, perhaps it can be measured at run 
time (e.g., intrinsic data quality estimators such as 
consistency and completeness). 

Enterprise scale systems are unlikely to satisfy your 
assumptions everywhere. Does that make your techniques 
inapplicable? Please help practitioners understand how to 
salvage your techniques, when your assumptions do not 
apply.   

For example, one (valuable) view update paper [Kell86] 
simplifies the problem as follows: “We consider the problem 
of updating databases through views composed of selections, 
projections, and joins of a series of Boyce-Codd Normal 
Form relations.” To which we react:  What does this have to 
do with me, if I don’t have a SPJ view of BCNF relations? 
Suppose I have a more complex query, part of which might 
be expressed as SPJ? We agree that it is reasonable for 
research papers to start by describing what they have 
succeeded in solving. But it is also legitimate research—and 
a good use of theorists’ skills—to advise on how to make the 
result relevant to a noncompliant problem. 

 

3.  The Downstream Principle for tools:  Full 
automation is more valuable than partial 
 

Previous sections identified disconnects between data 
exchange theory and the requirements of practical tools and 
described how some of those disconnects might be 
addressed. We now propose the Downstream Principle, 
which provides further guidance on research topics that are 
most likely to have the greatest practical impact. We begin 
with definitions: 
• Upstream automation helps integration engineers but 

does not produce value for others. 



• Downstream automation produces a runnable 
application that provides value to customers outside the 
data integration group.   

The Downstream Principle asserts that one gets greater 
value from automating downstream processes than upstream 
ones. When an upstream task is automated, there remains 
considerable work to be done. If the subsequent work is not 
automated, humans need to intervene again before customers 
receive value. (Customers could be end users or developers 
of application functionality).  

 
Canal analogy: A canal that connects to the sea will 

encourage more trade and industry than one that connects 
two inland points with a footpath to the sea. Even for those 
who must reach the sea from the farther inland point, it is 
better to walk first and load into a boat once, rather than 
load, unload, walk, and load at the sea. In addition, the cost 
of transport from the start of the canal will be drastically 
reduced, so new uses may be found from there onward. 
(Analogy: When it became “free” to create a GUI forms 
interface, users of all systems got GUIs rather than command 
line syntax.)   
 

Research prototypes for data exchange mostly support 
match, which automatically identifies likely semantic 
correspondences, but does not fully specify the semantics of 
the exchange. Commercial tools support map, which 
produces detailed, executable code that transforms instances 
of a source schema to those of a target schema. While there 
has been good and useful research on both match and map, 
we believe our community’s impact will be greatest if 
knowledge capture is solved for map (i.e., downstream), for 
the following reasons.  

First, automating the higher skill task results in a bigger 
savings. Domain experts can often perform match with 
minimal assistance from programmers. (The current state-of-
the-practice is to perform “data crosswalks” with 
spreadsheets serving as the knowledge capture tool.) In 
contrast, most domain experts cannot create code, and so are 
powerless without help in mapping, which creates runnable 
code.  

Second, map tools are more useful for maintenance. The 
bulk of software costs are for changing existing systems, not 
for initial deployment. The benefit of a matching tool 
(upstream) is the difference: 

 
EffortSavedDeterminingMatches – ImportExportEffortForMatchTool 

 

For a small maintenance task, the first term is small and 
the second becomes much more significant. The likely result 
is that a match tool would not be purchased or used. 

For data exchange, there are scenarios where match is a 
much smaller problem than map. For example, dozens of 
Department of Defense systems exchange information about 
events of interest through a narrow-scope interface called 
Cursor On Target. Instead of waiting for thorough 
integration, they base their exchange on a simple Event 
model consisting of What, When, and Where (with hand-

crafted extensions where needed). In essence, they have 
agreed on a neutral XML schema of ~15 elements to 
represent Time and Position and to refer to a preexisting 
“What” standard for describing military entities of interest 
(e.g., distinguishing land/sea/air, US/friendly/unfriendly, 
etc.). 

In this situation, matching cost is trivial -- a person 
immediately can recognize the When, Where, and What that 
is of interest for a particular community. In contrast, 
mapping is nontrivial; it requires specifying detailed 
transforms from participants’ internal representations to the 
neutral interface (e.g., across different coordinate systems). 
Without automation, skills are required to insert and deploy 
needed code. (Relevant research includes mapping discovery 
[IMHB04] and “context” mediation of value representations 
[GBMS99].) 

 
4. Comparing DB and AI Mediation 
Approaches to Data Exchange 
  

Data exchange researchers and AI researchers pursuing 
ontology-based data mediation are too frequently unaware of 
each other’s concerns (with notable exceptions, e.g., 
[DHN04, SE05]). For example, most data exchange theorists 
seem unaware of the advantages of ontology formalisms, 
while ontology-driven approaches seem unconcerned with 
returning the right instance set.  We therefore try to explain 
the differences in perspectives. 

Our first comments are about basic assumptions, 
independent of integration: Database schema formalisms 
(SQL, XML, ER) center on n-tuples (rather than individual 
attributes’ values) and sets of instances. Many people still 
think of a tuple as a physical record with an upper class 
accent. The database formalisms thus map naturally upward 
to a GUI display about the entity, and downward to a record 
structure that query optimization uses as a unit of physical 
access. Instance sets, meanwhile, are central to storage, 
query languages, and optimization, but each schema has just 
one set. The AI community treats sets as a tertiary issue. As 
best we can tell, their mediators do not address the issues of 
certain answers, though other AI work addresses possible 
worlds. 

Database-style data exchange tools typically emphasize 
connecting systems’ schemas directly (e.g., a database to a 
virtual query interface). This suits a results-oriented market, 
aligning with incentives (do just enough for your own 
purpose) and providing relatively “instant gratification” 
[HEDI03, RoSe94, RSRM01]. In contrast, the typical AI 
approach says “first capture a model of your problem 
domain, and then we’ll do something useful for you”. 
Database researchers have also discussed use of a neutral 
conceptual schema (notably in Local as View), but the tools 
have given less emphasis.   

AI data mediation work also dates back to the early 
1990s, notably to the Carnot system at MCC [CHS91] and 
the SIMS system at ISI [ArKn93]. The greatest difference 
from the database style is that it centers on a neutral domain 



model (e.g., an ontology). Also, AI researchers moved 
earlier to a heavy reliance on logic and inference.  

The AI approach is based on ontology formalisms, today 
typically centering on the Web Ontology Language, or OWL 
[W3C04]. This formalism provides important advantages: 
• First, OWL is a W3C standard with a substantial 

research community, much freeware, and some existing 
domain models. (In contrast, database logic approaches, 
even Datalog, lack influential standards.) In OWL Full, 
one can map from data to metadata.  

• Second, most of the administrator work for both 
matching and mapping concerns derivations between 
individual elements (attributes), not whole records.  
Relational and XML formalisms lack such constructs, 
and one must employ queries or a non-standard assertion 
language. In contrast, OWL supports typed relationships 
directly. 

• Third, OWL has an extensible type system that is easily 
adapted to provide relationships useful for integration. 
For example, one may assert that Database1.Car “can be 
understood by” Database2.Vehicle. This relationship is 
a first cousin of IS-A; it indicates set containment (so 
the data can be used) but not attribute inheritance across 
systems. (That is, Database1.Car will not necessarily 
inherit all of Database2.Vehicle’s property types.) 
Inference is much more powerful because relationships 
within and across ontologies can employ the same 
formalism. 

Despite OWL’s attractive features, DB approaches have 
several advantages. First, there are far more domain models 
today expressed in XML (despite the technical difficulties of 
hierarchies), UML class diagrams, and Entity-Relationship 
models than in OWL, and database researchers’ logics (e.g., 
CLIO’s [HMH01]) are well tuned to XML and relational 
models. Second, it is unclear which approach is better for 
transforming class data to instances. The inference theory of 
OWL does not extend to this case; meanwhile, database 
researchers have created models attuned to integration 
requirements (e.g., [WR05]). Third, the elegant approach of 
mediating with a general purpose inference engine may not 
be feasible to deploy worldwide (due to skill requirements 
and support by tiny companies); also, many inference 
engines run one instance at a time. In contrast, CLIO rightly 
chose to produce code (e.g., SQL, XML-languages) that a 
database server can optimize, parallelize, and run. Thus, AI 
approaches still require SQL skills. Finally, staff trained in 
database technologies greatly outnumber those with AI 
skills. 
 
5. Unifying Data Exchange Theory and 
Business Objects’ Update   
 

Update is rarely considered in data exchange research, for 
several reasons. Read seems like lower hanging fruit, with 
fewer semantic difficulties and commit problems. Besides, 
data owners are typically reluctant to let outsiders update 
their systems of record. Instead, they allow updates to 

populate a staging table or stream, which they then apply to 
the “real” data using handwritten code or ETL scripts.  

Yet there is another setting where updates must be 
translated between schemas and percolate into the database. 
In multi-tier systems, upper tier applications issue updates 
against business objects, and the database makes them 
persistent. Today, the necessary mappings are accomplished 
largely through procedural code. As a result, one MITRE 
customer estimates a cost over the next decade of $10-20M 
to assimilate new message data into its business objects, 
database tier, and GUIs.  

Perhaps data exchange and view update ideas can help? 
The two theories clearly overlap -- both attempt to create 
instance mappings from a source to a target that will satisfy 
all relevant constraints; updates give additional hints on how 
the change should be achieved. Data exchange can be seen as 
a bulk view update of an empty table. The problem of 
merging with existing data is like a mix of Update and Insert. 
But none of the theories applies perfectly. 

View update theory has been studied extensively [Kell86, 
Shu00], with the aim of taking a user’s update of the view 
and determining an appropriate update to base data that has 
the intended effect on the view. The SQL standard identifies 
certain solvable cases, and provides DDL constructs by 
which an administrator can disambiguate. Considerable 
attention has gone to which views are reasonable to update.   

Since there are many possible updates that preserve the 
intent of the view update, theory has been developed to find 
minimal changes. (For example, for inserting a view tuple, 
one should not be allowed to delete the entire database and 
then insert tuples to make the new one appear). [BaSp81] ask 
“What complement remains constant?” and prove a variety 
of desirable properties. But to employ such a theory in 
practice, one needs to explain to administrators how to 
determine the best constant complement and explain to 
developers the consequences of that answer. Good luck! 

The OO developers who create business objects take a 
different viewpoint, and we believe the database community 
has done too little to support them. They let developers 
implement update methods (as procedural code). It is the 
developer’s problem to make sure that this code correctly 
changes the base data.  They write methods from scratch, 
unfortunately with no automated help based on the existence 
of constraints. Still, their approach has several strengths. 
• They normally understand the real world semantics, so 

the updates they issue usually avoid cases that make 
little business sense and incidentally plague data 
exchange theories (e.g., “Update EMPLOYEE table to 
increase Total Salary by 10%”, or “Change the office 
for some Employee in Department ‘xyz’”). 

• Aborting the update is often the most appropriate 
response to a constraint violation, especially if one does 
not trust the user issuing the update to choose an 
appropriate repair. For example, if a low level clerk tries 
to add a million dollar order for an unknown customer, 
rejecting the request makes good business sense and of 
course preserves database integrity.  



• Developers may write multiple methods that update the 
data, for different user communities. That is, one may 
not ask “what are THE update semantics for this view?” 

Several system architects have told us that developers 
dislike SQL’s way of letting a DBA customize view update 
semantics. Often the skills and knowledge reside with OO 
application developers, not the DBA. For different 
situations, they may want different update semantics (e.g., 
Abort versus run an interactive script [Kell86] versus fix 
automatically), which they achieve by writing several 
procedural methods.  

While view update researchers (e.g., [Shu01]) have used 
constraint models, most attention to them today seems to be 
for data exchange. But data exchange research rarely 
considers “Abort” or isolating the tuples to be excluded from 
the final step.  

Different constraint types would require different repair 
treatments.  
• For value constraints, one must exclude illegal data or 

relax the constraint. For example, when supporting 
police investigations, one wants to declare what real 
world data is correct, but also allow deviations. It may 
be time to resume research on semantics of “soft” 
constraints. 

• For key constraints, one must pick a winner or relax the 
constraint; in some situations, the most recent is the 
“winner”.  

• Null not allowed constraints seem particularly onerous -- 
we do not consider a Skolem constant an improvement 
over a null. One designs manual data input processes to 
capture all mandatory attributes; as we increasingly 
import data from outside, we have no such controls. 
Over the long term, we may wish to design applications 
and storage system (and their use of primary keys) to be 
more tolerant of missing values. 

• Foreign keys resemble null not allowed, except that one 
might automatically repair the problem. But automated 
repair is not always appropriate – again, consider the 
example of the company not wanting to insert a huge 
order from a previously unknown customer by 
automatically generating a customer number. 

Finally, access controls may complicate constraint 
enforcement. SQL delegation semantics removes part of the 
problem by insisting that update authority includes the right 
to check all constraints. Some business process designers 
may consider this inappropriate. In any case, one may not 
have the privileges to repair a problem on another table, or 
even to delete an existing record with the same key.  
 
6. Conclusions 
 

Pragmatic issues of concern to data exchange theorists 
and system builders have been discussed, including: (1) the 
need to decompose problems into automatable chunks plus 
residue problems that can be understood by ordinary 
developers and by nonprogrammers who supply domain 
knowledge; (2) the advantages of emphasizing automation of 
downstream more than upstream processes; (3) the strengths 

and weaknesses of database and AI approaches to data 
exchange, and the need for greater dialog between these 
communities; and (4) the need to address update in data 
exchange, especially to support n-tier systems. 

Our goal has been to stimulate discussion for the benefit 
of both theory and system researchers, by discussing selected 
aspects of previous work. We have made broad statements to 
provoke thought and solicit feedback to correct any 
consequent errors or miscommunications. 

Good computer science research is motivated by practical 
(or at least potentially practical) problems. While the best 
practitioners attempt to take relevant research into account, 
our focus here is to address the other side of the partnership 
– to highlight the ways in which skilled researchers can make 
their results more useful and widely accessible.  

There are several benefits. First, it is in theorists’ interests 
to help – research funding is influenced by perceived 
technology transfer, and computer science has been 
suffering. Second, theoreticians will undoubtedly discover 
interesting new insights and challenges from learning more 
about practitioners’ concerns. Finally, one might even make 
a semi-serious data exchange argument.  

The translation between formalists’ language and that of 
system-oriented researchers who work with practitioners can 
itself be viewed as a data exchange problem. Who is better 
prepared to accomplish this mapping than a data exchange 
theorist? Here, too, it is important to examine which 
formalisms facilitate exchange and to try to tweak problems 
and theories to leave a manageable residue.  

While some might argue that technology transition is not 
the theorists’ problem, we believe that each theory 
community should develop two sorts of products: first for 
their own needs, and second for consumer communities. 
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