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Abstract

We consider pragmatic issues in applying constraint-based
theories (such as that developed for data exchange) to a
variety of problems. We identify disconnects between
theoreticians and tool developers, and propose principles
for creating problem units that are appropriate for tools.
Our Downstream Principle then explains why automated
schema mapping is a prerequisite to transitioning schema-
matching prototypes. Next, we compare concerns,
strengths, and weaknesses of database and Al approaches
to data exchange. Finally, we discuss how constrained
update by business processes is a central difficulty in
maintaining n-tier applications, and compare the
challenges with data exchange and conventional view
update.

1. Introduction

We examine pragmatics of applying constraint-based
theories (such as that developed for data exchatme)
variety of problems. We identify barriers to emptay the
results of the theory as is, and ask what repangaghd
additional results would be helpful for a variefypooblems.

In doing so, we assess the needs and predileafoseveral
communities who ought to be consumers of the theory
Developers of direct database-to-database exchange
tools, both matchers and mappers

Data mediation researchers and developers in the Al
community

Creators of update methods and processes for Isgsine
objects, a task that can involve both view defims and
constraints on the base tables.
Data exchange theory has provided very useful lntsig

for builders of schema mapping and integration o&lor
years, tool researchers had sought to find matchtitndputes
across schemas [RaBeO1], or to reuse known matches
[RoSe94, MRBO03]. Data exchange theory, which enterge
over the past five years (extending Local As View),
complements these heuristics by asking “what do the
matches mean?” and “what do matches have to do with
mappings of instance sets?” It answers these qussty
examining the consequences of constraints amongelpo
coupled schemas for tables or documents.

Data exchange has since become a major topic at
conferences, e.g., [Bert05, KoO05]. It is formulaiadways
that facilitate stating general research problemsd a
comparing research results -- proper concerns tfbdae
theorists. Unfortunately, the research may not eadily
accessible to practitioners.

We believe the practical value would increase dydat
the results were repackaged and extended to appltigt to
problems addressed by several other potential cossu
communities -- and conversely if these developnemd
administration communities factored their work tettbr
exploit theory.

To this end, we identify gaps (in technology or in
understanding) that currently discourage technotogyysfer,
but should be easy for theorists to bridge. We idens
concerns of tool developers, application develgpék
researchers doing information integration, and jokers of
business object systems.

Standing somewhere between PODS theorists and
commercial system builders, we will attempt to dud
bridge that influences agendas and catalyzes @®gre
Specifically, we:

Explain important practitioner concerns, includswne
that theorists could meet easily.

0 Suggest tactics for tweaking theory and systems
to obtain a better fit
o Why it is appropriate for theorists to play a

larger role in technology transfer
State a “Downstream Principle” to clarify why toditet
address later stages of the integration process, (i.
mapping) transfer to industry before more “upstréam
tools (i.e., matching).
Examine the tradeoffs between DB-style and ontclogy
based data exchange.
Discuss the applications (worth $millions) and
challenges of handlingpdatable business objects.

2. Making Data Exchange Theory More Useful

Data exchange theory has recently provided a formal
basis for using schema matching knowledge to obtain
instance set and query mappings. In particularhas
contributed to IBM Almaden’s CLIO system [HMHO1].

Yet much of the theory seems difficult to apply.aime
writing product documentation telling an applicatio


mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 06-0056



developer that they are seeing the intersectial 6€ertain”
answers to their query, or explaining the concépat ‘wore”
to a domain expert assigned to do integration. Timagine
explaining how to write applications that tolerateese
difficulties.

To assist practitioners, we must decompose their
problems into a piece that tools can help solveéh(ieory
that supports the tools) andresidue problem that requires
human intervention. For the tools to be valuabletaoser,
the residue problem must be
« smaller than the original task
* understandable to the intended user

We also want to exploit humans’' strengths. Today,
formally intractable problems are routinely sol®dpeople
who write programs, based on domain knowledgeratiriig
tractable cases. A fine goal for tools is to dadsdbrmal
inference for pieces where it is feasible, so husndm not
need to do such tasks (and
circumstances change).

A residue that isnot acceptable is to return a data
mapping, with a set of caveats about not havinghigue
minimal certain answer. Few application administrst
today understand these concepts. Calls to traim thetter
are futile. Tools should support an ever expandiay of
users, empowering domain experts rather than prspater
scientists.

One better alternative for data exchange toolsois t
generate an intermediate schema (e.g., with som&traints
omitted) and pose the problem of exchanging datadsn
the intermediate and the desired target. When mi@targ
how much to do in one stage, consider splittinthatpoint
where a different human has the needed skills.ekample,
the person who understands attribute semantics tntigh
different from the one who has the identifier andaliy
knowledge needed to drive data cleaning [MRS+05].

Another alternative is to formulate the residue as
(smaller) knowledge capture problem. In such cages,
may want to insist that the desired knowledge bagdd in
terms of a schema the user intuitively understands——i
typically that of the source or target.

We now give some examples of how hard problems tmigh
be decomposed so that humans can assist apprbpriate

Researchers report that they cannot get a uniquéso
when there are key constraints on the target bubnahe
source. For users, the operative explanation isanotal -- it
is that distinctions that require real world knoside cannot
be made by generic tools. If a source states tiferdnt eye
colors for me and the target wants a unique valfiepurse
the theory can't decide which matches the real dvotine
would not want a theory that gave a unique answestead,
theory can help create tools that treat target tcaings as
heuristics, and help identify which constraintdtdfer. That
is, one would generate a data exchange mappingtbema
that omits the objectionable constraints. One wathlen

1our warning is in the same spirit as [MS89], whatiserved there was
no reason to believe that users’ intent was presioy heuristicgo
remove ambiguity in “abbreviated” queries.

redo them each time

support humans and other tools (e.g., data clearimg
dealing with the residue.

Data exchange theory may be profitably combinedh wit
view update (Section 5). In particular, both candji from
having a staging area (intermediate result) thadlshonly
problematic tuples. For many information feedspatity is
not vital; one prefers to immediately assimilaterreot
instances.

We conclude this section with three caveats.

Completeness is nice to have, but is not crucial.
Generally, data is incomplete (we do not knaWsufferers
from disease X), and constructs that prevent compdss
nevertheless provide useful knowledge. Applicaticarsl
business procedure are tolerant of incomplete tsesul

Administrators are expert only about schemas they use.
They lack instinctive feel for properties of an amiliar
virtual database. Consequently, it may be bettecajoture
their knowledge in terms of familiar relation schesm(or
subsets thereof), perhaps abstracting a bit to tédails of
value representations (e.g., lengths as feet véerg)eand
constraints. A research challenge is to use sometadata
to infer metadata for the intermediate schema. @es not
want to tell the user to drill down back to thegamal to
determine an attribute’s measurement units. Fdiadata
that cannot be inferred, perhaps it can be measatredn
time (e.g., intrinsic data quality estimators sucls
consistency and completeness).

Enterprise scale systems are unlikely to satisfy your
assumptions everywhere. Does that make your techniques
inapplicable? Please help practitioners understama to
salvage your techniques, when your assumptions ao n
apply.

For example, one (valuable) view update paper B&ll
simplifies the problem as follows: “We consider fh@blem
of updating databases through views composed ettsahs,
projections, and joins of a series of Boyce-Coddra
Form relations.” To which we react: What does tiase to
do with me, if | don’'t have a SPJ view of BCNF t&las?
Suppose | have a more complex query, part of whight
be expressed as SPJ? We agree that it is reasciwable
research papers to start by describing what theye ha
succeeded in solving. But it is also legitimateeegsh—and
a good use of theorists’ skills—to advise on howntke the
result relevant to a noncompliant problem.

3. The Downstream Principle for tools: Full

automation is more valuable than partial

Previous sections identified disconnects betweeta da
exchange theory and the requirements of practioas tand
described how some of those disconnects might be
addressed. We now propose the Downstream Principle,
which provides further guidance on research tothies are
most likely to have the greatest practical imp&¢e begin
with definitions:

» Upstream automation helps integration engineers but
does not produce value for others.



 Downstream automation produces a runnable
application that provides value to customers oatsice
data integration group.

The Downstream Principle asserts that one getsteagrea
value from automating downstream processes thaineaps
ones. When an upstream task is automated, therainrem
considerable work to be done. If the subsequenkgnot
automated, humans need to intervene again befgternars
receive value. (Customers could be end users celalesrs
of application functionality).

Canal analogy: A canal that connects to the sea will
encourage more trade and industry than one thateots
two inland points with a footpath to the sea. Ef@nthose
who must reach the sea from the farther inland tpdtiris
better to walk first and load into a boat onceheatthan
load, unload, walk, and load at the sea. In additibe cost
of transport from the start of the canal will beastically
reduced, so new uses may be found from there onward
(Analogy: When it became “free” to create a GUInfier
interface, users of all systems got GUIs rathen t@mmand
line syntax.)

Research prototypes for data exchange mostly stippor
match, which automatically identifies likely semantic
correspondences, but does not fully specify theas¢ios of
the exchange. Commercial tools supparip, which
produces detailed, executable code that transforstances
of a source schema to those of a target schemde \ttieire
has been good and useful research on both matcimapd
we believe our community’s impact will be greatest
knowledge capture is solved for map (i.e., dowiasirg for
the following reasons.

First, automating the higher skill task results in a bigger
savings. Domain experts can often perform match with
minimal assistance from programmers. (The currete f-
the-practice is to perform “data crosswalks” with
spreadsheets serving as the knowledge capture) tol.
contrast, most domain experts cannot create codes@are
powerless without help in mapping, which creatamable
code.

Secondmap tools are more useful for maintenance. The
bulk of software costs are for changing existingtass, not
for initial deployment. The benefit of a matchingot
(upstream) is the difference:

EffortSavedDeterminingMatches — ImportExportEffortForMatchTool

For a small maintenance task, the first term islisaral
the second becomes much more significant. Theylitedult
is that a match tool would not be purchased or.used

For data exchange, there are scenarios where rsatch
much smaller problem than map. For example, dozdns
Department of Defense systems exchange informaibamut
events of interest through a narrow-scope interfeaied
Cursor On Target. Instead of waiting for thorough
integration, they base their exchange on a simplent
model consisting of What, When, and Where (withdian

crafted extensions where needed). In essence, hheg
agreed on a neutral XML schema of ~15 elements to
represent Time and Position and to refer to a [stegy
“What” standard for describing military entities fterest
(e.g., distinguishing land/sea/air, US/friendlyfiexfidly,
etc.).

In this situation, matching cost is trivial -- arpen
immediately can recognize the When, Where, and Wzt
is of interest for a particular community. In caHt,
mapping is nontrivial; it requires specifying dégdi
transforms from participants’ internal represeuwiadi to the
neutral interface (e.g., across different coordirsstems).
Without automation, skills are required to insert aleploy
needed code. (Relevant research includes mappsog\iry
[IMHBO4] and “context” mediation of value represatibns
[GBMS99].)

4. Comparing DB and Al Mediation

Approaches to Data Exchange

Data exchange researchers and Al researchers pgirsui
ontology-based data mediation are too frequentiyvame of
each other's concerns (with notable exceptions,., e.g
[DHNO4, SEO05]). For example, most data exchangeribis
seem unaware of the advantages of ontology formalis
while ontology-driven approaches seem unconcernigd w
returning the right instance set. We thereforetargxplain
the differences in perspectives.

Our first comments are about basic assumptions,
independent of integration: Database schema fosmali
(SQL, XML, ER) center on n-tuples (rather than widiual
attributes’ values) andets of instances. Many people still
think of a tuple as a physical record with an upplass
accent. The database formalisms thus map naturpisard
to a GUI display about the entity, and downwara tieecord
structure that query optimization uses as a uniplofsical
access. Instance sets, meanwhile, are central olagst,
query languages, and optimization, but each schemgust
one set. The Al community treats sets as a teritmye. As
best we can tell, their mediators do not addressstsues of
certain answers, though other Al work addressesilples
worlds.

Database-style data exchange tools typically enipdas
connecting systems’ schemas directly (e.g., a datalio a
virtual query interface). This suits a results-otésl market,
aligning with incentives (do just enough for youwro
purpose) and providing relatively ‘“instant gratifion”
[HEDIO3, RoSe94, RSRMO01]. In contrast, the typiedl
approach says “first capture a model of your pnoble
domain, and then we’ll do something useful for you”
Database researchers have also discussed use eaftraln
conceptual schema (notably in Local as View), bettbols
have given less emphasis.

Al data mediation work also dates back to the early
1990s, notably to the Carnot system at MCC [CHS81]
the SIMS system at ISI [ArKn93]. The greatest d#fece
from the database style is that it centers on &raledomain



model (e.g., an ontology). Also, Al researchers etbv

earlier to a heavy reliance on logic and inference.

The Al approach is based on ontology formalismdayo
typically centering on the Web Ontology LanguageQsVL
[W3CO04]. This formalism provides important advarmsg
» First, OWL is a W3C standard with a substantial

research community, much freeware, and some egistin
domain models. (In contrast, database logic apbesmc
even Datalog, lack influential standards.) In OWWlIF
one can map from data to metadata.

* Second, most of the administrator work for both
matching and mapping concerns derivations between
individual elements (attributes), not whole records
Relational and XML formalisms lack such constructs,
and one must employ queries or a non-standardt@sser
language. In contrast, OWL supports typed relatigpss
directly.

» Third, OWL has an extensible type system that slya
adapted to provide relationships useful for intdgra
For example, one may assert that Databasel.Catb&an
understood by’ Database?2.Vehicle. This relationship
a first cousin of IS-A, it indicates set containmé€so
the data can be used) but not attribute inheritaccess
systems. (That is, Databasel.Car will not necdgsari
inherit all of Database2.Vehicle’s property types.)
Inference is much more powerful because relatigusshi
within and across ontologies can employ the same
formalism.

Despite OWL'’s attractive features, DB approachesgha
several advantages. First, there are far more domaiels
today expressed in XML (despite the technical dlifies of
hierarchies), UML class diagrams, and Entity-Relahip
models than in OWL, and database researchers’ddgig.,
CLIO’s [HMHO01]) are well tuned to XML and relatioha
models. Second, it is unclear which approach isebdor
transforming class data to instances. The inferémeery of
OWL does not extend to this case; meanwhile, databa
researchers have created models attuned to intagrat
requirements (e.g., [WRO05]). Third, the elegantrapph of
mediating with a general purpose inference engiag not
be feasible to deploy worldwide (due to skill regments
and support by tiny companies); also, many infezenc
engines run one instance at a time. In contrastDClghtly
chose to produce code (e.g., SQL, XML-languages) #h
database server can optimize, parallelize, and Thas, Al
approaches still require SQL skills. Finally, statiined in
database technologies greatly outnumber those With
skills.

5. Unifying Data Exchange Theory and
Business Objects’ Update

Update is rarely considered in data exchange relsefar
several reasons. Read seems like lower hanging fith
fewer semantic difficulties and commit problems.si8es,
data owners are typically reluctant to let outsidapdate
their systems of record. Instead, they allow upslaie

populate a staging table or stream, which they tpgsly to

the “real” data using handwritten code or ETL stip

Yet there is another setting where updatasst be
translated between schemas and percolate intoatadase.

In multi-tier systems, upper tier applications saupdates

against business objects, and the database makes th

persistent. Today, the necessary mappings are gtisbed
largely through procedural code. As a result, ond@ RE
customer estimates a cost over the next decadé®28M

to assimilate new message data into its businegsctsb

database tier, and GUIs.

Perhaps data exchange and view update ideas ga® hel
The two theories clearly overlap -- both attemptcteate
instance mappings from a source to a target tHasatisfy
all relevant constraints; updates give additioriaishon how
the change should be achieved. Data exchange cseebeas
a bulk view update of an empty table. The problein o
merging with existing data is like a mix of Updated Insert.
But none of the theories applies perfectly.

View update theory has been studied extensivelyi§&e
Shu00], with the aim of taking a user’'s update e view
and determining an appropriate update to basettatehas
the intended effect on the view. The SQL standdedtifies
certain solvable cases, and provides DDL constrigts
which an administrator can disambiguate. Considerab
attention has gone to which views are reasonahlpdate.

Since there are many possible updates that presieeve
intent of the view update, theory has been develdpdind
minimal changes. (For example, for inserting a vieyle,
one should not be allowed to delete the entirebdesta and
then insert tuples to make the new one appearpBa] ask
“What complement remains constant?” and prove &tyar
of desirable properties. But to employ such a theor
practice, one needs to explain to administratore ho
determine the best constant complement and exptain
developers the consequences of that answer. Gokd lu

The OO developers who create business objects aake
different viewpoint, and we believe the databasaroanity
has done too little to support them. They let depets
implement update methods (as procedural codek thé
developer’'s problem to make sure that this codeecdy
changes the base data. They write methods froatcbgr
unfortunately with no automated help based on Kistence
of constraints. Still, their approach has severahgjths.

e They normally understand the real world semanscs,
the updates they issue usually avoid cases that mak
little business sense and incidentally plague data
exchange theories (e.g., “Update EMPLOYEE table to
increase Total Salary by 10%”, or “Change the effic
for some Employee in Department ‘xyz™).

« Aborting the update is often the most appropriate
response to a constraint violation, especiallyni¢ aloes
not trust the user issuing the update to choose an
appropriate repair. For example, if a low levetklgies
to add a million dollar order for an unknown cusesm
rejecting the request makes good business sensefand
course preserves database integrity.



» Developers may write multiple methods that updbte t
data, for different user communities. That is, onay
not ask “what are THE update semantics for thig/2ie

Several system architects have told us that deeetop
dislike SQL’s way of letting a DBA customize vievpdate
semantics. Often the skills and knowledge residé WO
application developers, not the DBA. For different
situations, they may want different update semanteg.,
Abort versus run an interactive script [Kell86] ses fix
automatically), which they achieve by writing seler
procedural methods.

While view update researchers (e.g., [Shu01]) hasedl
constraint models, most attention to them todaynse® be
for data exchange. But data exchange researchyrarel
considers “Abort” or isolating the tuples to be lexied from
the final step.

Different constraint types would require differaepair
treatments.

» For value congtraints, one must exclude illegal data or
relax the constraint. For example, when supporting
police investigations, one wants to declare whal re
world data is correct, but also allow deviatiortsmay
be time to resume research on semantics of “soft”
constraints.

» Forkey constraints, one must pick a winner or relax the
constraint; in some situations, the most recenthés
“winner”.

*  Null not allowed constraints seem particularly onerous --
we do not consider a Skolem constant an improvement
over a null. One designs manual data input prosesse
capture all mandatory attributes; as we increagingl
import data from outside, we have no such controls.
Over the long term, we may wish to design appliceti
and storage system (and their use of primary keybp
more tolerant of missing values.

» Foreign keys resemble null not allowed, except that one
might automatically repair the problem. But autosdat
repair is not always appropriate — again, constter
example of the company not wanting to insert a huge
order from a previously unknown customer by
automatically generating a customer number.

Finally, access controls may complicate constraint
enforcement. SQL delegation semantics removesqgbahte
problem by insisting that update authority includes right
to check all constraints. Some business procesgrags
may consider this inappropriate. In any case, oag not
have the privileges to repair a problem on anothble, or
even to delete an existing record with the same key

6. Conclusions

Pragmatic issues of concern to data exchange #teori
and system builders have been discussed, inclu@nghe
need to decompose problems into automatable chplnks
residue problems that can be understood by ordinary
developers and by nonprogrammers who supply domain
knowledge; (2) the advantages of emphasizing automaf
downstream more than upstream processes; (3)revegtts

and weaknesses of database and Al approaches @ dat
exchange, and the need for greater dialog betwheset
communities; and (4) the need to addrepdate in data
exchange, especially to support n-tier systems.

Our goal has been to stimulate discussion for #veefit
of both theory and system researchers, by disayssiected
aspects of previous work. We have made broad statisno
provoke thought and solicit feedback to correct any
consequent errors or miscommunications.

Good computer science research is motivated bytipahc
(or at least potentially practical) problems. Whitee best
practitioners attempt to take relevant researah &tcount,
our focus here is to address the other side opénmership
— to highlight the ways in which skilled researchean make
their results more useful and widely accessible.

There are several benefits. First, it is in thasrigiterests
to help — research funding is influenced by pemgiv
technology transfer, and computer science has been
suffering. Second, theoreticians will undoubtedigcdver
interesting new insights and challenges from le®ymore
about practitioners’ concerns. Finally, one mightre make
a semi-serious data exchange argument.

The translation between formalists’ language arad i
system-oriented researchers who work with pracigtie can
itself be viewed as a data exchange problem. Whzefter
prepared to accomplish this mapping than a dathaexge
theorist? Here, too, it is important to examine akhi
formalisms facilitate exchange and to try to tweagblems
and theories to leave a manageable residue.

While some might argue that technology transite®mat
the theorists’ problem, we believe that each theory
community should develop two sorts of productsstfiior
their own needs, and second for consumer commanitie
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