

Pragmatics and Open Problems for Inter-schema Constraint Theory

Arnon Rosenthal, Len Seligman
The MITRE Corporation

{arnie, seligman}@mitre.org

Abstract

We consider pragmatic issues in applying constraint-based
theories (such as that developed for data exchange) to a
variety of problems. We identify disconnects between
theoreticians and tool developers, and propose principles
for creating problem units that are appropriate for tools.
Our Downstream Principle then explains why automated
schema mapping is a prerequisite to transitioning schema-
matching prototypes. Next, we compare concerns,
strengths, and weaknesses of database and AI approaches
to data exchange. Finally, we discuss how constrained
update by business processes is a central difficulty in
maintaining n-tier applications, and compare the
challenges with data exchange and conventional view
update.

1. Introduction

We examine pragmatics of applying constraint-based
theories (such as that developed for data exchange) to a
variety of problems. We identify barriers to employing the
results of the theory as is, and ask what repackaging and
additional results would be helpful for a variety of problems.
In doing so, we assess the needs and predilections of several
communities who ought to be consumers of the theory:
• Developers of direct database-to-database exchange

tools, both matchers and mappers
• Data mediation researchers and developers in the AI

community
• Creators of update methods and processes for business

objects, a task that can involve both view definitions and
constraints on the base tables.

Data exchange theory has provided very useful insights
for builders of schema mapping and integration tools. For
years, tool researchers had sought to find matching attributes
across schemas [RaBe01], or to reuse known matches
[RoSe94, MRB03]. Data exchange theory, which emerged
over the past five years (extending Local As View),
complements these heuristics by asking “what do the
matches mean?” and “what do matches have to do with
mappings of instance sets?” It answers these questions by
examining the consequences of constraints among loosely
coupled schemas for tables or documents.

Data exchange has since become a major topic at
conferences, e.g., [Bert05, Ko05]. It is formulated in ways
that facilitate stating general research problems and
comparing research results -- proper concerns of database
theorists. Unfortunately, the research may not be readily
accessible to practitioners.

We believe the practical value would increase greatly if
the results were repackaged and extended to apply directly to
problems addressed by several other potential consumer
communities -- and conversely if these development and
administration communities factored their work to better
exploit theory.

To this end, we identify gaps (in technology or in
understanding) that currently discourage technology transfer,
but should be easy for theorists to bridge. We consider
concerns of tool developers, application developers, AI
researchers doing information integration, and providers of
business object systems.

Standing somewhere between PODS theorists and
commercial system builders, we will attempt to build a
bridge that influences agendas and catalyzes progress.
Specifically, we:
• Explain important practitioner concerns, including some

that theorists could meet easily.
o Suggest tactics for tweaking theory and systems

to obtain a better fit
o Why it is appropriate for theorists to play a

larger role in technology transfer
• State a “Downstream Principle” to clarify why tools that

address later stages of the integration process (i.e.,
mapping) transfer to industry before more “upstream”
tools (i.e., matching).

• Examine the tradeoffs between DB-style and ontology-
based data exchange.

• Discuss the applications (worth $millions) and
challenges of handling updatable business objects.

2. Making Data Exchange Theory More Useful

Data exchange theory has recently provided a formal
basis for using schema matching knowledge to obtain
instance set and query mappings. In particular, it has
contributed to IBM Almaden’s CLIO system [HMH01].

Yet much of the theory seems difficult to apply. Imagine
writing product documentation telling an application

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 06-0056

developer that they are seeing the intersection of all “certain”
answers to their query, or explaining the concept of a “core”
to a domain expert assigned to do integration. Then imagine
explaining how to write applications that tolerate these
difficulties.

To assist practitioners, we must decompose their
problems into a piece that tools can help solve (with theory
that supports the tools) and a residue problem that requires
human intervention. For the tools to be valuable to a user,
the residue problem must be
• smaller than the original task
• understandable to the intended user

We also want to exploit humans’ strengths. Today,
formally intractable problems are routinely solved by people
who write programs, based on domain knowledge or finding
tractable cases. A fine goal for tools is to do solid formal
inference for pieces where it is feasible, so humans do not
need to do such tasks (and redo them each time
circumstances change).

A residue that is not acceptable is to return a data
mapping, with a set of caveats about not having a unique
minimal certain answer. Few application administrators
today understand these concepts. Calls to train them better
are futile. Tools should support an ever expanding set of
users, empowering domain experts rather than just computer
scientists.

One better alternative for data exchange tools is to
generate an intermediate schema (e.g., with some constraints
omitted) and pose the problem of exchanging data between
the intermediate and the desired target. When determining
how much to do in one stage, consider splitting at the point
where a different human has the needed skills. For example,
the person who understands attribute semantics might be
different from the one who has the identifier and quality
knowledge needed to drive data cleaning [MRS+05].

Another alternative is to formulate the residue as a
(smaller) knowledge capture problem. In such cases, you
may want to insist that the desired knowledge be phrased in
terms of a schema the user intuitively understands—i.e.,
typically that of the source or target.

We now give some examples of how hard problems might
be decomposed so that humans can assist appropriately.

Researchers report that they cannot get a unique solution
when there are key constraints on the target but not on the
source. For users, the operative explanation is not formal -- it
is that distinctions that require real world knowledge cannot
be made by generic tools. If a source states two different eye
colors for me and the target wants a unique value, of course
the theory can’t decide which matches the real world. One
would not want a theory that gave a unique answer.1 Instead,
theory can help create tools that treat target constraints as
heuristics, and help identify which constraints to defer. That
is, one would generate a data exchange mapping to a schema
that omits the objectionable constraints. One would then

1 Our warning is in the same spirit as [MS89], which observed there was
no reason to believe that users’ intent was preserved by heuristics to
remove ambiguity in “abbreviated” queries.

support humans and other tools (e.g., data cleaning) in
dealing with the residue.

Data exchange theory may be profitably combined with
view update (Section 5). In particular, both can benefit from
having a staging area (intermediate result) that holds only
problematic tuples. For many information feeds, atomicity is
not vital; one prefers to immediately assimilate correct
instances.

We conclude this section with three caveats.
Completeness is nice to have, but is not crucial.

Generally, data is incomplete (we do not know all sufferers
from disease X), and constructs that prevent completeness
nevertheless provide useful knowledge. Applications and
business procedure are tolerant of incomplete results.

Administrators are expert only about schemas they use.
They lack instinctive feel for properties of an unfamiliar
virtual database. Consequently, it may be better to capture
their knowledge in terms of familiar relation schemes (or
subsets thereof), perhaps abstracting a bit to hide details of
value representations (e.g., lengths as feet vs. meters) and
constraints. A research challenge is to use source metadata
to infer metadata for the intermediate schema. One does not
want to tell the user to drill down back to the original to
determine an attribute’s measurement units. For metadata
that cannot be inferred, perhaps it can be measured at run
time (e.g., intrinsic data quality estimators such as
consistency and completeness).

Enterprise scale systems are unlikely to satisfy your
assumptions everywhere. Does that make your techniques
inapplicable? Please help practitioners understand how to
salvage your techniques, when your assumptions do not
apply.

For example, one (valuable) view update paper [Kell86]
simplifies the problem as follows: “We consider the problem
of updating databases through views composed of selections,
projections, and joins of a series of Boyce-Codd Normal
Form relations.” To which we react: What does this have to
do with me, if I don’t have a SPJ view of BCNF relations?
Suppose I have a more complex query, part of which might
be expressed as SPJ? We agree that it is reasonable for
research papers to start by describing what they have
succeeded in solving. But it is also legitimate research—and
a good use of theorists’ skills—to advise on how to make the
result relevant to a noncompliant problem.

3. The Downstream Principle for tools: Full
automation is more valuable than partial

Previous sections identified disconnects between data
exchange theory and the requirements of practical tools and
described how some of those disconnects might be
addressed. We now propose the Downstream Principle,
which provides further guidance on research topics that are
most likely to have the greatest practical impact. We begin
with definitions:
• Upstream automation helps integration engineers but

does not produce value for others.

• Downstream automation produces a runnable
application that provides value to customers outside the
data integration group.

The Downstream Principle asserts that one gets greater
value from automating downstream processes than upstream
ones. When an upstream task is automated, there remains
considerable work to be done. If the subsequent work is not
automated, humans need to intervene again before customers
receive value. (Customers could be end users or developers
of application functionality).

Canal analogy: A canal that connects to the sea will

encourage more trade and industry than one that connects
two inland points with a footpath to the sea. Even for those
who must reach the sea from the farther inland point, it is
better to walk first and load into a boat once, rather than
load, unload, walk, and load at the sea. In addition, the cost
of transport from the start of the canal will be drastically
reduced, so new uses may be found from there onward.
(Analogy: When it became “free” to create a GUI forms
interface, users of all systems got GUIs rather than command
line syntax.)

Research prototypes for data exchange mostly support
match, which automatically identifies likely semantic
correspondences, but does not fully specify the semantics of
the exchange. Commercial tools support map, which
produces detailed, executable code that transforms instances
of a source schema to those of a target schema. While there
has been good and useful research on both match and map,
we believe our community’s impact will be greatest if
knowledge capture is solved for map (i.e., downstream), for
the following reasons.

First, automating the higher skill task results in a bigger
savings. Domain experts can often perform match with
minimal assistance from programmers. (The current state-of-
the-practice is to perform “data crosswalks” with
spreadsheets serving as the knowledge capture tool.) In
contrast, most domain experts cannot create code, and so are
powerless without help in mapping, which creates runnable
code.

Second, map tools are more useful for maintenance. The
bulk of software costs are for changing existing systems, not
for initial deployment. The benefit of a matching tool
(upstream) is the difference:

EffortSavedDeterminingMatches – ImportExportEffortForMatchTool

For a small maintenance task, the first term is small and
the second becomes much more significant. The likely result
is that a match tool would not be purchased or used.

For data exchange, there are scenarios where match is a
much smaller problem than map. For example, dozens of
Department of Defense systems exchange information about
events of interest through a narrow-scope interface called
Cursor On Target. Instead of waiting for thorough
integration, they base their exchange on a simple Event
model consisting of What, When, and Where (with hand-

crafted extensions where needed). In essence, they have
agreed on a neutral XML schema of ~15 elements to
represent Time and Position and to refer to a preexisting
“What” standard for describing military entities of interest
(e.g., distinguishing land/sea/air, US/friendly/unfriendly,
etc.).

In this situation, matching cost is trivial -- a person
immediately can recognize the When, Where, and What that
is of interest for a particular community. In contrast,
mapping is nontrivial; it requires specifying detailed
transforms from participants’ internal representations to the
neutral interface (e.g., across different coordinate systems).
Without automation, skills are required to insert and deploy
needed code. (Relevant research includes mapping discovery
[IMHB04] and “context” mediation of value representations
[GBMS99].)

4. Comparing DB and AI Mediation
Approaches to Data Exchange

Data exchange researchers and AI researchers pursuing
ontology-based data mediation are too frequently unaware of
each other’s concerns (with notable exceptions, e.g.,
[DHN04, SE05]). For example, most data exchange theorists
seem unaware of the advantages of ontology formalisms,
while ontology-driven approaches seem unconcerned with
returning the right instance set. We therefore try to explain
the differences in perspectives.

Our first comments are about basic assumptions,
independent of integration: Database schema formalisms
(SQL, XML, ER) center on n-tuples (rather than individual
attributes’ values) and sets of instances. Many people still
think of a tuple as a physical record with an upper class
accent. The database formalisms thus map naturally upward
to a GUI display about the entity, and downward to a record
structure that query optimization uses as a unit of physical
access. Instance sets, meanwhile, are central to storage,
query languages, and optimization, but each schema has just
one set. The AI community treats sets as a tertiary issue. As
best we can tell, their mediators do not address the issues of
certain answers, though other AI work addresses possible
worlds.

Database-style data exchange tools typically emphasize
connecting systems’ schemas directly (e.g., a database to a
virtual query interface). This suits a results-oriented market,
aligning with incentives (do just enough for your own
purpose) and providing relatively “instant gratification”
[HEDI03, RoSe94, RSRM01]. In contrast, the typical AI
approach says “first capture a model of your problem
domain, and then we’ll do something useful for you”.
Database researchers have also discussed use of a neutral
conceptual schema (notably in Local as View), but the tools
have given less emphasis.

AI data mediation work also dates back to the early
1990s, notably to the Carnot system at MCC [CHS91] and
the SIMS system at ISI [ArKn93]. The greatest difference
from the database style is that it centers on a neutral domain

model (e.g., an ontology). Also, AI researchers moved
earlier to a heavy reliance on logic and inference.

The AI approach is based on ontology formalisms, today
typically centering on the Web Ontology Language, or OWL
[W3C04]. This formalism provides important advantages:
• First, OWL is a W3C standard with a substantial

research community, much freeware, and some existing
domain models. (In contrast, database logic approaches,
even Datalog, lack influential standards.) In OWL Full,
one can map from data to metadata.

• Second, most of the administrator work for both
matching and mapping concerns derivations between
individual elements (attributes), not whole records.
Relational and XML formalisms lack such constructs,
and one must employ queries or a non-standard assertion
language. In contrast, OWL supports typed relationships
directly.

• Third, OWL has an extensible type system that is easily
adapted to provide relationships useful for integration.
For example, one may assert that Database1.Car “can be
understood by” Database2.Vehicle. This relationship is
a first cousin of IS-A; it indicates set containment (so
the data can be used) but not attribute inheritance across
systems. (That is, Database1.Car will not necessarily
inherit all of Database2.Vehicle’s property types.)
Inference is much more powerful because relationships
within and across ontologies can employ the same
formalism.

Despite OWL’s attractive features, DB approaches have
several advantages. First, there are far more domain models
today expressed in XML (despite the technical difficulties of
hierarchies), UML class diagrams, and Entity-Relationship
models than in OWL, and database researchers’ logics (e.g.,
CLIO’s [HMH01]) are well tuned to XML and relational
models. Second, it is unclear which approach is better for
transforming class data to instances. The inference theory of
OWL does not extend to this case; meanwhile, database
researchers have created models attuned to integration
requirements (e.g., [WR05]). Third, the elegant approach of
mediating with a general purpose inference engine may not
be feasible to deploy worldwide (due to skill requirements
and support by tiny companies); also, many inference
engines run one instance at a time. In contrast, CLIO rightly
chose to produce code (e.g., SQL, XML-languages) that a
database server can optimize, parallelize, and run. Thus, AI
approaches still require SQL skills. Finally, staff trained in
database technologies greatly outnumber those with AI
skills.

5. Unifying Data Exchange Theory and
Business Objects’ Update

Update is rarely considered in data exchange research, for
several reasons. Read seems like lower hanging fruit, with
fewer semantic difficulties and commit problems. Besides,
data owners are typically reluctant to let outsiders update
their systems of record. Instead, they allow updates to

populate a staging table or stream, which they then apply to
the “real” data using handwritten code or ETL scripts.

Yet there is another setting where updates must be
translated between schemas and percolate into the database.
In multi-tier systems, upper tier applications issue updates
against business objects, and the database makes them
persistent. Today, the necessary mappings are accomplished
largely through procedural code. As a result, one MITRE
customer estimates a cost over the next decade of $10-20M
to assimilate new message data into its business objects,
database tier, and GUIs.

Perhaps data exchange and view update ideas can help?
The two theories clearly overlap -- both attempt to create
instance mappings from a source to a target that will satisfy
all relevant constraints; updates give additional hints on how
the change should be achieved. Data exchange can be seen as
a bulk view update of an empty table. The problem of
merging with existing data is like a mix of Update and Insert.
But none of the theories applies perfectly.

View update theory has been studied extensively [Kell86,
Shu00], with the aim of taking a user’s update of the view
and determining an appropriate update to base data that has
the intended effect on the view. The SQL standard identifies
certain solvable cases, and provides DDL constructs by
which an administrator can disambiguate. Considerable
attention has gone to which views are reasonable to update.

Since there are many possible updates that preserve the
intent of the view update, theory has been developed to find
minimal changes. (For example, for inserting a view tuple,
one should not be allowed to delete the entire database and
then insert tuples to make the new one appear). [BaSp81] ask
“What complement remains constant?” and prove a variety
of desirable properties. But to employ such a theory in
practice, one needs to explain to administrators how to
determine the best constant complement and explain to
developers the consequences of that answer. Good luck!

The OO developers who create business objects take a
different viewpoint, and we believe the database community
has done too little to support them. They let developers
implement update methods (as procedural code). It is the
developer’s problem to make sure that this code correctly
changes the base data. They write methods from scratch,
unfortunately with no automated help based on the existence
of constraints. Still, their approach has several strengths.
• They normally understand the real world semantics, so

the updates they issue usually avoid cases that make
little business sense and incidentally plague data
exchange theories (e.g., “Update EMPLOYEE table to
increase Total Salary by 10%”, or “Change the office
for some Employee in Department ‘xyz’”).

• Aborting the update is often the most appropriate
response to a constraint violation, especially if one does
not trust the user issuing the update to choose an
appropriate repair. For example, if a low level clerk tries
to add a million dollar order for an unknown customer,
rejecting the request makes good business sense and of
course preserves database integrity.

• Developers may write multiple methods that update the
data, for different user communities. That is, one may
not ask “what are THE update semantics for this view?”

Several system architects have told us that developers
dislike SQL’s way of letting a DBA customize view update
semantics. Often the skills and knowledge reside with OO
application developers, not the DBA. For different
situations, they may want different update semantics (e.g.,
Abort versus run an interactive script [Kell86] versus fix
automatically), which they achieve by writing several
procedural methods.

While view update researchers (e.g., [Shu01]) have used
constraint models, most attention to them today seems to be
for data exchange. But data exchange research rarely
considers “Abort” or isolating the tuples to be excluded from
the final step.

Different constraint types would require different repair
treatments.
• For value constraints, one must exclude illegal data or

relax the constraint. For example, when supporting
police investigations, one wants to declare what real
world data is correct, but also allow deviations. It may
be time to resume research on semantics of “soft”
constraints.

• For key constraints, one must pick a winner or relax the
constraint; in some situations, the most recent is the
“winner”.

• Null not allowed constraints seem particularly onerous --
we do not consider a Skolem constant an improvement
over a null. One designs manual data input processes to
capture all mandatory attributes; as we increasingly
import data from outside, we have no such controls.
Over the long term, we may wish to design applications
and storage system (and their use of primary keys) to be
more tolerant of missing values.

• Foreign keys resemble null not allowed, except that one
might automatically repair the problem. But automated
repair is not always appropriate – again, consider the
example of the company not wanting to insert a huge
order from a previously unknown customer by
automatically generating a customer number.

Finally, access controls may complicate constraint
enforcement. SQL delegation semantics removes part of the
problem by insisting that update authority includes the right
to check all constraints. Some business process designers
may consider this inappropriate. In any case, one may not
have the privileges to repair a problem on another table, or
even to delete an existing record with the same key.

6. Conclusions

Pragmatic issues of concern to data exchange theorists
and system builders have been discussed, including: (1) the
need to decompose problems into automatable chunks plus
residue problems that can be understood by ordinary
developers and by nonprogrammers who supply domain
knowledge; (2) the advantages of emphasizing automation of
downstream more than upstream processes; (3) the strengths

and weaknesses of database and AI approaches to data
exchange, and the need for greater dialog between these
communities; and (4) the need to address update in data
exchange, especially to support n-tier systems.

Our goal has been to stimulate discussion for the benefit
of both theory and system researchers, by discussing selected
aspects of previous work. We have made broad statements to
provoke thought and solicit feedback to correct any
consequent errors or miscommunications.

Good computer science research is motivated by practical
(or at least potentially practical) problems. While the best
practitioners attempt to take relevant research into account,
our focus here is to address the other side of the partnership
– to highlight the ways in which skilled researchers can make
their results more useful and widely accessible.

There are several benefits. First, it is in theorists’ interests
to help – research funding is influenced by perceived
technology transfer, and computer science has been
suffering. Second, theoreticians will undoubtedly discover
interesting new insights and challenges from learning more
about practitioners’ concerns. Finally, one might even make
a semi-serious data exchange argument.

The translation between formalists’ language and that of
system-oriented researchers who work with practitioners can
itself be viewed as a data exchange problem. Who is better
prepared to accomplish this mapping than a data exchange
theorist? Here, too, it is important to examine which
formalisms facilitate exchange and to try to tweak problems
and theories to leave a manageable residue.

While some might argue that technology transition is not
the theorists’ problem, we believe that each theory
community should develop two sorts of products: first for
their own needs, and second for consumer communities.

References

[ArKn93] Y. Arens and C. Knoblock, “SIMS: Retrieving
and integrating information from multiple sources,” ACM
SIGMOD, 1993

[BaSp81] F. Bancilhon, N. Spyratos: “Update Semantics of
elational Views,” ACM Trans. Database Syst. 6(4): 557-575,
1981

[Bert05] Bertossi et. al. Exchange, Integration, and
Consistency of Data. Report on the ARISE/NISR Workshop,
SIGMOD Record 34(3): 87-90, 2005

[CHS91] C. Collet, M. Huhns, W. Shen, “Resource
Integration Using a Large Knowledge Base in Carnot,” IEEE
Computer, 24(12), December 1991

[DHN04] A. Doan, A.Y. Halevy, N. F. Noy, “Semantic
integration workshop at the 2nd international semantic web
conf (ISWC-2003),” SIGMOD Record, 2004

[GBMS99] C. H. Goh, S. Bressan, S. Madnick, M. Siegel:
Context Interchange: New Features and Formalisms for the
Intelligent Integration of Information. ACM Trans. Inf.
Systems, 17(3), 1999

[HEDI03] A. Halevy, O. Etzioni, A. Doan, Z. Ives, J.
Madhavan, L. McDowell and I. Tatarinov, “Crossing the
Structure Chasm,” Proceedings of the First Conference on
Innovative Data Systems Research, CIDR-2003

[HMH01] M. Hernández, R. J. Miller, L. Haas, “Clio: A
Semi-Automatic Tool For Schema Mapping,” System Demo,
Proceedings of ACM SIGMOD, 2001

[IMHB04] I. F. Ilyas, V. Markl, P. J. Haas, P. Brown, and A.
Aboulnaga, "CORDS: Automatic Discovery of Correlations
and Soft Functional Dependencies," Proceedings of ACM
SIGMOD, Paris, France, 2004

[Kell86] Keller, Arthur. Choosing a View Update
Translator by Dialog at View Definition Time. Very Large
Data Base Conference, Kyoto, Japan (1986)

[Ko05] P. Kolaitis, “Schema Mappings, Data Exchange, and
Metadata Management” PODS 2005 Invited Talk

[MRB03] Melnik, S., E. Rahm, P. A. Bernstein, "Rondo: A
Programming Platform for Generic Model Management,"
Proc.ACM SIGMOD 2003, pp. 193-204

[MRS+05] P. Mork, A. Rosenthal, L. Seligman, J. Korb, K.
Samuel, “Integration Workbench: Integrating Schema
Integration Tools,” submitted to International Workshop on
Database Interoperability at ICDE, 2006

[MS89] V. Markowitz, A. Shoshani, “Abbreviated Query
Interpretation in Extended Entity-Relationship Oriented
Databases”, Entity Relationship Conference, 1989.

[RaBe01] Rahm, E. and Bernstein, P. 2001. On matching
schemas automatically. VLDB Journal 10, 4.

 [RoSe94] A. Rosenthal, L. Seligman, “Data Integration in
the Large: The Challenge of Reuse”, Conf. on Very Large
Data Bases, Santiago Chile, Sept. 1994.

[RSRM01] A. Rosenthal, L. Seligman, S. Renner, F.
Manola, “Data Integration Needs an Industrial Revolution,”
International Workshop on Foundations of Models for
Information Integration (FMII-2001), Viterbo, Italy,
September 2001

[Shu00] Hua Shu, Using Constraint Satisfaction for View
Update, Journal of Intelligent Information Systems Volume
15, Number 2 September 2000 Pages: 147 - 173

[SE05] P. Shvaiko, J. Euzenat “A Survey of Schema-based
Matching Approaches”, Journal on Data Semantics LNCS 3730,
2005

[W3C04] World Wide Web Consortium, Web Ontology
Language Overview, http://www.w3.org/TR/owl-features/,
February 2004

[WyRo05] C. Wyss, E. Robertson, Relational Languages for
Metadata Integration, ACM TODS, June 2005.

Acknowledgments

The authors thank Barbara Blaustein for her very helpful
comments. In addition, we benefitted from discussions with
Murali Mani and Peter Mork and from comments of the
anonymous reviewers.

