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Abstract 

The continuing objectives of Project 5518 are to develop and enhance the simulation 

capabilities for evaluating advanced modular sensor designs such as MP-RTIP and Global 

Hawk.  The use of reduced subspace Space Time Adaptive Processing (STAP) architectures 

increases the probability of detection and improves the minimum detectable velocity (MDV).  

References [1, 2] discuss the details of earlier steady state performance evaluation for a 

Global Hawk weight compliant system using these architectures.  This report will present the 

effects of finite sampling on system performance using the properties of the Wishart 

distribution and will present a method by which some of the finite sample losses may be 

recovered through subaperture processing to improve the performance.  
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Section 1 

Introduction 

The continuing objectives of Project 5518 are to develop and enhance the simulation 

capabilities for evaluating advanced modular sensor designs such as MP-RTIP and Global 

Hawk.  The use of reduced subspace STAP architectures increases the probability of 

detection and improves the minimum detectable velocity (MDV).  References [1, 2] discuss 

the details of earlier steady state performance evaluation for a Global Hawk weight 

compliant system using these architectures.  This report will present the effects of finite 

sampling on system performance using the properties of the Wishart distribution and will 

present a method by which some of the finite sample losses may be recovered through 

subaperture processing to improve the performance.  

 

Estimation of the complex interference environment and the subsequent estimation of the 

adaptive weights is needed to evaluate the finite sample performance with different space 

time adaptive processing architectures.  A computationally efficient and reasonably accurate 

way of evaluating the effects of finite sample losses is needed to evaluate the system 

performance.  For systems with large degree-of-freedom (DOF) dimensionality, 

straightforward averaging of covariances from large sets of training range bins can quickly 

become a computational bottleneck when estimation of the adaptive weights are needed over 

many target cells.  The use of the Wishart Distribution provides a means of quickly 

calculating a sample covariance matrix corresponding to any number of samples greater than 

the DOF dimension.  The time taken to form an estimate by means of the Wishart 

distribution is essentially independent of the number of range samples, so that a quick 

evaluation of finite sample loss effects on the system performance can be efficiently 

evaluated.  The use of the Wishart distribution in determining the covariance estimate 

assumes stationary Gaussian distributed noise-only data vectors for the estimation process.  
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That is, the noise data are assumed to be N dimensional complex Gaussian vectors of zero 

mean and covariance R, where N denotes the number of adaptive degrees of freedom (DOF).  

 

New methods are needed for covariance matrix estimation when the environment 

becomes sample-limited.  By sample-limited we mean cases when it is difficult to find a 

training set large enough to support an estimate of the covariance matrix.  This shortcoming 

can arise from a number of reasons, notably when the target encompasses many range bins 

and thereby excludes these bins from being included in the training set.  Also, when the 

interference environment is only short term stationary over range, the number of training 

cells that share the same statistics of the target cell can be limited.  One solution around this 

problem is the inclusion of enhanced spatial sampling by means of subaperture averaging.  

[6, 7].  This procedure uses a reduced dimension subaperture of the full aperture that is 

incrementally progressed along the full array.  Covariance matrices are calculated for each 

subaperture and subsequently averaged.  The procedure is repeated for each range bin in the 

training set.  The procedure therefore produces a multiplicative increase in the sample 

support at the expense of using a smaller spatial aperture in place of a larger full aperture.  If 

the subaperture is only slightly smaller than the full aperture, the enhancement gained by the 

larger sample support quickly outweighs the losses attributed to using the smaller aperture. 

 

In this report we will employ a notional UAV X-Band radar example [1, 2] to evaluate 

the impact on system performance due to finite sampling effects.  In addition, this report 

introduces subaperture averaging to improve the performance when the sample size is small 

relative to system dimensionality.  

 

This report is organized as follows.  Section 1 briefly discusses STAP and the details of 

the complex Wishart distribution; section 2 describes the subaperture averaging method and 

section 3 summarizes the results. 

2 



 

 

1.1 Space Time Adaptive Processing 
 

Space Time Adaptive Processing (STAP) refers to the application of adaptive techniques 

that simultaneously combine the signals received by multiple antenna elements (the spatial 

domain) at each pulse repetition interval (the temporal domain) of a coherent processing 

interval.  This report focuses on one suboptimal reduced dimension STAP architecture, 

namely the factored time-space (FTS) or Doppler factored STAP architecture.  The time-

space factored STAP Doppler processes first, and then adaptively combines the elements in 

each Doppler bin.  Higher order time-space factored STAP architectures use adjacent 

Doppler bins for temporal diversity.  Details of the algorithms used in this report can be 

found in [8].  This report introduces the effects of using an estimated covariance matrix on 

system performance and compares the performance with the steady state case for a notional 

X-Band UAV radar.  The report makes use of the complex Wishart distribution as a means of 

quickly evaluating the losses incurred by estimating the covariance matrix.  The results from 

the Wishart distribution are compared with results from conventional range bin averaging of 

the data, and it is shown that the two ways of modeling finite sample losses are equivalent. 

 

The report also addresses the problem of having to estimate a covariance matrix when the 

number of range samples available for estimation falls short of the number needed.  It is well 

known that for a system possessing N degrees of freedom (DOF), roughly 2N samples are 

needed for an expected loss of 3 dB with 5N samples necessary for an expected loss of 1 dB 

in system performance.  Generally, real systems require somewhere between 3N and 5N 

samples for estimation to maintain performance.  This report introduces the technique of 

subaperture averaging to address this problem.  The details of this method as applied to the 

notional X-Band UAV radar are presented in section 2 of this report. 
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1.2  Complex Wishart Distribution Applied to the Finite Sampling Problem 
 

The method of factorization of the complex Wishart distribution which follows is based 

on the derivation given by J. Capon and N. R. Goodman [3, 4].  The sample covariance 

matrix obtained from K samples of the noise environment is given by the well known 

formula 

 

 
K

H
k k

k 1

1R̂ r
K =

= ∑ rv v  (1) 

 

which is the maximum likelihood estimator for the covariance matrix R.  The vector krv is the 

complex noise data vector for the kth sample and superscript H denotes the Hermitian 

conjugate vector.  If the krv are assumed to be N dimensional complex Gaussian vectors of 

zero mean and covariance R, and if K ≥ N, then the probability distribution of the elements 

of the sample covariance matrix R̂  is completely specified by the complex Wishart 

distribution.  If we let A = KR then the joint probability density function of the elements of 

A may be written as 

 

 ( )
( )

( ) ( ) ( )
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K K N
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where L  denotes the determinant of the enclosed matrix, Tr denotes the trace and ( )kΓ  

denotes the gamma function. 

 

 ( ) ( )k k 1 !Γ = −  (3) 
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The probability density function given by Equation (2) is defined over the domain of 

non-negative definite Hermitian matrices.  The form of the distribution is not easy to use 

since in general the elements of the sample covariance matrix are not statistically 

independent so that the distribution does not factorize in any convenient way.  A useful 

representation for numerical evaluation can be obtained for the distribution by first doing a 

Cholesky decomposition of the matrix A.  For every positive definite Hermitian matrix, there 

exists a unique upper triangular matrix U such that 

 

  (4) HA U U=

 

where U is a N × N matrix composed of unrestricted entries above the main diagonal, real 

entries along the main diagonal and zeros elsewhere.  Goodman [3] has shown that the joint 

probability distribution function of the elements of U is generally of the form 
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When R is the identity matrix I the joint probability distribution function of the elements 

of U simplifies to  
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The probability distribution given in Equation (6) can now be written as the product of  

N + N(N-1)/2 terms, with each term in the product being a function of a single random 

variable umn.  The part of this probability distribution corresponding to the off-diagonal terms 

umn of U for m<n, describes the probability distributions of complex Gaussian random 

variables with zero mean and unit variance.  If the N(N-1)/2 complex Gaussian terms are 

integrated out from the above expression, what is left is the joint probability distribution of 

the main diagonal terms of U,  

 

 ( ) ( )
2
mn

2K (2n 1)N
umn

K,N 11 22 NN
n 1

2uu ,u , , u e
K n 1

− −
−

=

σ =
Γ − +∏K  (7) 

 

The nth diagonal term of the above equation has the marginal density 

 

 
( )

( )
2

mn nnu u2(K n 1) 1
K,N nn

2 u e
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 (8) 

 

for unn > 0.  The probability distribution given above is closely related to the chi-square 

distribution with 2(K-n+1) degrees of freedom.  If a change of variables is made such that 

 

  (9) 2
n nuγ = n

 

a simple scaling of a chi-square random variate with 2n degrees of freedom is affected.  The 

change of variables shows that the diagonal elements of the matrix U are seen to be square 

roots of integer order gamma variates.  Thus, the evaluation of the sample covariance matrix 

by means of the complex Wishart distribution can be reduced to the evaluation of Gaussian 

distributed variates for the off-diagonal terms and gamma distributed variates for the main 

diagonal terms. 
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A statement about computational efficiency is appropriate since the reason for 

implementing the Wishart distribution to simulate finite sample loss effects is based on 

computational advantage.  To compute the sample covariance by directly calculating the 

average covariance over K range gates requires KN(N+1)/2 complex multiplications, so that 

the computational burden is roughly KN2.  In contrast, the computational work required by 

using the Wishart distribution amounts to doing a complex Cholesky decomposition, 

calculating the gamma and Gaussian variates and doing the final matrix multiplication to 

obtain R̂ .  This is roughly proportional to N.  

 
 
1.3  Numerical Evaluation of Sample Covariance Matrix 
 

Let R be the steady state covariance matrix derived from the phenomenological models 

portrayed in a computer simulation.  The sample covariance matrix R̂  based on K 

observations can be determined from the Wishart distribution using the following method, 

which is based on the previous section’s factorization method.  We note that to insure that 

the covariance matrix is nonsingular, we require that K ≥ N where N is the dimensionality of 

the matrix R.  We first factor R into its Cholesky decomposition as 

 

  (10) HR C C=

 

We now note that any data vector krv  that is complex Gaussian distributed with 

covariance R may be written as 

 

 Hr C wrv =  (11) 
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where wv is a unit variance, zero mean complex Gaussian variate.  The above can be seen to 

be true as follows, 

 

 

( )HH H H

H H

H

rr C w C w

C ww C

C IC R

vv v v

v v

=

=

= =

 (12) 

 

Thus, an arbitrary sample covariance matrix of rv  is statistically equivalent to a linear 

transformation of a corresponding sample covariance matrix of wv  by virtue of the fact 

that Hww Iv v = .  If we denote the sample covariance matrix of wv  by 

 

 HŴ wwv v=  (13) 

 

and now take the Cholesky decomposition of the matrix  ŴK

 

  (14) HˆKW U U=

 

From the analysis described in Section 1.2, the elements of the upper triangular matrix U 

will be statistically independent.  Also, the nonzero off-diagonal elements of U will be 

complex Gaussian variates with zero mean and unit variance and the main diagonal entries 

will be square roots of integer order gamma variates with a form factor proportional to the 

sample size K. Once the sample covariance matrix  for the normalized Gaussian variates 

is computed, the transformation 

Ŵ

 

  (15) Hˆ ˆR C WC=
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is then performed to obtain the desired sample covariance matrix R̂  based on K 

observations, for the steady state matrix R.   

 
 
1.4  Finite Sample Performance for X-Band UAV Radar 
 

Earlier, the Advanced Airborne Radar Simulation (AARS) was used to assess the 

performance of airborne X-Band UAV radar with different STAP architectures [1, 2].   

Table 1 shows the system parameters used in the study.  

 

Table 1.  UAV Parameters for Non-Overlapped Array

Parameter Value

Number of Antenna Elements 120 columns; 30 Rows
Center Frequency 10 GHz
Pulse Repetition Frequency 2.0 msec
LFM Bandwidth 15 MHz
LFM Uncompressed Pulsewidth 16.67 usec
Fractional Wavelength Spacing 0.508 for Columns; 0.678 for Rows
Clutter Model Constant Sigma; Mean Level of -20 dB
Internal Clutter Motion None
Number of PRIs 32
Number of Dopplers 32; Blackman Weighting
Transmit Aperture Weighting Uniform in Azimuth and Elevation
Electronic Scanning Broadside in Azimuth; 5.31 Degrees in Elevation
Number of Receive Azimuth Subarrays 12 (Non-Overlapping)
Number of Elevation Subarrays 1
Receive Subarray Aperture Weighting Uniform in Azimuth and Elevation
Beamformer Weighting 60 dB Taylor (Transition Number = 4)
Transmit Power 20 KW
Platform Velocity 180 m/sec
Platform Altitude 45000 ft
Target RCS 10 sq meters
Element Pattern Type Half Wavelength Dipole  
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The system has twelve spatial adaptive degrees of freedom.  First- through third- order 

post factored time-space STAP (or Doppler-factored STAP) architectures were evaluated for 

their effectiveness in improving the minimum detectable velocity and probability of 

detection performance.  Since first order factored STAP is an application of spatial adaptivity 

in each Doppler bin the number of adaptive degrees of freedom is twelve for this case.  

Second and third order factored STAP couple two and three adjacent Doppler bins, so the 

number of adaptive degrees of freedom increases to twenty-four and thirty- six, respectively.  

The steady state performance for the signal-plus-interference-to-noise ratio (SINR) as a 

function of Doppler is shown in Figure 1.  The adaptive SINR results are compared with the 

non adaptive SINR.  In Figures 2 and 3 we used a sample size of five times the number of 

adaptive DOF (180 samples) for the third order factored STAP architecture (the green 

curves).  For first and second order factored STAP the ratio of the sample size to adaptive 

DOF was 15 and 7.5, respectively.  Figure 2 shows the SINR as a function of Doppler as 

calculated from the Wishart distribution, while Figure 3 shows the SINR curves by averaging 

the covariance matrix over 180 range gates.   

 

The comparison between the two methods for estimating the covariance matrix and 

calculating the SINR performance shows that the results are in close agreement.  In 

particular, the expected performance of the third order FTS in the clutter-free region is about 

1 dB below the steady-state performance.  This is expected since third order FTS processing 

is performed with a sample support of five times its adaptive DOF. 

 

Figures 4 and 5 show the results of the comparison between the two methods for a 

sample support of twice the adaptive degrees of freedom for third order FTS processing.  

Again the performance curves are very similar.  For third order FTS the clutter free SINR is 

about 3 dB below the steady state value depicted in Figure 1, which is the expected result.  
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The time taken to compute the above results using the Wishart distribution typically takes 

a few minutes when run on a 1 GHz personal computer, no matter what the sample size is.  

In contrast, depending on the sample size, the same calculations can easily take a few hours 

to run using the same computer resources using conventional range bin averaging.   
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Figure 1.  Steady-State Signal-to-Interference Ratio vs. Doppler 
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Figure 2.  Finite Sample Signal-to-Interference Ratio vs. Doppler for 180 Sample Size 
Utilizing the Wishart Distribution 
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Figure 3.  Finite Sample Signal-to-Interference Ratio vs. Doppler for 180 Sample 
Size Utilizing Range Gate Averaging 
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Figure 4.  Finite Sample Signal-to-Interference Ratio vs. Doppler for 72 Sample Size 
Utilizing the Wishart Distribution 
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Figure 5.  Finite Sample Signal-to-Interference Ratio vs. Doppler for 72 Sample Size 
Utilizing Range Gate Averaging 
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Section 2 

Subaperture Averaging 

2.1  Brief Overview  
 

Subaperture averaging [6, 7] provides an efficient technique for increasing the effective 

averaging of the sample covariance matrix and can be readily applied if the antenna array is 

composed of identical elements.  Figure 6 illustrates the idea behind subaperture averaging.  

For an array made up of N elements, a reduced dimension subaperture of L elements with  

L < N is used to carry out the averaging procedure.  Starting from one side of the full 

aperture N element array the subaperture samples the incoming wavefront at element 

locations 1 through L.  The subaperture is then progressed by one element and samples of the 

incoming wavefront are taken for elements 2 through L+1.  This incremental sampling of the 

wavefront is continued until the sliding subaperture of L elements has been translated to the 

other side of the full aperture of N elements.  Subaperture motion from left to right produces 

what is generally termed forward averaging.  The subaperture-generated L x L sample 

covariance matrix is given by 

 

 
K N L 1

H
f

k 1 i 1

1R̂ r(k) r(k)
K(N L 1)

− +

= =

=
− + ∑ ∑ v v

i i  (16) 

 

where K is the number of range cells and ir(k)v  is the segment of the data vector from the kth 

range spanning elements i through (N-L+1) of the full aperture.  The subscript f for the 

estimated subaperture covariance matrix denotes the fact that this is the covariance matrix by 

forward (left to right) progression of the subaperture along the full aperture.  The averaging 

can in fact be doubled by reversing the progression of the subaperture and performing the 

same procedure from right to left.  This subaperture motion from right to left produces what  
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is known as ‘reversed’ or ‘backward’ subaperture averaging.  The combined average 

covariance matrix generated by employing both forward and backward subaperture 

averaging is given by 

 

 
( )f b

fb

ˆ ˆR R
R̂

2

+
=  (17) 

 

Full aperture of N elements

Subapertures of L elements each.
Successive subapertures are progressed by
one element along the main aperture

 
 

Figure 6.  Illustration of Subaperture Averaging Procedure 
 

The idea behind subaperture averaging is that for an array of evenly spaced identical 

elements the steady state covariance matrix is Toeplitz, which means that elements along any 

diagonal of the matrix are equal.  When the covariance matrix is estimated the Toeplitz 

nature of the matrix is lost.  As more samples are added to the estimation process the 

estimates of the entries along the diagonals of the matrix are ‘smoothed out’ and approach 

the Toeplitz steady state covariance matrix .  Subaperture averaging provides for a smoothing 

out of the entries of the covariance matrix of the subaperture.  The basic mechanism of the 

smoothing is realized with the recognition that the estimate of the mnth entry of the matrix for 

elements m and n is effectively repeated in the (m+q)(n+q)th entry, where q is an integer, as  
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long as the array elements are identical and equally spaced, that is as long as the array 

satisfies the Toeplitz conditionality.  The subarray covariance matrices are the diagonally 

centered submatrices of the full aperture N × N covariance matrix.  

 

The subaperture averaging method used in this study is a extension of the algorithm 

described in [5, 6] and employs subarrays.  The case considered here was an array composed 

of non overlapping contiguous subarrays.  Also, for second and third order FTS STAP 

processing, the covariance matrices span two and three Dopplers, respectively.  This 

introduces a complication into the averaging procedure since the covariance matrix is no 

longer Toeplitz, except for the submatrices centered on the diagonal of the full matrix which 

span only one Doppler.  The effect of using a non-Toeplitz covariance matrix can be seen in 

the SINR results presented later in this section..  For first order FTS processing, the 

improvement from applying subaperture averaging the covariance matrix spans only one 

Doppler.  In this case, the steady state covariance matrix is Toeplitz and the benefit of 

subaperture averaging is realized.  For second and third order FTS processing our results 

show that the effect of using a covariance matrix which spans more than one Doppler 

produces a more shallow clutter notch.  The filling in of the clutter notch becomes 

progressively more pronounced as higher order FTS processing is performed ( see Figure 7).  

The clutter free SINR performance is however restored to the amount expected from the 

sample support enhancement provided by the averaging.  For the cases where the covariance 

matrix spans more than one Doppler, subaperture averaging produces a sample covariance 

matrix which tends to become more Toeplitz in character as more samples are included.   
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Figure 7.  Finite Sample Signal-to-Interference Ratio vs. Doppler for 24 Range Samples 
Using Subaperture Averaging with a Subaperture Size of 10 Subarrays.  Full Aperture 

Has 12 Subarrays 
 
 
2.2 Subaperture Averaging Results 

 

Figure 7 shows the SINR performance for 24 range samples using a subaperture size of 

10 non overlapped subarrays.  The full aperture is 12 subarrays long.  The black curve is the 

steady state non adaptive SINR performance for the 10 subarray subaperture.  The remaining 

three curves show the SINR performance for first through third order FTS processing.  The 

sample support enhancement gained by using a subaperture size of 10 subarrays is a factor of 

three for each range sample.  Thus, effectively 72 samples were used to estimate the 

covariance matrices for each of the three STAP architectures represented.  For first order  

FTS, which has 10 adaptive DOF, the effective sample size is 7.2 times the adaptive DOF.  

For second order, the effective sample size is 3.6 times the adaptive DOF and for third order 

FTS the effective sample size is 2.4 times the adaptive DOF.   
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In contrast to Figure 7, Figure 8 shows the SINR performance for 24 range samples using 

no subaperture averaging.  For second and third order FTS the number of range samples is 

less than that needed to insure the invertability of the covariance matrix.  For these two cases 

a small amount of diagonal loading (-150 dB) was applied to make the covariance matrices 

positive definite and invertable.  Clearly for this small sample size second and third order 

FTS cannot be evaluated.  However, by using a slightly smaller aperture and implementing 

subaperture averaging, the SINR performance can be significantly improved.  For first order 

FTS the number of samples available is twice the adaptive DOF.  Figure 7 shows that by 

using a slightly smaller aperture and applying subaperture averaging, FTS performance can 

be made nearly optimal.  Figures 9 and 10 show similar results for a sample size of 36 range 

bins for the 10 subarray subaperture with subaperture averaging.  
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Figure 8.  Finite Sample Signal-to-Interference Ratio vs. Doppler for 24 Range Samples 

for Full Aperture of 12 Subarrays 
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Figure 9.  Finite Sample Signal-to-Interference Ratio vs. Doppler for 36 Range Samples 
Using Subaperture Averaging with a Subaperture Size of 10 Subarrays.  Full Aperture 

Has 12 Subarrays 
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Figure 10.  Finite Sample Signal-to-Interference Ratio vs. Doppler for 36 Range 

for Full Aperture of 12 Subarrays 
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Section 3 

Conclusions 

In the previous study [2], we have generated performance estimates for the weight 

compliant Global Hawk MP-RTIP platform. Performance is determined by generating the 

antenna patterns, the expected SINR, both before and after STAP, minimum detectable 

velocity and the expected ability of the system to detect targets.  The results there were based 

on steady state performance. 

 

In this report, the Advanced Airborne Radar Simulation was used to evaluate the 

performance of a notional UAV X-Band radar with STAP architectures with finite sampling 

effects included.  We have added Wishart Sampling capability to the Advanced Radar 

Simulation (AARS) suite of analytical tools.  This feature now enables quick assessment 

within AARS of finite sampling losses in radar performance and provides a means of 

comparison with steady state performance.  It is important to note that the time taken to 

compute results using the Wishart distribution typically takes a few minutes, no matter what 

the sample size is.  In contrast, depending on the sample size, the same calculations can 

easily take a few hours to run using the same computer resources. 

 

In addition, we introduced the subaperture averaging method for estimation of the 

covariance matrix when the environment becomes sample-limited.  We applied the technique 

of subaperture averaging to an array made up of evenly spaced identical subarrays.  We also 

applied subaperture averaging to covariance matrices associated with higher order factored 

time-space processing (FTS), also known as Doppler factored STAP. 

 

These two newly added capabilities were applied to a notional airborne X-Band UAV 

radar that has been modeled in previous work [1, 2].  The techniques described in this report 

were applied to evaluate the finite sample performance estimates for the weight compliant 
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Global Hawk MP-RTIP platform.  The classified finite performance results were also 

completed for the weight compliant Global Hawk System with different STAP architectures 

but are not presented in this report.  The results are documented in a classified addendum. 
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