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This paper describes a simulation modeling system we have developed, called Airport Capacity 
Analysis Through Simulation (ACATS).  Airport capacity, in the sense of the average throughput 
obtainable during periods of high demand, is determined directly by simulating a constant flow of 
arrivals and departures for hundreds of hours.  The user interface for ACATS provides a fast way to 
set up the elements of the airport that are essential for calculating runway capacity.  It also supports 
the use of Air Traffic Control (ATC) separation rules that may become feasible as technology 
improves.  The software in the user interface automatically converts the data for any airport into a 
standardized set of files that are then processed by the ACATS simulation software.  At the core of 
the ACATS software is a simulation engine that is common to all airport analyses.  That means that 
the simulation is driven by data representing the ATC rules, runway layout, and demand 
characteristics.  The output of ACATS includes an animation of the simulation, statistics about the 
observed throughput, and a set of graphical analysis charts.  The animation and graphical results 
produced by ACATS are important tools in explaining the analysis to the end user and in validating 
the results of the simulation.  This paper will describe 1) the ACATS user interface tool that permits 
the user to easily describe the problem, 2) the ACATS simulation module, and 3) the methodology 
that governs the ACATS algorithms.  

 
 

I. Introduction 
any practical problems in the analysis of potential benefits of aviation systems hinge on estimating the effect 
of new infrastructure, technology, and procedures on the capacity of an airport’s runway system. For many 

years the Federal Aviation Administration (FAA) and The MITRE Corporation’s Center for Advanced Aviation 
System Development (MITRE/CAASD) have maintained and used the “Enhanced FAA Airfield Capacity Model” 
(EACM) [1] for assessing the capacity of an airport under differing assumptions about the separation rules, 
procedures, and the number of runways.  This has allowed us to provide answers to questions such as: “Will the new 
runway be beneficial given the restrictions on its use?  Will the airport be able to satisfy the projected demand ten 
years from now?  If the runways are equipped with a new guidance system resulting in improved separation 
requirements, by how much will the capacity increase?”  In addition, runway capacity serves as an input to many 
other models of the national airspace system. 

M 

This paper describes an analysis tool we have developed, called Airport Capacity Analysis Through Simulation 
(ACATS), for estimating the runway capacity of any airport.  The ACATS system combines the desired features of 
simulation and the EACM.  Our motivation for this work was to overcome the analytical limitations of the EACM 
by developing a simulation-based modeling methodology and to overcome the drawbacks of a traditional simulation 
by avoiding its costly set-up process.  That this was even possible was uncertain at the start of this project, so it was 
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funded as a MITRE internal research and development project.  MITRE/CAASD is a not-for-profit Federally 
Funded Research and Development Center sponsored by the FAA.  

The definition of runway capacity in the EACM is average maximum sustainable throughput for a given fleet 
mix and arrival-departure ratio.  ACATS also estimates capacity using this definition.  Throughput is defined as the 
number of aircraft that use the runway system per unit time, in a use pattern obeying the arrival-departure ratio and 
aircraft fleet mix.  The fleet mix is the percentage of each aircraft type that uses the airport.  The concept of 
sustainability is that if sufficient demand is present, the airport can maintain this average throughput indefinitely.  
The average is over time.  Although the fleet mix remains constant, the sequence and performance characteristics of 
the aircraft vary, so the throughput per unit time varies with these factors. 

The EACM, while easy to use, begins to fail when the complexity of the runway system increases, requiring 
significant post processing by an experienced analyst.  Consequently, MITRE/CAASD, as well as many Civil 
Aviation Authorities and consultants, have relied on simulation models to study the effect of new systems on 
runway throughput at these more complex airports.  A well-constructed simulation of a particular airport can model 
much more subtle effects than can be measured by the EACM, and is particularly useful in studying the effects of 
different traffic management strategies.  The chief drawback of simulation models is that they have to be custom 
built for the particular airport, a task which often requires months of work to collect the supporting data, validate the 
simulation, and perform the analysis. 

The ACATS user interface provides a very fast way (requiring minutes or hours, not days) to set up the elements 
of the airport that are essential for calculating runway capacity and permits the testing of existing Air Traffic Control 
(ATC) separation rules as well as those that may become feasible as technology improves.  The software in the user 
interface converts the data for any airport into a standardized set of files that are then processed by the simulation 
software.  At the core of the ACATS software is a simulation engine that is common to all airport analyses. 

With this model we can start from a blank page for any airport in the world and be running case studies within 
minutes.  The animation and graphical results produced by ACATS are valuable tools for explaining the analysis to 
the end user. 

This paper will describe 1) the ACATS user interface tool that permits the user to easily describe the problem, 2) 
the ACATS simulation module, and 3) the methodology that governs the ACATS algorithms. 

II. Background 
The estimation of airport runway capacity is fundamental to all research and planning for airport planning and 

improvement.  All civil aviation authorities either have their own models for estimating capacity, or use consultants 
to perform the analysis. 

For more detailed analyses of complex interactions, analysts use simulation models and there are numerous such 
models.  An internet search will reveal many simulation studies that have been performed on airports around the 
world.  The disadvantage of simulations is that they are costly to set up and often take months to complete.  One of 
the best known models is the Total Airspace and Airport Modeler (TAAM) model [2] and we at MITRE/CAASD 
are one of the largest TAAM users in the world.  We have also used several other well-known models over the 
years, such as SIMMOD.  Typically, these models require a detailed schedule of arrivals and departures to be input 
for a specific time period, such as 16 or 24 hours. 

Other models attempt to estimate the average flow of traffic using closed-form equations to calculate the 
expected flow rates.  The EACM [1] is one of them.  They have the advantage of being relatively fast.  No traffic 
schedule is required, just a description of traffic characteristics such as fleet mix.  However, this speed comes at the 
cost of reduced flexibility. The EACM models complex airport configurations by decomposing them into a number 
of sub-configurations consisting of individual runways or pairs of runways, then adding the capacities of each sub-
configuration.  For example, a pair of independent runways is modeled as two separate single runways.  There is a 
separate equation, and a separate module in the ACM program, for each sub-configuration.  If airport operations are 
not adequately represented by the standard configurations modeled by the EACM (which happens frequently), the 
analyst needs to perform the decomposition manually and then use a spreadsheet to calculate the overall airport 
capacity. 

With the ACATS model we are trying to overcome the analytical limitations of the EACM by developing a 
simulation-based modeling methodology, and to overcome the drawbacks of a traditional simulation by avoiding its 
costly set-up process. 
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III. ACATS Results 
The simulation engine processes the standardized data and records the results of the simulation in both graphical 

and numeric representations.  This takes several minutes for a large airport. 
There are two primary results of an ACATS analysis.  The first is a set of capacities.  Each capacity is an 

estimate of the average maximum sustainable rate at which the airport can service demand of a particular fleet mix 
and operations (arrival and departure) mix, while respecting separation requirements.  For a given fleet mix, the 
average capacities for different operations mixes may be plotted on an arrival vs. departure graph and connected by 
lines to form what is commonly referred to as the capacity curve, for use as input to other models and in broader 
discussions.  An example is shown in Figure 1. 

 

Typical Capacity Curve
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Figure 1:  Example of a Capacity Curve 

 
The second primary result of an ACATS analysis is a log of its simulated operations.  This record may be used 

for analysis of particular operational phenomena, including bottlenecks and tactical patterns.  In addition, this record 

 

 
Figure 2.  Animation of Simulation Results 
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can be animated to provide an easily understood visualization (see Figure 2) of how the airport has been modeled 
and how traffic behaves. 
 Because the ACATS engine simulates distinct flights, it may be used for other purposes besides estimating 
capacity.  If presented with flights either from a schedule or an external simulation, the ACATS engine can model 
the experience of each flight in the vicinity of the runway system and thereby estimate induced delay due to 
separation requirements, tactical sequencing, and runway assignment decisions.  In particular, it is possible to 
estimate the delay induced by the runway layout and ATC rules used for separation, a broadly used measure of 
system performance.  

IV. The User Interface 
The ACATS software runs on a PC running Microsoft Windows® and requires a license for the ACATS 

program, for the SLX® simulation software used by the simulation engine, and for Microsoft Office® to generate 
reports from the simulation data. 

The ACATS graphical user interface (GUI) (see Figure 3) provides tools to help the user create the data for a 
case study.  A case may include many different scenarios of airport operations and configurations. 

The main categories of data required during the case creation phase are: 
1. Runway layout 
2. Wake vortex separation requirements 
3. Fleet mix  
4. Aircraft performance parameters 
5. Arrival-departure ratio 
6. ATC rules used for separation  
7. Simulation control attributes 

The GUI allows the user to specify the ATC rules and runway geometry of the airport. The main screen of the 
GUI is shown in Figure 3.  From this screen the user can transfer to other screens in order to enter the parameters 

needed to set up the airport.

 
Figure 3.  Main Screen From ACATS User Interface 

 
American Institute of Aeronautics and Astronautics 

 

4



To develop a detailed diagram of a new airport, the user can import a previous case and modify it, create a new 
diagram from a template, or create the modified airport starting from a single runway.  For example, the user can 
start with a three-runway airport having one runway oriented 090 degrees, and simply state that there is to be an 
additional runway, parallel to Runway 9, 3000 feet to the right with length 10,000 feet.  The user does not have to 
enter any latitude or longitude coordinates unless desired.   (It is sometimes useful to model the runways by latitude 
and longitude when the approach and departure fixes are only given by their coordinates.) 

The user must specify the ATC rules that are used to maintain separation between all pairs of aircraft on all pairs 
of runways.  This is facilitated by allowing the user to select from previously stored settings that correspond to 
known sets of rules (e.g., rules for operating dependent parallel runways).  In addition, the user can create a custom 
pairwise separation rule that is based on either time or distance.  For example, the user could specify that an aircraft 
of type A at the threshold of Runway 3R will be separated from a leading aircraft of type B at the Runway 3L 
threshold by a minimum of 37 seconds.  This is a rule that does not exist today because there is no technology to 
support it, but one could envision a highly automated environment of the future in which such a time based 
separation would be feasible. The GUI is very flexible and allows the user to select where the separation is to be 
applied from a list of common points (e.g., the threshold, final approach fix, or departure fix), whether it is a time-
based or distance-based rule, and whether the rule is applied equally for all aircraft or whether it is based on the 
wake vortex classes.  The ACATS model can use this rule-creation capability to model variations in any ATC rule, 
and thereby easily adapt the model to all airports. 

The user may also select a very precise fleet mix of aircraft that can use the airport and further partition that set 
among the individual runways.  For example, the user can specify that small jets cannot use a particular runway but 
small props can.  This can be decided based on any of the 87 individual aircraft types in the accompanying database. 

The demand pattern is represented by the aircraft fleet mix file and the arrival-departure ratio file.  The user can 
select a default setting for both of these or customize the settings.  In the arrival-departure ratio file, the user can 
vary the ratio that is to be used as the simulation progresses in time. 

The wake vortex separation rules require time or distance parameters for different weight classes.  The user has 
the option of importing known sets of such data, modifying them, or creating a completely new set. 

While the simulation engine works with latitude and longitude points on and around the airport, the GUI 
software performs all of the mathematical calculations (in spherical coordinates) to convert ATC rules into the input 
required for the simulation engine.  

The user can also set parameters such as the run time for the simulation, or whether the data should be reported 
hourly, in 15-minute increments, or at intervals specified by the user.  There are other options available for advanced 
users that control how the simulation processes flights. 

 

V. Creating a Standardized Representation of an Airport 
The ACATS software automatically converts any airport’s description into a standardized format that serves as 

input to the simulation engine.  The conversion requires no intervention by the user and is accomplished in a fraction 
of a second.   

Any airport’s system of runways and ATC rules can be abstracted to a standard representation involving the 
concepts of runways, traffic streams, points, segments, and blocking rules.  The demand pattern is represented by the 
aircraft fleet mix file and the arrival-departure ratio file.  Each of these files is automatically created by the software 
based on the inputs from the user.   

Separation requirements are enforced by establishing segment-to-segment rules that specify which segments are 
blocked to other aircraft when a leading aircraft is in a particular segment. These rules are all incorporated into the 
point, segment, traffic stream, and blocking files. The key concept underlying the ACATS algorithm is that the ATC 
separation rules can be expressed by referring to segments that are blocked for use by one type of aircraft when 
another type of aircraft is using the same or a different segment.  This is the concept we have called blocking.  For 
example, with two converging arrival streams to intersecting runways, if one arrival is crossing its runway threshold, 
an arrival on the other runway must not be within 2 miles of its threshold.  Time separation is enforced by having a 
condition that says the blocked aircraft cannot begin using its blocked segment until a certain amount of time has 
passed after the blocking aircraft has exited the blocking segment.  In some cases an additional amount of time is 
added to the blocked segment to account for uncertainty.  This amount of time is called a buffer. 

The simulation engine then operates on these sets of data to produce the output.  As the airport gets more 
complex the amount of time required to run the simulation will increase, but the structure of these sets and the 
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simulation engine both remain constant.  Consequently, the simulation engine requires no modification by the user 
and is driven solely by the data files that are automatically generated by the user interface. 

A point set is a list of latitude/longitude coordinates with an associated point label.  All the calculations of 
latitudes and longitudes are done within the GUI software in spherical coordinates but this is hidden from the user.   
The GUI also automatically generates the labels for each point. 

A segment is an unordered set of point labels.  It can have a single point as its only element.  A segment set is a 
list of all the segments used to enforce ATC rules.  All the segments are created by the software without user 
specification. 

A runway set consists of the points that are located at each end of the runway and the exits.  These are used by 
the simulation engine when calculating the runway occupancy times and exits used.  The user must specify the 
location of the exits, measured in feet from the threshold; tools are provided to make this task easier. 

A traffic stream set specifies the path that a type of operation (arrival or departure) will use as well as the classes 
of aircraft that can use that path.  A path is an ordered set of points that is used by each aircraft in that traffic stream.  
The user must specify whether arrivals, departures, or both use a particular runway, and the types of aircraft that can 
use the runway.  The software automatically creates the description of the stream of traffic and associated points. 

A blocking rule is a statement reflecting the effect of an ATC separation rule and the runway geometry on the 
flow of traffic.  It is expressed in the format:  

Segment-blocking  ACtype-X   ACtype-Y 
Segment-blocked     time   Buffer 
For example, suppose that an ATC rule requires that when an arriving Heavy-class aircraft is crossing the 

runway threshold of Runway 19 that a following Large-class must be at least 5 miles out.  The software would 
create a segment S1, containing the points threshold and rwy19_5 (five miles before the threshold) and a segment S2 
consisting of just the point rwy19_5.  A blocking rule would be created as: 

S1 Heavy Large 
S2 0 0 
The simulation engine enforces the restriction that when any Heavy aircraft is anywhere within the segment S1, 

no Large aircraft can begin using the segment S2.  This prohibits a Large aircraft from following too close behind a 
Heavy aircraft when near the threshold, but does not restrict the separations when a Large leads a Heavy.  There 
would be another blocking rule for Large leading Heavy.   

For a complex multi-runway airport like Chicago O’Hare there could be almost 1,000 blocking rules.  These are 
all created automatically by the software and the user need only have knowledge of the desired ATC rules.  The GUI 
software creates all of these runways, traffic streams, points, segments, and blocking rules in response to user inputs 
expressed as statements about the ATC rules desired.  This makes it easier for new users to learn the model. 

VI. Methodology 
From the beginning we wanted to create a simulation model for estimating capacity that would be easy to use 

and not require that the user know anything about the simulation language in order to model different airports.  Our 
goal was to avoid requiring that the simulation code be modified or that extensive amounts of data be assembled for 
each new airport.  We managed to achieve this objective and attribute our success to several factors.  

First, our problem has a very definite focus.  We want to estimate the capacity (the average maximum 
sustainable throughput) of the airport runway system for a constant demand.  Knowing the desired outcome allowed 
us to limit the scope of the simulation.  

Second, ATC rules are pairwise statements about the minimum separation requirements between two aircraft.  A 
typical rule says “if an aircraft of type Y is in this area, then an aircraft of type X cannot also be in that area until x 
seconds has elapsed.”  This fact limits the number of constraints that must be considered and helps prevent an 
exponential increase in the problem size as the complexity of the airport increases. 

Third, the constraints implied by ATC rules are additive.  If, for example, a new runway is added to an existing 
configuration, all of the existing blocking rules still exist and are still pairwise (often with the same distance or time 
values) and only new pairwise rules related to the additional runway must be added to the set of rules.  One 
consequence of this is that if we have already created a simulation for an airport and a new runway is added, the user 
does not have to start from a blank sheet, but rather can just add the runway and its rules to the existing simulation. 

The simulation algorithm is conceptually very simple, but involves several interwoven heuristic processes to 
implement the proper selection of aircraft from the fleet, efficiently assign them to the runways available, and to 
incorporate the buffered blocking rules.   
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In simple terms, the ACATS algorithm repeatedly performs the following functions.  The algorithm generates a 
set of aircraft waiting for selection.  Next it selects the next aircraft to arrive or depart based primarily on how long it 
has been waiting (first come, first served), how much disruption it could cause to other traffic, and how soon it could 
go if selected.  Once an aircraft is selected, its trajectory is calculated and the segments that it blocks are prevented 
from being used by other aircraft according to the blocking rules table.  A new aircraft is then added to the list of 
waiting aircraft, based on the desired fleet mix and arrival-departure ratio, and its earliest release time is calculated 
based on the segments in its path that are free and blocked. 

VII. On-Going Activities 
We have performed many comparisons between ACATS and EACM showing that for simple cases the results 

are equivalent.  Because the simulation engine in ACATS does not change from airport to airport, we know that 
once basic calculations are correct, they will remain that way.  That, coupled with the animation, helps insure that all 
the ATC rules are being applied correctly.  The combination also gives confidence that the observed throughput 
reflects the desired measure of capacity. 

To achieve our measure of capacity as maximum average throughput, the simulation engine generates a 
continuous stream of flights that keep the airport saturated.  By replacing our internal flight generator with an actual 
schedule of operations, we can also measure the delay that would be induced on that set of aircraft.  Thus ACATS 
can serve as both a capacity model and a delay model. 

Additional tools in the GUI assist the user in developing demand scenarios for testing purposes.  However, we 
have adopted a flexible input format so that, with some pre-processing, many different types of real-world demand 
data can be transformed into sets useable by ACATS. 

VIII. Conclusions 
We have developed a simulation-based runway capacity model that enables the user to estimate the runway 

capacity of any airport using any set of ATC separation rules.  When applied to complex runway layouts, it is more 
accurate than a steady-state analytical model and can produce results much faster than other simulation models.  We 
expect to use this model in the future to quickly and accurately estimate runway capacity. 
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