
Using Semantic Web Technologies to Enable
Interoperability of Disparate Information

Systems

Dr. Marwan SABBOUH, Dr. Joseph K. DEROSA, Ms. Susan A. POWERS, Mr. Scott R. BENNETT

 Abstract - This paper addresses the problem of integrating various data sources and web services in an enterprise that
uses a service-oriented architecture. We take advantage of ubiquitous enterprise concepts like Types of Things, Time and
Position (What, When and Where) and build a context ontology for each that relates all the various representations across
the enterprise. Then, we use Information System data models, context ontologies and a small number of simple
OWL/RDF mappings to enable information originating in one part of the enterprise to be used in another in a way that is
highly (if not fully) automated.

1.0 INTRODUCTION

Typically, a community of interest (COI) creates an information model with shared semantics

and consistent representation of the associated data and web services. Large enterprises are

moving towards a service-oriented architecture (SOA) strategy to make data and services from

one part of the enterprise available for use in another part. However, SOAs do not address

semantics of data. For example, regarding Position information, often the Datum is missing, or in

the case of Time, the time zone designation is missing. Not only can this lead to execution

errors, but also to lengthy testing and integration cycles to find and correct the errors [1].

Building on the semantic framework presented in [2], in this paper we show how to integrate

disparate Information Systems (IS) in a SOA using ontologies (expressed in OWL/RDF [3-4]) as

well as OWL/RDF mapping relations. Our approach is no longer dependent on building domain

ontologies in the Gruber sense [5]. Instead we limit ourselves to ontological characterizations of

the individual COI data and web service (WS) models. Thus the IS ontologies are data models

expressed in OWL/RDF ontologies. Further, we take advantage of ubiquitous enterprise concepts

like Types of Things, Time and Position (What, When and Where) and build a context ontology

for each that relates all the various representations across the enterprise. Note that although these

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 1

SBORG
Text Box
Approved for Public Release; Distribution Unlimited
Case #05-1025

concepts are ubiquitous across the enterprise, each may have different representations within

different COIs. By using OWL/RDF mappings to relate IS ontologies to context ontologies we

are able to resolve representational differences. We use additional OWL/RDF mappings between

IS ontologies to resolve structural and syntactic mismatches. Other OWL/RDF mappings

associate web services with ontologies. We then automate the interoperability of disparate ISs by

reasoning over this set of IS ontologies, the context ontologies and OWL/RDF mappings. The

reasoning results in workflow discovery, automatic web service invocation, and reconciliation of

mismatches.

The framework presented in [2] is implemented using a commercially available ontology

management system (OMS) [6] along with a collection of developed tools that provide

synergistic services as shown in Fig. 1.

Semantic Framework
New Applications

Legacy Systems

• Find Concepts
• Find Instances of Concepts
• Find Relationships

between Concepts

Access Services

Inference Edit Manage Query Compose

GeoTrans

Semantics

Core
Capabilities

WSDL MapperOntology Mapper

Semantic ViewerWeb Service Generator

Browser

AO

RDBMS

AM

RDBMS

Air Mission

StoreClassifier

Time

Type

DB Mapper

Geometric
Shapes

Transport
Mission

Position
Event
Type

Aircraft
Type

Context
Ontologies

Information
System
Ontologies

 Fig. 1. Semantic Framework

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 2

In addition to standard services like Store, Edit, Manage, Query, the OMS offers a DB Mapper,

Web Service's WSDL Mapper, Ontology Mapper, Semantic Viewer, Inference Engine, and a

Classifier. The DB Mapper is used to map databases into the ontology. As a result, we are able to

query the databases by simply querying the ontologies. The Inference Engine supports standard

OWL DL inferences. The Classifier takes the XML document returned by a web service and

translates it into RDF and classifies it into the ontology. The Web Service's WSDL Mapper reads

in a WSDL and generates an ontological description of the WSDL. The Ontology Mapper is

described in details in section 2.5. It is invoked by the Semantic Viewer. The Semantic Viewer

implements code that, for a given request, discovers workflow, invokes and process web

services, and invokes the classifier in order to enable the exchange of information between

systems.

The outline for this paper is as follows: In section 2, we present the use case, build the IS

ontologies, context ontologies, and their mappings. Then, we reason over the mapped ontologies

to identify workflows whose execution achieves the flow of information. In section 3, we

generalize the solution. In section 4, we discuss our findings and relate our work to the published

literature.

2.0 ENGINEERING OF ONTOLOGIES

In our use case, we have two flight scheduling systems: Air Mobility (AM) for Military Airlift

and Air Operations (AO) for Military Air Superiority. The systems were designed and developed

independently. Each system includes its own flight scheduling service that creates flights and

stores them in the system's own custom data store. A new requirement has emerged for flight

information to be exchanged between these two systems. Specifically, flight information created

and stored locally by the AM system must be provided to the AO system. Our goal is to use the

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 3

ontologies and mapping techniques outlined above to discover and execute workflows that result

in AM instances being retrieved from the AM database and transformed into AO instances. An

overview of the approach is shown in Fig. 2.

23467
Airlif t 12 ETSeg - id

TimeSegment
???

Air Mission
??????

Time Event

Web Service

Context Ontologies

Air Mobility Ontology Air Operation Ontology

Web Services

RDF/OWL Mapping DBs to Ontology

RDF/OWL Mapping Web
Servicesto Ontology

RDF/OWL Mapping Ontology to
Context Ontology

RDF/OWL Ontology to Ontology

Ontological Representation of

Web Service

Web Service

Fig. 2. Overall Approach

2.1 Build the IS Ontologies

We use OWL/RDF to build the AO and AM IS ontologies. These two ontologies encompass

flight scheduling concepts for two disparate flight scheduling systems and were designed by

different people working on our project. Relevant portions of the two ontologies are shown in

Figs. 3 and 4. While both ontologies include concepts representing aircraft and events,

significant distinctions exist in structure, representation and terminology. In particular, looking at

Figs. 3 and 4, note that:

• AM represents position with Universal Transverse Mercator (UTM) coordinates while

AO represents position with Geodetic coordinates

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 4

• AM uses the terminology ‘ARR’ and ‘DEP’ to denote arrival and departure events while

AO denotes corresponding events as ‘LANDING’ and ‘TAKEOFF’

• AM and AO use different terminology to denote equivalent Aircraft Types

• AO provides both starting and stopping times for events while AM uses a single event

time

• AM and AO use different overall structures to represent a flight

AO-FLIGHT

EVENT

AIRCRAFT
CONFIG

AM-AIRCRAFT-
TYPES

Has-
AcftType

F-16E

CALLSIGNNAME

Has-CallsignName

AIR
FIELD

EVENT START
TIME

EVENT TYPE

Has-
StartTime

AIRFIELD
NAME

Is-A LAST
UPDATE

AO
LATITUDE AO

LONGITUDE

Hasl
AO-Latitude

Has-
AO-Longitude

AO-COORD

EVENT STOP
TIME

Has-
StopTime

TAKEOFF

LANDING

Is-A

Has-
LastUpdate

A10A

Has-
AircraftConfig

Has-Name

Has-Event

Has- Has-Event Is-A Location Type
Has-

Coord

Is-A

AO
FLIGHT

Fig. 3. AO System Ontology

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 5

2.2 Use Relevant Context Ontologies

To provide interoperability between information systems, we develop ontologies that capture

common concepts across the enterprise, while taking into account each information system’s

representation for a particular concept. We refer to such ontologies as context ontologies. In this

paper, we address three such context ontologies: Position, Time, and Types of Things, i.e.,

Where, When and What.

AM
FLIGHT

AM
MISSION
AIRCRAFT

Has-
Mission-
Aircraft

Has-

AM
AIRPLANE

TYPE

Acftype

AM
CALLSIGN

Has-
callsign

AM
SORTIE

SEGMENT

Has-Sortie
Segment

AM
SORTIE
EVENT

AM
SORTIE

EVENT TIME

AM
SORTIE

EVENT TYPE

Has-time

Has-
type

Has-Event

Has-location

AM
AIRPORT

NAME

COORD
HEMI

COORD
ZONE

Has-
Name

Has-
Zone

AM
LOCATION

COORD
NORTHINGY

Has-
Northingy

AM
COORD

Is-A

COORD
EASTINGX

Has-
Eastingx

Is-a AM
UPDATE

Has- TIMESTAMP
Timestamp

F-16
Is-a

A10a

Has-
Dep-
Event

Has-
Arr-Event

Has-
Hemi

ARR

Is-a

DEP

Is-a

Fig. 4. AM System Ontology

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 6

The use of context mediation in database integration is nothing new [7]. Our use of the term

context refers to the various ways data can be represented and used in an enterprise, or even

across enterprises [8]. At the heart of this paper is the assertion that there are a small number of

context ontologies needed to achieve interoperability across the Department of Defense (DoD)

enterprise [9], and that the various representations within each category are finite and can thus be

captured in an ontology. So far, these assumptions have held true. The categories of Position,

Time, and Types of Things have already proven very useful in the DoD enterprise as articulated

in the Cursor on Target (CoT) initiative [10]. Upcoming work is under way to uncover remaining

context ontologies in the DoD enterprise and we will leave the details of uncovering those

context ontologies to a future paper.

2.2.1 Position Context Ontology

Our DoD Position context ontology contains comprehensive specifications of all the different

representations of a Geo-Coordinate point in the DoD, i.e. the genus of Coordinate Systems,

Datums, Coordinate Reference Frames and formats. We built the Position context ontology

based on the set of coordinate systems used by National Geospatial Agency [11]. Fig. 5 shows

part of the Position context ontology. The full listing of this ontology is given in [12].

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 7

Position Context Ontology

Datum Coord-Ref-Frame

Fig. 5. Portion of Position Context Ontology

Using this context ontology, we can disambiguate any Geo-Coordinate position by specifying

its Coordinate Systems, its Coordinate Reference Frame, and its Datum. These classes and the

relationships between them are defined in the ontology by the following OWL classes and OWL

object properties:

<owl:Class rdf:id=”COORDINATE”/>

<owl:Class rdf:id=”DATUM”/>

<owl:Class rdf:id=”COORD-REF-FRAME”/>

UTM

Geodetic

Coordinate

LatLonHt
Coordinate

EastingNorthing
Coordinate

BER WGE

UTM Coordinate

…

…
…

Has-CoordRefFrameIS - A IS - A IS - A IS - A

IS - A

IS - A

UTMCoordinate-WGE

IS - A
LatLonHtCoordinate-WGE

… Has-Datum

IS - A

Has-
Coord-Ref-Frame

IS - A

Has-
Coord-Ref-Frame

Has-Datum

Has-Datum

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 8

<owl:ObjectProperty rdf:ID=" Has-Datum">

 <rdfs:domain rdf:resource="#COORDINATE "/>

 <rdfs:range rdf:resource="#DATUM "/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=" Has-Coord-Ref-Frame">

 <rdfs:domain rdf:resource="#COORDINATE "/>

 <rdfs:range rdf:resource="#COORD-REF-FRAME"/>

</owl:ObjectProperty>

To address the various Coordinate Reference Frames in use across the DoD, we assert for

example:

<owl:Class rdf:id=”GEODETIC”>

 `<rdfs:subClassOf rdf:resource="#COORD-REF-FRAME"/>

</owl:Class>

<owl:Class rdf:id=”UTM”>

 <rdfs:subClassOf rdf:resource="#COORD-REF-FRAME"/>

</owl:Class>

To address the various Datums defined across the DoD, we add for example:

<owl:Class rdf:id=”WGE”>

 <rdfs:subClassOf rdf:resource="#DATUM"/>

</owl:Class>

A particular type of Coordinate, such as LATLONHTCOORDINATE or

UTMCOORDINATE, is then specified as follows:

<owl:Class rdf:id=”LATLONHTCOORDINATE”>

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 9

 <rdfs:subClassOf rdf:resource="#COORDINATE"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="Has-Coord-Ref-Frame ">

 <rdfs:domain rdf:resource="# LATLONHTCOORDINATE"/>

 <rdfs:range rdf:resource="#GEODETIC"/>

</owl:ObjectProperty>

<owl:Class rdf:id=”UTMCOORDINATE”>

 <rdfs:subClassOf rdf:resource="#COORDINATE"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="Has-Coord-Ref-Frame ">

 <rdfs:domain rdf:resource="#UTMCOORDINATE "/>

 <rdfs:range rdf:resource="#UTM"/>

</owl:ObjectProperty>

To assert the DATUM for a Coordinate, we add these statements:

<owl:Class rdf:id=”LATLONHTCOORDINATE-WGE”>

<rdfs:subClassOf rdf:resource="# LATLONHTCOORDINATE"/>

</owl:Class>

<owl:ObjectProperty rdf:ID=" Has-Datum">

 <rdfs:domain rdf:resource="# LATLONHTCOORDINATE-WGE"/>

 <rdfs:range rdf:resource="#WGE"/>

</owl:ObjectProperty>

<owl:Class rdf:id=”UTMCOORDINATE-WGE”>

 <rdfs:subClassOf rdf:resource="# UTMCOORDINATE"/>

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 10

</owl:Class>

<owl:ObjectProperty rdf:ID=" Has-Datum">

 <rdfs:domain rdf:resource="# UTMCOORDINATE-WGE"/>

 <rdfs:range rdf:resource="#WGE"/>

</owl:ObjectProperty>

For the remainder of this paper, we drop the OWL notation and substitute the equivalent graph

or triple representation.

2.2.2 Time and Type Context Ontologies

We use similar specifications for Time and Types of Things. Several Time ontologies are

available [13] and are generally based on the many representation the military uses to denote

date/time (e.g., mm/dd/yyyy, Zulu, EST, etc.). Therefore the treatment of the Time context

ontology is similar to the Position context ontology. For the Type context ontologies, we

discerned two different types: Aircraft-Types, and Event-Types. These cover the different

representations of aircrafts and events used by both systems. As a result, we developed two sub-

types for Aircraft-Types, and Event-Types as shown below:

AM-AIRCRAFT-TYPES subClassOf AIRCRAFT-TYPES

AO-AIRCRAFT-TYPES subClassOf AIRCRAFT-TYPES

F-16 instanceOf (OWL Individual) AM-AIRCRAFT-TYPES

F-16E instanceOf (OWL Individual) AO-AIRCRAFT-TYPES

AM-EVENT-TYPES subClassOf EVENT- TYPES

AO-EVENT-TYPES subClassOf EVENT- TYPES

DEP instanceOf (OWL Individual) AM-EVENT- TYPES

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 11

TAKEOFF instanceOf (OWL Individual) AO-EVENT- TYPES

2.3 Integrate Web Services Using Ontologies

When translation between representations is needed, we associate a translator web service with

the context ontology. Our approach for integrating a web service into a context ontology is

discussed in the next section. Note that this same approach would be used to integrate a web

service into an IS ontology.

2.3.1 Integrate GeoTrans Web Service into the Position Context Ontology

For our use case, we attach a GeoTrans web service based on the Geographic Translator [11] to

the Position context ontology. The GeoTrans Web Service Description Language (WSDL) file is

given at [14].

Integrating GeoTrans involves the creation of a web service upper ontology that is similar to an

OWL-S Service Profile [15], and the recreation of its WSDL file in an ontology. This step is

further articulated in [2]. We then use OWL/RDF mappings to attach both the GeoTrans upper

ontology and the GeoTrans WSDL ontology to the Position context ontology as illustrated in

Fig. 6.

GeoTrans
WS Upper Ontology

Fig. 6. Integrating WS and Context Ontologies

Position
Context Ontology

OWL/RDF Mappings

OWL/RDF Mappings

GeoTrans
WSDL Ontology

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 12

The GeoTrans upper and WSDL ontologies and the mappings that connect them to the Position

context ontology are shown in Fig. 7. Note that only a few concepts of the Geotrans WSDL

ontology are shown.

Fig. 7. Geo-Trans WSDL Ontology

The OWL/RDF mappings shown in Fig. 7 and their domains and ranges are summarized in

Table 1. Note that while our use case employs these mappings to connect a web service to a

context ontology, these same mappings are employed to connect a web service to an IS ontology.

COORDINATE

COORDREFFRAME COORDREFFRAME DATUM COORDSTRING DATUM

outParameter inParameterinParameter

hasInput

COORDINATE

GeoTrans WS Upper
Ontology

WS:
INPUTDATUM

IsValueOf

WS:
INPUTCRF

IsValueOf

WS:
OUTPUTDATUM

IsOutput
ValueOf

WS:
OUTPUTCRF

hasOutput

GEOTRA
NS

SERVICE

WS:
COORD

IsValueOf IsOutput
ValueOf

Position Context Ontology

inParameter outParameter

GeoTrans WSDL Ontology

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 13

Domain OWL/RDF Mappings Range Purpose

rdfs:Class
 in Context Ontology) isInputOf Webservice: Class

(in WS upper ontology) Workflow discovery

Webservice: Class
(in WS upper ontology)

hasInput
(inverseOf isInputOf)

rdfs:Class
(in Context Ontology) Workflow discovery

rdfs:Class
(in Context Ontology) isOutputOf Webservice: Class

(in WS upper ontology) Workflow discovery

Webservice: Class
(in WS upper ontology) hasOutput rdfs:Class

(in Context Ontology) Workflow discovery

Webservice: Class
(in WS upper ontology) inParameter rdfs:Class

(in Context Ontology) URL generation

Webservice: Class
(in WS upper ontology) outParameter rdfs:Class

(in Context Ontology) URL generation

Webservice: Class
(in WS upper ontology) hasEffect rdfs:Class

(in Context Ontology) Effect

Webservice: Class
(in WS upper ontology)

hasClassification
Condition

rdfs:Class
(in Context Ontology) Pre-condition

rdfs:Class
(in Context Ontology) isValueOf rdfs:Class

(in WS WSDL Ontology) URL generation

rdfs:Class
(in Context Ontology) isOutputValueOf rdfs:Class

(in WS WSDL Ontology) URL generation

rdfs:Class
(in Context Ontology) hasResult rdfs:Class

(in WS WSDL Ontology)

Import/
Classification of return

web service result
rdfs:Class

(in Ontology) isCorrelatedWith rdfs:Class
(in Ontology)

Correlation between
instances of data

Table 1. Mapping Web Service Ontologies to Context Ontology

We will show in Section 2.6 that an instance of a coordinate in any reference system can

automatically be translated into an instance of a coordinate in any other reference system through

the automated invocation of GeoTrans.

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 14

2.4 Mapping of IS and Context Ontologies

To enable the exchange of instances between the AO and the AM systems, we map the relevant

AO concepts to the corresponding concepts in AM. This establishes the semantic matches – but

not the representational matches - between corresponding concepts. Additional mappings of AO

and AM concepts to the context ontologies are required to resolve representational mismatches.

Note that concept matching requires agreement between the AO and AM users, whereas

mapping to Context Ontologies is done independently for each system. We introduce the

mappings in Table 2.

Domain OWL Object
Property Range When to Use

rdfs:Class
(in IS Ontology) hasContext

rdfs:Class
(in Context
Ontology)

Representational
change

rdfs:Class
(in Context Ontology)

isTheContextOf
(inverse of

hasContext)

rdfs:Class
(in IS Ontology)

Representational
change

rdfs:Class
(in IS Ontology)

hasMatch
(symmetric)

rdfs:Class
(in IS Ontology)

Representational
change

rdfs:Class
(in IS Ontology)

hasMatchingValue
(symmetric)

rdfs:Class
(in IS Ontology)

No
representational

change

Table 2. OWL/RDF Mappings

In our use case, to reconcile a representational mismatch between coordinates, we assert the

following:

• AO-COORD hasContext LATLONHTCOORDINATE_WGE

• AM-COORD hasContext UTMCOORDINATE_WGE

• AO-COORD hasMatch AM-COORD

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 15

To reconcile terminology mismatches between various event types or various aircraft types, we

assert, for example:

 AM-AIRCRAFT-TYPES hasMatch AO-AIRCRAFT-TYPES

 AM-EVENT-TYPES hasMatch AO-EVENT- TYPES

 F-16E OWL:sameAs F-16

 DEP OWL:sameAs TAKEOFF

 ARR OWL:sameAs LANDING

When instance values can be copied without transformation, we assert, for example:

• AIR-FIELD-NAME hasMatchingValue AM-AIRPORT-NAME

Fig. 8 shows the AO ontology fully mapped to the AM and context ontologies.

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 16

Fig. 8. Mapped Ontologies

2.5 Purpose of Onto-Mapper: Interpreting the OWL/RDF Links

In order for AM data to be translated to the AO system, the AM instances must be translated to

match the structure, terminology, and representations of the AO system. To accomplish this end,

we built a mapping interpreter, Onto-Mapper, that processes the OWL/RDF mappings presented

in Table 2. This results in the creation of new AO instance data from the AM system. In the

semantic framework, we represent Onto-Mapper as a specialized web service that gets invoked

AO
FLIGHT

AIRCRAFT
CONFIG

AO
AIRCRAFT

TYPES HAS-
AIRCRAFTTYPE

F16E

CALLSIGN
NAME

HAS-
CALLSIGN

NAME

AIR
FIELD

EVENT START
TIME

EVENT
TYPE

HAS-
STARTTIME

AIR
FIELD
NAME

AO
LATITUDE

AO
LONGITUDE

HAS-
LATITUDE HAS-

LONGITUDE

LATLONHT
COORD

IS-A

LAST
UPDATE

AO-COORD
EVENT STOP

TIME

HAS-
STOPTIME

TAKEOFF

LANDING

A10A IS-A

F-16

HAS- AM IS-A MATCHING CALLSIGN SAME_ASVALUE

A-010A

DEP

ARR

AM HAS-
MISSION MATCHING

TIMESTAMP VALUE SAME_AS

HAS- HAS- AM HAS- MATCHING- LASTUPDATEAIRPORT AIRCRAFTCONFIGVALUE SAME_ASNAME IS-A

HAS-EVENTHAS- TYPE HAS-NAME LOCATION

HAS-
SAME_ASCOORD IS-A

AM SORTIE
EVENT-TIME

hasMatch

MAF-COORD

 Pair-Wise
 Mapping
 to AM

Mapped
AO
Concept

 Context Mapping

hasContext HAS-MATCH

Mapping to Time Ontology
hasContext (same approach as Position)

LATLONHTCOORDINATE
_WGE

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 17

when data is being exchanged. We implement this Mapping Interpreter by building a specialized

web service that acts as a Service Agent. Rather than have arbitrary inputs and outputs, this

specialized WS only interprets the rdf/owl links to create instance data in the target system from

data that originated in the source system. The formal definition of Onto-Mapper is shown below:

Service-Agent subClassOf Web-Service

Onto-Mapper subClassOf Service-Agent

hasAgentInput subProperty hasInput

hasAgentOutput subProperty hasOutput

isAgentInputOf subProperty isInputOf

isAgentOutputOf subProperty isOutputOf

isAgentInputOf InverseOf hasAgentInput

isAgentOutputOf InverseOf hasAgentOutput

 To trigger the invocation of Onto-Mapper by the Semantic Viewer in our use case, we simply

assert the following:

Onto-Mapper hasAgentInput AM-FLIGHT
Onto-Mapper hasAgentOutput AO-FLIGHT

In the next section we detail how Onto-Mapper then creates a new AO instance data.

2.6 Reasoning with the Mapped Ontologies / Creating Instances of Source Data in the

Destination IS

Having accomplished the mappings of web services, as well as the mappings of IS ontologies

to context ontologies, we map the AM database into the ontology, as described in [2]. In this

fashion, we treat the AM data as instances of the AM ontology as indicated in Fig. 9. Then, to

translate an AM instance into an AO instance, the Semantic Viewer reasons with the mapped

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 18

ontologies to discover workflows, to invoke\execute\process web services, and to create the AO

instance.

AM-FLIGHT-AS1040300041
---------is-a-------

AM-FLIGHT

DEP

 Fig. 9. AM Ontology incorporating AM Instance Data

2.6.1 Reasoning Algorithms

In addition to using RDF/OWL inferences, we make extensive use of two graph traversal

algorithms: Direct Path Query (DPQ), and Incoming Intersection Query (IIQ). Both algorithms

make use of RDF/OWL inferences and are described as follows:

Direct Path Query (DPQ)

Given a list of input values and a desired output, the DPQ creates the set of all the direct

paths that lead to the desired output concept from the input concepts, i.e.

----------- is a ------------- ARR
AM SORTIE EVENT-TYPE ----------- is a ------------

AM SORTIE EVENT TYPE
Has-Event

20-MAY-2004 07:07:00 AM
----------- is a --------------
AM SORTIE EVENT TIME

Has-Location

CYQX
--------------is-a------------

AM LOCATION

21 N 20678076 5423265
---------------is-a------------------

AM COORD

Has-Coord

AS1040300041 200
---------is-a-------
AM SORTIE EVENT

AS1040300041 100
---------is-a-------
AM SORTIE EVENT

Has-Type Has-Event

Has-Type

Has-Time Has-Time

20-MAY-2004 09:10:00 AM
----------- is a --------------
AM SORTIE EVENT TIME

ETAR
---------is-a-------

AM LOCATION

32 0N 398500 5476942
---------------is-a------------------

AM COORD

Has-Location

Has-Coord

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 19

• For input list in, output v

• Find the direct paths Pk {p1,p2,..} ending with v, and starting with each i in in,

where a direct path is the sequence of nodes (i.e., concepts in the ontology graph)

and relations or links that connects them. The system can be configured to

exclude nodes connected by specific links or to only return paths containing

certain links.

Incoming Intersection Query (IIQ)

First, the algorithm creates the set of all the direct paths that lead to the desired output concept

using a DPQ. Second, for each input value, the algorithm creates the set of direct paths that lead

to the given input. Third, the algorithm calculates and returns the intersection of these sets. This

algorithm may be defined more formally as follows:

• For input list in, output v

• Find the list of nodes xi{x1, x2,.. } that has direct paths Pk {p1,p2,..} with v

• For each i in in, find the list of nodes yj{y1, y2,.. } that has direct paths Qm {q1,q2,..}

with i

• Return {xi, Pk, Qm} where xi = yj

2.6.2 Discovering Initial Workflows

To discover the workflow for this use case, we specify the AM-FLIGHT instance

AM-FLIGHT-AS1040300041, shown in Fig. 9, as input in the Semantic Viewer and AO-

FLIGHT as output. The Semantic Viewer runs a DPQ and, if no workflow is found, an IIQ. We

exclude the following relationships from the above search: inParameter, outParameter,

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 20

hasMatchingValue, hasMatch, hasContext, isTheContextOf. The paths returned are interpreted

as a workflow by the Semantic Viewer when they contain the relationship isInputOf or its sub-

properties. In this use case, the following path is returned:

The presence of the RDF/OWL link isAgentInputOf indicates that Onto-Mapper must execute

to create an instance of AO-Flight, which is the object of the hasAgentOutput RDF/OWL link.

2.6.3 Processing Onto-Mapper

Onto-Mapper searches for representational and terminology mismatches by interpreting the

links hasContext, isTheContextOf, and hasMatch. The result of the search is a set of workflows

(paths containing isInputOf or its sub-properties) that need to be processed for reconciliations of

mismatches between the AM and AO domains. Each workflow consists of a sequence of web

services. When all workflows and their component web services have been executed, a new AO

instance is created from the AM instance AM-FLIGHT-AS1040300041. The algorithm shown

below discovers the mismatches between the two domains and return workflows.

Paths discover-mismatches(input, output)

{

 X= Get Full Def of (output); C(i)= All-Triples (output);

 if (C(i) != NULL)

 {

 For each i in C(i)

AM-FLIGHT
AS1040300041

ONTO-
MAPPER

is has
AgentInput AO-

FLIGHT Agent
To Output

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 21

 {

 o(i)= Object-value (C(i)); r(i)= Relation (C(i));

 if (r(i) == hasMatch and (o(i) ismemberof(input)))

Answer = DPQ (o(i), input) Exclude links:

 hasMatch, sameAs, and hasMatchingValue

 else discover-mismatches (o(i));

 i = i+1;

 }

 Return Answer

 }

}

An example of workflows returned by the algorithm is shown in Fig. 10. A quick scan of this

workflow reveals that the GeoTrans web service must execute to derive the instance value of

AO-COORD from COORD: 21 N 20678076 5423265 (an instance of AM-COORD).

Fig. 10. Example Workflow

The Semantic Viewer finds additional workflows for other instances of AM-COORD that need

translation. Similarly, workflows are discovered for Time representational mismatches.

FLIGHT:
AS1040300041

COORD: Has-
Event

Has-
Location

Has-
Coord

LOC:
CYQX

AS1040300041
100

21 N 20678076
5423265

Is-A

AM-
Coord

UTM
Coordinate_

WGE

GeoTrans-
Service

LatLonHt
Coordinate_

WGE

is is has AO-
Coord

has Input Context Context Output
To Of

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 22

2.6.4 Processing the Workflows Returned by Onto-Mapper

The Semantic Viewer processes the workflow node by node. In the example above, the first

node is AM-FLIGHT-AS1040300041 followed by AS1040300041 100, LOC:CYQX, AM

COORD 21 N 20678076 5423265, and UTMCoordinate-WGE. Since AM-COORD 21 N

20678076 5423265 inherits the hasContext link to UTMCoordinate-WGE from AM-COORD,

the Semantic Viewer makes AM-COORD 21 N 20678076 5423265 an instance of

UTMCOORDINATE-WGE which links it to GeoTrans using isInputOf. The latter signifies that

GeoTrans must execute. Since LATLONHTCOORDINATE-WGE is linked to GeoTrans using

hasOutput, this signifies that the result returned by the web service is an instance of

LATLONHTCOORDINATE-WGE. The processing of isTheContextOf makes the instance of

LATLONHTCOORDINATE-WGE an instance of AO-COORD.

2.6.5 Executing GeoTrans

The first step is to build the URL required to invoke the GeoTrans web service. The base URL

and parameter names are read from the WSDL ontology. The parameter values are inferred from

the mapped ontology. Specifically, when execution of GeoTrans is requested, its full definition

(shown in Fig. 7 in section 2.3.1) is retrieved from the OMS, and the base URL,

http://base.mitre.org/Geotrans/, is retrieved from the GeoTran’s WSDL ontology. Then for each

object of inParameter (e.g. COORDREFFRAME), the Semantic Viewer runs the DPQ with

input “COORD: 21 N 20678076 5423265”, and output being that object of inParameter (e.g.

COORDREFFRAME). The returned path contains the parameter value to be used in the URL for

that object of inParameter (e.g. COORDREFFRAME). This parameter value is identified in the

returned path as the instance of the object of inParameter (e.g., COORDREFFRAME). For

example, in the following path returned by the DPQ, the COORDREFFRAME’s value is UTM.

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 23

COORD: AM- UTM-
COORDINATE-

WGE

Is-A COORDREF
FRAME

21 N
20678076
5423265

Has-
Context

COORD Has-A Is-A UTM

Then to determine the parameter name we simply follow the link isValueOf which reveals the

label of the parameter name (inputCRF). When the Semantic Viewer has processed all

inParameter links, the URL will be of the form:

http://base.mitre.org/Geotrans/inputCRF=UTM&inputDatum=WGE&CoordString=21 N 20678076 5423265

Once all of the objects of each inParameter are processed, the Semantic Viewer turns it

attention to outParameter. Similar to the processing for inParameter, the Semantic Viewer

repeatedly runs the DPQ with input “COORD: 21 N 20678076 5423265 and output being each

object of outParameter (e.g., COORDREFFRAME) . It then finds the matching parameter label

using isValueOf. Thus the complete URL is of the form:

http://base.mitre.org/Geotrans/inputCRF=UTM&inputDatum=WGE&CoordString=21 N 20678076 5423265&
outputCRF=Geodetic&outputDatum=WGE

When the invocation of GeoTrans returns the XML document, the Semantic Viewer translates

it into an RDF instance of AO-COORD, AO-COORD: 48.936668,-54.568333. The translation

occurs as follows. Elements in the XML document are matched with concepts in the WSDL

ontology. The latter are linked to the mapped ontology using isValueOf and iisOutputValueOf.

This effects the creation of an LATLONHTCOORDINATE-WGE instance from the XML

document. The Semantic Viewer completes the workflow processing by reclassifying the

LATLONHTCOORDINATE-WGE instance as an AO-COORD due to the isTheContextOf link

Instance being
translated
(DPQ input)

Parameter
value

Object of
inParameter
(DPQ Output)

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 24

http://base.mitre.org/Geotrans/inputCRF=UTM&inputDatum=WGE&CoordString=21

between LATLONHTCOORDINATE-WGE and AO-COORD. It also creates an

isCorrelatedWith link is between AM-COORD: 21 N 20678076 5423265 and AO-COORD:

48.936668,-54.568333.

2.6.6 Creating a New AO Instance

Once these workflows are executed, then the following algorithm accomplishes the creation of

the new instance in AO domain, which is linked to the AM instance

AM-FLIGHT-AS1040300041 using the link isCorrelatedWith and imported to the OMS.

Input=Instance in AM domain; Output=Class in AO domain

Child-Concepts= method-process-instance (“COORD: 21 N 20678076 5423265”, Output, 1);

method-process-instance (Input-Instance, Output, FLAG)

{

Child-Parent-Concept= NULL;

 X= Get Full Def of (Output); C(i)= All-Triples (X);

 if (C(i) != NULL)

 {

 For each i in C(i)

 {

 o(i)= Object-value (C(i));

 r(i)= Relation (C(i));

 if (r(i) == hasMatchingValue)

 {

 Value-instance(n)= DPQ(Input-instance, o(i))

Return Value-instance();

 }

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 25

 else if (r(i) == hasMatch || sameAs)

 {

Value-instance(n)= DPQ(Input-instance, o(i)) Exclude links:

 hasMatch, hasInput , hasOutput, hasContext, and isTheContextOf

Child(n)= IIQ(value-instance(n), Output)

Return Child ();

 }

else if {r(i) == hasContext || isTheContextOf || isAgentOutputOf || isOutputOf) { do

nothing;}

 else {

Child()=method-process-instance (o(i), 0);

If (FLAG== 0)

{

For each j in Child(j){

if(Child(j) != Null){

if (Child-Parent-concept(j)==NULL){

Child-Parent-concept(j)= New KN

Assert Child-Parent-concept(j) subClassOf

Concept

}

Assert Child (j) subClassOf o(i)

Assert Child-Parent-concept(j) r(i) Child(j);

}

}

Else

{

For each j in Child(j){

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 26

if(Child(j) != Null){

if (Child-Parent-concept(0)==NULL){

Child-Parent-concept(0)= New KN

Assert Child-Parent-concept(0) subClassOf Concept

}

Assert Child (j) subClassOf o(i)

Assert Child-Parent-concept(0) r(i) Child(j);

}

}

 }

 }

 i = i+1;

 }// end for each i

 }// end c(i)!= Null

Return Child-Parent-concept ();

}// end method

3.0 GENERALIZATION

Our solution is easily generalized and extended beyond the use case presented above. In the

more general case, the algorithms presented above return multiple initial workflows (see section

2.6.2), as shown in the example in Fig. 11.

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 27

Fig. 11. Multiple Workflows

Web Service A

The system attempts to execute each workflow to the extent that it has the necessary data input.

Each workflow stores whatever output it produces in the OMS, making it available to subsequent

workflows. In the example above, the first workflow is composed of the sequenced web service

A web service C Onto-Mapper. The execution of A succeeds and its result is stored in the

OMS. The execution of C, however, fails since the output of web service B is needed as input to

C. The system proceeds to execute the second workflow: web service B web service C

Onto-Mapper. This workflow successfully completes since the necessary output from A is now

available in the OMS.

Beyond this generalization to multiple workflows, the solution is also extensible. We can

incorporate new context ontologies and extend existing context ontologies at will without having

to change existing mappings.

4.0 DISCUSSION

We see several significant advantages to our context ontology-based approach to semantic

integration. Foremost, this is a general solution that can be applied to interoperate any two ISs

using the set of context ontologies and same RDF/OWL mappings. The workflow required for

reconciliation of mismatches is derived by reasoning with the mapped ontologies and is not

preprogrammed into the system.

Onto-Mapper
 Interpreter

Input

Web Service B

Web Service C

Output

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 28

Moreover, the effort to implement the mappings is minimized by the polymorphic nature of

this approach. Mappings are defined at the concept level not the instance level, but they enable

semantic based transformation of instance data. For example, once an objects of inParameter

(e.g., Datum), is linked to GeoTrans, then instances of the object (e.g., WGE) are passed as input

arguments. This is because the DPQ and IIQ make use of OWL inferences: i.e., subclassOf,

inverseOf.

We have also found that with our methodology, IS and context ontologies are sufficient. This

eliminates the need to develop domain ontologies that are typically expensive to build and

maintain. In this fashion, we can also leverage existing XML schemas and web services as the IS

ontologies are nothing more that the IS data models expressed in OWL.

Another key characteristic of this approach is the loose coupling between the IS ontologies and

context ontologies. Mappings to context ontologies can be added to an existing IS ontology

without any change to the IS data model and the same context ontologies can be reused to

annotate multiple IS ontologies. More importantly, context ontologies can be used to augment

data models with missing information. Note that in our case, Datum was missing from the

AM/AO ontologies. However, due to the mapping to the Position context ontology, the system is

able to pass an appropriate value for Datum to the GeoTrans webservice.

Further benefit derives from our method of using an ontological approach to connect

translation web services to context ontologies. Once an IS ontology is mapped to a context

ontology, no further relations are required between the IS ontology and the web service for

translations to take place. For example, when translation is needed between coordinates,

Geotrans is invoked without linking it explicitly to any IS concept.

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 29

Finally, it is evident that hasMatchingValue can be replaced with owl:equivalentClass, and in

place of hasContext, we can have a rdfs:subClassOf, or even owl:equivalentClass. However,

hasMatch is needed and cannot be replaced with an OWL language construct.

4.1 Relation to Literature

This approach leverages existing initiatives and builds on them. For example, the set of

RDF/owl mappings augment the ontology of mapping relations work done at Stanford [16], with

some newer mappings. Further, we repurpose their use. We also have use of the Web Service

Profile ontology in common with OWL-S [15], although we take the view that web services are

extensions of data, with the net result of broader applicability of this solution. For example, this

approach can be viewed as a candidate solution for the harmonization of multiple Community of

Interest (COI) problem [17]. We also share common aspects with Web Service Modeling

Ontology (WSMO) [18] approach from the perspective of the use of mediators. For example,

ONTO-MAPPER mediates between the various representations. However, in our solution,

workflows are derived and not programmed. We think this is important, as enterprises are

concerned with emergent behavior.

4.2 Future Work

We are in the process of building context ontologies for the DoD categories Geometric Shapes,

and Unit of Measures. Additionally, we are investigating approaches to automating the creation

or generation of some of links between IS ontologies. To that end, we are building a shared

ontology across Position and Time, and investigating how rules [19] might help. We are also

adding the handling of conditions when traversing graphs and the implementation of causality

[20] in the system. The former enhances our capabilities to specify pre-conditions and

constraints. Causality allows for reasoning with state changes in the system over time.

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 30

REFERENCES

[1] CW3 Xavier Herrera, USMC, “The bottom line for accurate massed fires: common grid”, Field Artillery Journal, Jan-Feb,
2003

[2] Sabbouh, M and DeRosa, J.K., “Using semantic web technologies to integrate software components”, Proceedings of the
Third International Semantic Web Conference (ISWC 2004), November, 2004

[3] Web Ontology Language (OWL), World Wide Web Consortium, http://www.w3.org/2004/OWL/
[4] Resource Description Framework (RDF), World Wide Web Consortium, http://www.w3.org/rdf/
[5] T.R. Gruber. “A translation approach to portable ontologies”, J on Knowledge Acquisition, Vol 5(2), p199-220, (1993)
[6] Language and Computing. http://www.landc.be
[7] Goh, C.H., Bressan, S., Madnick, S., Siegel, M., "Context interchange: new features and formalisms for the intelligent

integration of information", ACM Trans. on Information Systems, 13(3), pp. 270-293, 1999
[8] Gannon, T., Madnick , S., Moulton , A., Siegel , M., Sabbouh , M., Zhu, H. “Semantic information integration in the

large: adaptability, extensibility, and scalability of the context mediation approach”, MITRE Corporation , Massachusetts
Institute of Technology (MIT) - Sloan School of Management, MIT Sloan Working Paper No. 4541-05; CISL Working
Paper No. 2005-04 , May 2005

[9] Byrne, R.J., “Cursor on Target: A case study deploying what, where and when in the battlefield”, MITRE Technical Report
MP04B0000056, MITRE Corp., December 2004

[10] Byrne, R.J., “Getting DOD linked – how to build netcentric operations”, MITRE Technical Report MP04B0000058,
MITRE Corp., December 2004

[11] National Imagery and Mapping Agency (NIMA) USA, GEOTRANS 2.2.4-Geographic Translator,
http://earth-info.nima.mil/GandG/geotrans/

[12] Kazura A., Sabbouh M., Position ontology, The MITRE Corporation, pending public release
[13] Hobbs, J., “A DAML ontology of time”, 2002, http://www.cs.rochester.edu/~ferguson/daml/daml-time-nov2002.txt
[14] Schroeder, B. and Sabbouh, M., Geotrans WSDL, 2005, The MITRE Corporation, pending public release
[15] OWL-S: Semantic Markup for Web Services, http://www.w3.org/Submission/OWL-S/, November, 2004
[16] Crubrzy,M.,Pincus,Z.,Musen.M.A., “Mediating knowledge between application components”, Semantic Integration

Workshop of the Second International Semantic Web Conference (ISWC-03), Sanibel Island, Florida, CEUR, 82. 2003.
[17] Renner, S., “A Community of Interest approach to data interoperability”, Federal Database Colloquium ’01, San Diego,

August 2001.
[18] Web Service Modeling Ontology (WSMO), http://www.w3.org/Submission/WSMO/, June 2005
[19] Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M., “SWRL: A Semantic Web Rule Language

Combining OWL and RuleML”, W3C Member Submission 21 May 2004, http://www.w3.org/Submission/2004/SUBM-
SWRL-20040521/

[20] Lehmann, J., Borgo, S., Masolo, C., Gangemi, A., “Causality and causation in DOLCE”, to appear in A.C. Varzi, L. Vieu
(eds.), Formal Ontology in Information Systems, Proceedings of the International Conference FOIS 2004, Torino,
November 4-6, 2004, IOS Press Amsterdam, 2004, pp. 273-284

 ©2005 The MITRE Corporation. ALL RIGHTS RESERVED 31

http://www.findarticles.com/p/articles/mi_m0IAU
http://www.findarticles.com/p/articles/mi_m0IAU/is_1_8
http://www.findarticles.com/p/articles/mi_m0IAU/is_1_8
http://iswc2004.semanticweb.org/
http://www.w3.org/2004/OWL/
http://www.landc.be/
http://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=477615
http://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=328002
http://www.nima.mil/
http://earth-info.nima.mil/GandG/geotrans/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/WSMO/
http://www.cs.man.ac.uk/%7Ehorrocks/
http://www-db.research.bell-labs.com/user/pfps/
http://www.cs.unb.ca/~boley/
http://home.comcast.net/~stabet/
http://ebusiness.mit.edu/bgrosof/
http://www.daml.org/people/mdean/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://fois2004.di.unito.it/

	1.0 INTRODUCTION
	2.0 Engineering of ontologies
	2.1 Build the IS Ontologies
	2.2 Use Relevant Context Ontologies
	2.2.1 Position Context Ontology
	Fig. 5. Portion of Position Context Ontology

	2.3 Integrate Web Services Using Ontologies
	2.3.1 Integrate GeoTrans Web Service into the Position Cont
	We will show in Section 2.6 that an instance of a coordinate
	2.5 Purpose of Onto-Mapper: Interpreting the OWL/RDF Links
	Direct Path Query (DPQ)
	Incoming Intersection Query (IIQ)

