
Proceedings of IDETC/CIE 2005 
ASME 2005 International Design Engineering Technical Conferences &  

Computers and Information in Engineering Conference 
September 24-28, 2005, Long Beach, California, USA 

DETC2005-84482 

DYNAMIC FINITE ELEMENT MODELING OF CARBON NANOTUBES  
USING AN INTRINSIC FORMULATION 

 
 

Michael J. Leamy 
The MITRE Corporation 

7515 Colshire Drive 
McLean, VA 22102 
mjleamy@mitre.org  

 
 
ABSTRACT 

This article presents an efficient explicit dynamic 
formulation for modeling curved and twisted Carbon 
Nanotubes (CNT’s) based on a recently-developed intrinsic 
beam description (i.e. the dynamic state given by curvatures, 
strains, and velocities only) [Hodges, 2003] together with a 
finite element discretization incorporating atomistic potentials.  
This approach offers several advantages primarily related to the 
model’s computational efficiency: 1) the resulting partial 
differential equations governing motion are in first-order form 
(i.e. have first-order time derivatives only), 2) the system 
nonlinearities appear at low order, 3) the intrinsic description 
incorporating curvature allows low-order interpolation 
functions to describe generally curved and twisted nanotube 
centerlines, 4) inter-element displacements, slopes, and 
curvatures are matched at the element boundaries, and 5) finite 
rotational variables are absent, along with their inherit 
complexities.  In addition, the developed model and finite 
element discretization are able to capture the nanotube’s 
dynamic response, without the expense of calculating the 
dynamic response of individual atoms as per Molecular 
Dynamics models.  Simulation results are presented which 
illustrate the dynamic response of a typical CNT to axial, 
bending, and torsional loading.  Results from the simulations 
are compared to similar results available in the literature, and 
close agreement is documented.  Keywords: nanotube, 
nanomaterial, finite element, dynamic, computational 
nanomechanics 

1. INTRODUCTION 
The intent of this study is to develop a computationally 

efficient, dynamic, model of a carbon nanotube (CNT) for later 
incorporation into a general framework capable of simulating 
CNT nanocomposites, i.e. composite materials composed of a 
matrix material reinforced by fiber-like carbon nanotubes.  It is 
anticipated that nanocomposites may be used in diverse 

applications where the geometry and loading may not be of a 
simplistic nature.  It is also anticipated that a large-degree of 
accuracy (and thus a small discretization length-scale) will be 
requested of any future nanocomposite model.  For these 
reasons, this effort focuses on developing a reduced-order 
dynamic nanotube finite element suitable for incorporation into 
a general finite element framework.   

Several computational models exist in the literature for 
simulating the mechanical response of a carbon nanotube which 
can be considered as candidate finite elements.  Attention here 
will be focused narrowly on the literature detailing 
computational nanotube modeling.  Comprehensive literature 
reviews which detail the current state-of-the-art of all other 
carbon nanotube and nanocomposite modeling approaches are 
provided by [Qian et al., 2002] and [Srivastava et al., 2003].   

In addition to approaches using classical molecular 
dynamics [Iijima et al., 1996; Yakobson et al., 1997] or tight-
binding molecular mechanics [Hernandez et al., 1998], both of 
which result in elements which are prohibitively large in 
degrees of freedom, a number of reduced-order continuum-like 
computational approaches have also been developed.  These 
approaches can be broadly separated into general (continuum) 
approaches and more-specific elasticity approaches in which 
the nanotube is modeled using elastic truss, beam, or shell 
theories.  Numerous among the general approaches are those 
that bridge molecular mechanics and continuum mechanics, 
such as the quasi-continuum method [Tadmor et al., 1996, 
1999], the coarse-grained molecular dynamics method [Rudd 
and Broughton, 1998], the hand-shaking methods [Abraham et 
al., 1998], [Belytschko and Xiao, 2003], the atomistic-
continuum homogenization method [Chung and Namburu, 
2003], and the Atomic-Scale Finite Element method [Liu et al., 
2004].  A structural mechanics approach [Li and Chou, 2003] 
has also been introduced which treats the nanotube’s carbon-to-
carbon bonds as sources of axial, bending, and torsional 
stiffness.  Although these methods address directly, or can be 
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applied to, carbon nanotubes, they have not benefited 
significantly from dimension or order reduction and as a result, 
as pertains to this effort, contain a prohibitively large number of 
degrees of freedom.   

Elasticity models have benefited from dimension and order 
reduction and can be further divided into one-dimensional 
truss-like/beam-like models and two-dimensional shell-like 
models.  Truss and beam models similar to that detailed in 
[Odegard et al., 2002] have been used to determine a 
nanotube’s effective axial, bending, and torsional rigidities.  
Extensions of these models have not been developed for 
obtaining a nanotube’s response to general three-dimensional 
loading, as is desired here.  However, shell models (in 
discretized form [Arroyo and Belytschko, 2002, 2003; Pantano 
et al., 2004]) have been developed which are capable of 
simulating the three-dimensional equilibrium response of a 
carbon nanotube, to include buckling of the tube’s inner wall in 
response to axial, bending, and torsional loading.  It should be 
noted that to simulate inner wall buckling requires a large 
number of elements and a nanotube undergoing relatively large 
displacements.  Considering that the average length of a 
nanotube is measurable in nanometers, the extreme degree of 
nanocomposite bulk deformation required to induce wall 
buckling should not be expected in nearly all applications.  It is 
therefore reasonable to expect further gains in computational 
efficiency can be achieved, with little loss in accuracy, by 
reducing the dimension of the nanotube model and 
(importantly) considering a fully three-dimensional 
deformation state.  The latter requires a state description 
capable of decomposing two components of curvature and one 
component of torsion, of which there are several.   

The remainder of this work is concerned with developing 
such a model based on a recently developed intrinsic beam 
formulation [Hodges, 2003] together with a finite element 
discretization incorporating atomistic potentials.  In addition to 
curvature and torsion, the model developed captures axial 
extension and simple two-axis cross-sectional shear.  The 
developed model is also the first reduced-order CNT model 
known to the author capable of determining both static and 
dynamic responses to external loading. 

2. CNT INTRINSIC FORMULATION 
A finite element model for a carbon nanotube is developed 

next using an atomistic-based intrinsic formulation which 
follows closely the kinematics and governing equations of a 
recently developed anisotropic beam model [Hodges, 2003].  In 
the current context, intrinsic refers to a description of the 
nanotube configuration without reference to displacements and 
rotations, and instead with reference to curvatures and strains.  
This approach offers several advantages: 1) the resulting partial 
differential equations governing motion are in first-order form 
(i.e. have first-order time derivatives only), 2) the system 
nonlinearities appear at low order, 3) the intrinsic description 
incorporating curvature allows low-order interpolation 
functions to describe generally curved and twisted nanotube 
centerlines, unlike with a choice of an extrinsic description tied 
to displacements for which higher-order (and thus more degrees 
of freedom) interpolants are necessary, 4) inter-element 
displacements, slopes, and curvatures are matched at the 
element boundaries, and 5) finite rotational variables are 
absent, along with their inherit complexities.  In addition, the 

developed model and a subsequent finite element discretization 
are able to capture the nanotube’s dynamic response, without 
the expense of calculating the dynamic response of individual 
atoms as in Molecular Dynamics simulations. 

Consider the initially curved and twisted nanotube, shown 
in Fig. 1, in which position along the centerline of the nanotube 
is given by r and for which a set of orthogonal unit basis 
vectors bi are used to locate points away from the centerline.  
Tangent to the center-line is the basis vector b1 while b2, b3 are 
considered to be fixed in the nanotube cross-section.  As such, 
distance along the centerline is denoted by x1 and off-centerline 
points have at least one non-zero x2, x3.  Spatial changes in this 
initial triad are given by  where k is the curvature 
vector with components ki relative to bi such that k1 measures 
the initial twist and k2, k3 measure the b2, b3 components of the 
initial centerline curvature.  In the deformed configuration, a 
new centerline R is measured by arc distance s while points on 
the deformed cross-section are referenced to the orthogonal unit 
basis vectors Bi where, due to cross-sectional shear, B1 is not 
tangential to R.  Instead, B2 and B3 are considered to be unit 
vectors in the direction of convected b2 and b3 and B1 is defined 
by 

ii bkb ×=′

321 BBB ×= .  Note that for small deformations, the x1-

spatial changes in the Bi basis can be expressed as ii BKB ×=′  
where  denotes the deformed configuration’s curvature 
vector with components Ki relative to Bi.  In addition to the new 
centerline curvature, the centerline is allowed to stretch (as 
measured by strain component 11

K

γ ) and the nanotube cross-
section is allowed to shear in both transverse directions (as 
measured by 12γ  and 13γ .   Together, the strain components are 
stored in a strain vector given by . [ ]T131211 ,, γγγ=γ

 
Figure 1: Geometry of a nanotube in the undeformed and 
deformed configurations.    

 
The intrinsic equations of motion governing the nanotube 

response to external loads follow those presented by Hodges 
[2003] for an initially curved and twisted anisotropic beam, 

PPfFKF ×+=+×+′ Ω& ,  (1a) 
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( ) PVHHmFeMKM 1 ×+×+=+×++×+′ Ω&γ    (1b) 
where all quantities are assumed to have x1-dependence only 
such that this first set of equations relates x1-spatial changes in 
the internal force resultant F and internal moment resultant M, 
both acting on the deformed nanotube’s cross-section, to the 
time rate-of-change of linear momentum per unit length P 
(associated with velocity V) and angular momentum per unit 
length H (associated with angular velocity Ω).   The net 
distributed forces per unit length are captured by f, while the 
net distributed moments per unit length are captured by m.  
Measured relative to Bi the unit vector e1 is given by [1 0 0 ]T.   
A second set of equations relates x1-spatial changes in the 
velocity V and angular velocity Ω to time derivatives of the net 
curvature κ (i.e. K - k) and the strain γ , 

κ&=×+′ ΩΩ K ,   (1c) 
( ) γγ &=×++×+′ Ω1eVKV .    (1d) 

The general momenta and velocities are related through the 
mass per-unit-length µ; cross-sectional mass moments and 
product of inertia i2, i3, i23; and centroidal offsets from the 
centerline 32 , xx ,  
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where subscripts refer to the Bi basis vectors.  Note that if 
position X of the nanotube centerline at any location x1 is 
desired, V can be integrated with respect to time.   
 

The formulation is completed with specification of 
(generally anisotropic) constitutive equations relating 
deformation metrics (κ, γ ) to internal stress resultants (F, M).    
Herein, the constitutive relationship is derived directly from the 
nanotube crystalline structure and the atomistic potential energy 
function.  Specifically, a strain energy function u per unit 
length is assumed such that  

γ∂
∂

=
uF ,     

κ∂
∂

=
uM .  (3) 

As discussed in the next section, the bridge to atomistic 
mechanics is accomplished by equating strain energy density u 
to the energy of a four-atom representative volume element 
(rve) calculated using any appropriate atomistic potential. 

3. ATOMISTIC-BASED CONSTITUTIVE MODELING 
A carbon nanotube can be described as a graphene sheet 

rolled about a particular direction C described by the so-called 
chiral angle φ, as shown in Fig. 2.  Graphene is a particular 
crystalline lattice form of carbon in which each carbon atom is 
bonded to three neighboring carbon atoms, forming a 
hexagonal arrangement.  In Fig. 2, straight line segments depict 
the hybridized sp2 bonds between the carbon atoms, while the 
carbon atoms themselves (not shown) exist at the intersections 
of the line segments.  Accordingly, each hexagon holds six 
carbon atoms. 

In general, a crystalline lattice L in its reference (unloaded) 
configuration is comprised of a number of interpenetrating 
Bravais lattices whose points are given by 

ki
iM paX += ,  with i = 1, 2, 3, Mi ∈ Z,  (4) 

where X are the lattice intersection points,  are the linearly 
independent (although not necessarily orthogonal) lattice 
vectors or Bravais base vectors, and  are the shift vectors for 
the inner atoms.  For N+1 atoms in the basis, the index k runs 
from 0 to N [Zanzotto, 1992].  For graphene, two Bravais 
lattices are present and therefore k equals one.  Note that since 
graphene is a planar crystal, only the base vectors a1 and a2 
need be considered, where each has an undeformed length  

equal to 2.46 .  These base vectors can be used to define the 
chiral vector C: (n,m).  The length of the chiral vector is given 
by 

ia

kp

0l
o
A

22
0 mnmnlC ++== C , which when divided by 2π 

yields the nanotube radius r.  Due to periodicity of the lattice, 
each choice of C defines a unit cell, which is defined to be the 
smallest rectangle defined by C, and a translate of C, such that 
all four corners of the unit cell coincide with an atomic lattice 
point.  The translation vector is given by T whose length is well 
documented, see for example [Harris, 1999], and is given by, 

 
( )⎩

⎨
⎧

=−
≠−

=′+′′+′==
HH

HH

zdmndC
zdmndCmmnnlT

33/3
3/322

0T , (5) 

where H  denotes the highest common divisor of n and m and 
z denotes any integer.  The height h and width w of the unit cell 
will be used interchangeably with T and C.  Note that many 
stable carbon nanotube configurations are known to exist which 
result in a variety of admissible radii (r’s) and chiralities (φ ’s).  
Two configurations in particular are the armchair tubes [30 
degree chiral angle φ ; C: (n,n)] and the zig-zag tubes [zero 
degree chiral angle φ ; C: (n,0)]. 

d

The stored potential energy of an atomistic system can be 
modeled using an appropriate atomistic potential function.  
These potentials typically see application in Molecular 
Dynamics (MD) simulations, but have also recently been 
applied to reduced-order or continuum-like models 
[Belytschko, et al., 2002; Zhang et al., 2002; Arroyo and 
Belytschko, 2003].  For a given set of interacting atoms, the 
atomistic potential function computes the atomistic energy 
based on bond lengths (i.e. two-body potentials), and in many 
cases, bond lengths and bond angles (i.e. three-body potentials).  
An alternative means to compute atomic energy is through use 
of the so-called Tight-binding models, which are simplified 
quantum-mechanical models.  Tight-binding models are not 
incorporated into the present formulation.   

Examples of commonly used potentials for carbon systems 
include the Morse potential, a two-body potential, and the 
Modified Morse and Brenner potentials [Brenner, 1990], three-
body potentials.  Although commonly accepted for carbon 
nanotubes, the Brenner potential does not exhibit a clear 
separation between the bond-generated energy and the angle-
generated energy, which is necessary for calculating the energy 
of this work’s representative volume element.  A recent 
Modified Morse potential [Belytchsko et al., 2002] does have 
this feature, and is therefore the potential chosen for this work.  
The potential is detailed in Section 3.2.        
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Figure 2:  Geometry of the graphene sheet; representative 
volume element; tube.   

3.1 Configuration Kinematics 
In order to implement the chosen atomistic potential 

function, the relative position of any two atoms away from the 
deformed centerline must be known.  These relative positions 
can then be used to identify the bond length and, using three 
atoms, the bond angles.  Ideally, in keeping with the intrinsic 
nature of the formulation, these relative positions should be 
expressed in terms of the intrinsic metrics net curvature κ and 
strainγ .  This is accomplished by introducing an expansion of 
the atomic position vectors and the basis vectors , as 
follows.  For brevity, presentation of the expansion is limited to 
low orders.  However, in order to capture the center-line’s 
dependence on geometric torsion1, the numerically 
implemented expansions are up to and including  terms.   

)( 1xiB

)( 3
1dxO

To start, consider the position vector in the deformed 
configuration  of any point on the cross-section 
originally occupying material point (x1, x2(x1)=a2, x3(x1)= a3)  
and the position vector  of any second point 
originally occupying material point (x1 + dx1, x2(x1 + dx1)=b2, 
x3(x1 + dx1) =b3).  It is convenient to express  using the 
centerline position  such that in the deformed 
configuration, 

)( 1x*R

)( 11 dxx +*R

)( 1x*R
)( 1xR

( ) )()(2)(2)(),;( 1311321121321 xaxaxxaax 1
* BRR γγ ++=  

  ,   (6) )()( 1312 xaxa 32 BB ++

                                                           
1 Inspection of the local canonical form, e.g. [do Carmo, 1976], reveals 

that geometric torsion first appears at O(ds3).  

where it is noted that additional cross-sectional warping with 
x2-, x3-dependence [Hodges, 1990] is considered a secondary 
effect and is therefore not included in the kinematical 
description of the nanotube deformation.  In a similar manner, 

 can be expressed as, )( 11 dxx +*R
     )()()(),;( 113112113211 dxxbdxxbdxxbbdxx +++++=+ 32

* BBRR

 ( ) )()(2)(2 113111321112 dxxbdxxbdxx +++++ 1Bγγ .   (7) 
In order to calculate distances and angles using  

and 11 , 1  must be expressed in terms of 
the basis vectors Bi  at .  This can be accomplished using a 
Taylor expansion applied to both 

)( 1x*R
)( dxx +*R 1 dxx +*R )(

1x
)( 11 dxx +iB  and to 

11 )( dxx +R .  Note that it is critical to expand both the position 
vector and the basis vectors, as opposed to just the position 
vector as per deriving the local canonical form of a space curve.  
As an illustration, consider a bending deformation for which 
the change in length of an arc segment away from the centerline 
would not be accounted for if )(),( 1111 dxxdxx ++ 32 BB  
remained oriented with .  The basis vectors can 

be expanded to O  as,  
)(),( 11 xx 32 BB

)( 3
1dx

=+′′+′+=+ )()(
2
1)()()( 3

1
2

1111111 dxOdxxdxxxdxx iiii BBBB

  
   ( ) +×+ 1111 )()()( dxxxx ii BKB  

( )( ) )()()()()()(
2
1 3

1111111 dxOdxxxxxx +×′+×× ii BKBKK ,   (8) 

and the centerline position can be expanded as   

+=+′′+′+=+ )()()(
2
1)()()( 1

3
1

2
1111111 xdxOdxxdxxxdxx RRRRR

 
)()()(

2
1)()(

2
1)( 3

1
2

1112
2

111311 dxOdxxxKdxxxKdxx +−+ 321 BBB ,  (9) 

where for small strains 1BR =′ )( 1x  and 

3211 BBBKBR 231)( KKx −=×=′=′′  has been used.   Using 
both expansions together with expansions for )( 1112 dxx +γ  and 

)( 1113 dxx +γ , the final expression for  is given as, )( 11 dxx +*R
 R   )(),;( 13211 xbbdxx R* =+
     + ( ) ( ) ( )[ ] )(122 12 sdxKbKbbdxbdx 1B332311313211212 +−+′++′+ γγγγ  
       ( )[ ] )(22 xdxKbKbKbb B 1133133212132 2γγ ++−++     

+ ( )[ ] )()(22 2
11123132212123 dxOxdxKbKbKbb +−−+ 3Bγγ   (10) 

From (6) and (10), the relative position r  of two atomic 
positions in the deformed configuration can now be given by,  

ab

( )[ ] )(221)(2)( 112 xdxKKbbbabab 1B2 312 babr 32313212331322 +−′+′++−+−= γγγγ  
            ( )[ ] )(22)( xdxKbKbKbab B 11331332121322 2γγ ++−+−+     

    ( )[ ] ()(22)( 2
111231322121233 dxOxdxKbKbKbab +−−+− 3Bγγ )+ .  (11) 

With development of an intrinsic relative position measure , 
the bond lengths and bond angles are expressed in terms of the 
intrinsic deformation metrics,    

abr

acab

acab
ab rr

rrr ⋅
== )cos(, abcabr θ .      (12) 

3.2 Modified Morse Potential 
The atomistic potential chosen for this study is a Modified 

Morse Potential [Belytchsko et al., 2002], although it is noted 
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that the formulation is not dependent on any specific atomistic 
potential.  As discussed in [Belytchsko et al., 2002], if the 
classical Morse Potential is to be used for modeling CNT’s, a 
three-body term accounting for angular position must be 
included in order to stabilize a tubular position.  As such, the 
modified potential then takes the form, 

anglestretch EEE += ;  [ ]{ }11
2)( 0 −−= −− rr

estretch eDE β ;     

( ) ( )[ ]4
0

2
0 1

2
1 θθθθθ −+−= sexticangle kkE  (13) 

where Estretch is the bond energy due to bond stretch, Eangle is the 
bond energy due to bond angle-bending, r is the length of the 
bond, and θ  is the current angle of the adjacent bond. The 
parameters used in all simulations herein correspond to sp2 
bonds and are given by 

m1039.1 10
0

−×=r ;   ;  
;  

Nm1003105.6 19−×=eD
-110 m10625.2 ×=β rad094.20 =θ ; 

;  . 218 rad/Nm109.0 −×=θk -4rad754.0=sextick
Performance of this potential for strains below 10% has been 
shown to compare very well [Belytchsko et al., 2002] to the 
more commonly accepted Brenner potential [Brenner, 1990] – 
the advantage of adopting the Modified Morse Potential is that 
the stretching and angular contributions are distinct, which is 
important when forming a representative volume element, as 
discussed next. 

3.3 Representative Volume Element 
The connection between the deformation state variables 

(V , ,κ, ) and the stored atomic energy can be made using 
representative volume elements at locations x1.  In turn, strain 
energy density per unit length u is connected to rve atomistic 
energy  as follows, 

Ω γ

rveE

rve

rve

l
Eu = ,                  (14) 

where  is a characteristic length of the rve.  Note that for 
each x1 in which the internal forces F and moments M are to be 
calculated, several rve’s should be evaluated (and energy 
averaged) corresponding to several locations on the nanotube 
surface.  In this way, using bending as an example, stretching 
of atomic bonds at one location on the perimeter, and 
compression of atomic bonds at an opposing location, is 
appropriately captured. 

rvel

Following the development of [Arroyo and Belytchsko, 
2003], a four-atom rve is chosen as shown in Fig. 2.  In contrast 
to [Arroyo and Belytchsko, 2003], the present approach 
requires a strain energy density per unit length, which is 
developed as follows.  The chosen rve consists of three bond 
lengths and three bond angles covering completely the three 
bond length and angle varieties in each graphene hexagon.  
However, for the graphene hexagons, every bond length is 
shared by two hexagons, while each bond angle is unique to 
each hexagon.  As such, the three rve bonds represent the three 
net bond lengths contained in a single graphene hexagon, while 
the three rve angles represent only half of the net bond angles 
in the same graphene hexagon.  This dictates that an energy per 
unit area be defined as, 
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rve
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rve
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Hex
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EE

A
Ee

2+
=≡ ,  (15) 

where  is calculated from the Modified Morse Potential 
summing the stretch energy from the three rve bond lengths, 

 is calculated summing the angle-bending energy using 
the three rve bond angles, and  represents the area of the 

graphene hexagon (5.019743 ).  The final desired expression 
for energy per unit length u can now be formed from the unit 
cell dimensions width w and height h, 

rve
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=
2 . (16) 

For completeness of the discussion, the rve characteristic length 
is identified from (14) and (16) as wAl Hex

rve = . 
To calculate the internal forces and moments, derivatives 

of u with respect to the deformations  and κ must be formed.  
These derivatives can be calculated as follows, 
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where i,j,k are indices representing the four rve atoms such that 
the non-zero bond lengths  include only {r12, r13, r14} and the 

non-zero bond angles  include only {
ijr

ijkθ 123θ , 124θ , 134θ }.  
These quantities can be calculated from the deformation state 
using the procedure described in Section 3.1, while the 
complexity associated with finding closed-form expressions for 
their derivatives with respect to  and κ will require finite 
difference approximations in the numerical implementation.   

γ

With the viewpoint that atom 1 is located at x1, and that the 
other three atoms are located a small distance dx1 away, the 
parameters {x1, dx1, a2, a3, b2, b3} required to evaluate the 
expressions in Section 3.1 are as follows:  

1

)1(
1

0)1(
1 xxx η+= , , , θηθθ += )1(0)1( )cos( )1()1(

2 θra =

)cos( )1()1(
3 θra = ,                              (18a) 

13
cos0)2(

1 xbdx ηφπ
+⎟

⎠
⎞

⎜
⎝
⎛ += ⎟

⎠
⎞

⎜
⎝
⎛ ++= φπθθ

3
sin

0
)1(0)2(

r
b , 

)cos( )2()2(
2 θrb = ,  ,  (18b) )cos( )2()2(

3 θrb =

13
cos0)3(

1 xbdx ηπφ +⎟
⎠
⎞

⎜
⎝
⎛ −= ⎟

⎠
⎞

⎜
⎝
⎛ −+=

3
sin

0
)1(0)3( πφθθ

r
b ,  

)cos( )3()3(
2 θrb = ,  ,         (18c) )cos( )3()3(

3 θrb =

( )
1

cos0)4(
1 xbdx ηφ +=− ( )φθθ sin

0
)1(0)4(

r
b

−= , , )cos( )4()4(
2 θrb =

)cos( )4()4(
3 θrb = ,            (18d) 

where the atom referenced is indicated by a right superscript in 
parentheses, an initial location at the start of the simulation is 
referenced by a left superscript zero, θ  refers to an angular 
measure counter clock-wise away from the x2-axis, the initial 

bond length is denoted by  (1.39 ), and inner b0
o
A
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displacements (discussed in the next section) of atom 1 in the x1 
and θ  directions are denoted by 

1xη  and θη , respectively.  

3.4 Inner Displacements 
For large deformations, the Bravais multi-lattice should be 

relaxed using inner displacements [Tadmor; Arroyo and 
Belytchsko, 2003].  These inner displacements allow atom 1 to 
move relative to atoms 2, 3, and 4 such that a lower minimum 
energy state can be achieved – this is equivalent to one of the 
lattices moving rigidly relative to the other.  Use of the inner 
displacements in the formulation is discussed in Section 5.2, 
while results in which the rve is relaxed, versus left unrelaxed, 
are presented in Section 6. 

4. FINITE ELEMENT FORMULATION  
The first-order governing equations are now specialized to 

the case of a nanotube in an initially straight configuration (i.e. 
κ = K).  Further simplification of the equations results when the 
mass of the atoms is locally averaged over the nanotube 
surface, in which case the mass center of any cross-section is 
located on the centerline (i.e. 032 == xx ), and the cross-
section has radial symmetry (i.e. ).  Note that this 
simplification becomes increasingly more appropriate as the 
nanotube radius increases, and thereby the number of atoms 
increases.  With the above simplifications the governing 
equations reduce to, 

023 =i

VfFKFV µµ ×−+×+′= Ω& ,  (19a) 
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,  (19b) 

ΩΩ ×+′ KK=& ,        (19c) 
( ) Ω×++×+′= γγ 1eVKV& ,   (19d) 

where  has been introduced.   321 iii +≡
The governing equations as stated above, with an 

appropriate selection of boundary conditions, denote a so-called 
strong form.  The weak form is more convenient from a finite 
element standpoint and can be developed from the strong form 
using virtual velocities and deformation measures Vδ  and Ωδ .  
Unlike the actual velocities, the virtual velocities are allowed to 
satisfy homogenous boundary conditions at the domain ends.  
Taking the inner product of each equation with the appropriate 
virtual quantity yields the following weak form, 

(∫∫ ⋅×−+×+′=⋅ 11 dxdx VVfFKFVV δµδµ Ω& )
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,  (20a) 
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( )∫∫ ⋅×+′⋅ 11 dxdx ΩΩΩΩ δδ KK =& ,  (20c) 

( )(∫∫ ⋅×++×+′=⋅ 11 dxdx VeVKVV 1 δδ Ωγγ& .   (20d) 

Spatial derivatives of the non-interpolated internal forces 
can be shifted to the virtual velocities through an integration by 
parts.  Applying the homogenous boundary conditions to the 
virtual velocities allows the first two governing equations to be 
rewritten as, 

( )∫∫∫ ⋅×−+×+′⋅′−=⋅ 111 dxdxdx VVfFKVFVV δµδδµ Ω& ,(21a) 
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Next the center-line distance x1, the deformation state 
measures (V ,Ω , K , ) and the virtual velocities (γ Vδ , Ωδ ) are 
interpolated for an element,  = [0, l], in the usual manner 
using shape functions 

1x
)(ξIN  and nodal values, 

I
I xNx 11 )(ξ= , , , 

, , , 

I
IN VV )(ξ= Ι

IN ΩΩ )(ξ=
I

IN KK )(ξ= I
IN γγ )(ξ= J

J VN δξδ )(=V
 ,   (22) J

JN Ω= δξδ )(Ω
where ξ  represents a natural coordinate assuming values from  
-1 to 1 and where nodal quantities are indicated by a superscript 
I or J ranging from 1 to n, the number of element nodes.  
Repeated indices denote summation in the usual sense.  
Introducing the interpolated quantities into the governing 
equations, evaluating inner products, and recognizing that the 
expressions must hold for all allowable virtual velocity fields 
results in the semi-discrete equations,  

ijk
K
j

I
i

JIKJ
k

I
k

JI eVcFVa Ω−= µµ ~& ,  (23a) 

{ ijk

jon
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JI eicMia )(~
321

& ΩΩ−=Ω ,  (23b) 
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JI eceVKcVba Ω+++= 1δγγ& ,   (23d) 
where  

∫
−

=
1

1

ξdNNa IJ
JI J , ∫

− ∂
∂

=
1

1 1
, ξξ
ξ d

x
NNb IJ

JI J , 

∫
−

=
1

1

ξdNNNc KIJ
JIK J ,  with 

ξd
dx1=J      (24) 

are quantities which are invariant with respect to the 
deformation state (i.e. in the subsequent simulations can be 
calculated initially and re-used at each later time interval),  

denotes the permutation index operator and 
ijke

1iδ  denotes the 
Kronecker delta, and internal force terms requiring integration 
are represented by the quantities  and J

kF~ J
kM~  given explicitly 

by,  

( )∫
−

++′−=
1

1

~ ξdNfeFKNNNFF Jkijkj
I
iJIJk

J
k J ,     (25a)  

         ∫
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I
iJIJk
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( ) ξδγ dNmeFNN Jkijkji
I
iJI J)1 +++ .        (25b) 

In all expressions, the free indices J (not to be confused 
with the Jacobian J  appearing in the integrals) and k indicate 
3n nonlinear first-order equations.  In the temporal integration 
of the semi-discrete equations, (25a,b) are integrated spatially 
using Gauss integration with the internal forces and moments 
being calculated via multiple representative volume elements at 
each Gauss point, as discussed in Section 5.1.  

5. IMPLEMENTATION FOR A THREE-NODED 
ELEMENT 
The formal finite element formulation detailed in Section 4 has 
been implemented in the form of a three-noded nanotube 
element integrated temporally using a 2nd order-accurate Heun 
Predictor-Corrector integration.  Multiple elements are 
assembled using a standard procedure [Hughes, 1987].  Note 
that the assembly enforces continuity of the deformation state 
and hence the elements exhibit a high-degree of inter-element 
continuity - strains and curvatures are continuous across 
element boundaries.  This is in contrast to only displacement, 
and possibly slope, continuity as seen in more traditional beam-
like formulations. 

5.1 Shape Functions and Constants 
The shape functions used for the three-noded element are 

given as follows, 

( )1
2
1

1 −= ξξN ,  ,  2
2 1 ξ−=N ( 1

2
1

3 += ξξN ), (26) 

where each shape function evaluates to one at its home location 
and zero at other nodal locations.  Various quantities can now 
be evaluated.  The expressions , , and  are functions 
of undeformed arc length x1 and therefore need only be 
computed once and retained for the entire length of the 
simulation.  If the Jacobian  is approximated as constant (this 
is exact for two-noded elements with linear shape functions), 
the tabulated numerical values for ,  given in Table 1 can 
be used for all three-node elements, with best performance 
expected in cases where nodes are evenly spaced.  Twenty-
seven values for  are also calculated, but are not presented 
here in the interest of brevity. 

JIa JIb JIKc

J

JIa JIb

JIKc

Calculation of  and J
kF~ J

kM~  is dependent on the current 
deformation state of the element and must be performed at each 
time step.  These expressions are computed using a Gauss 
quadrature routine where at each x1 Gauss point the energy of 
four equally distributed (perimeter-wise) rve’s is computed and 
averaged, as per the discussion of Section 3.3.  Considerable 
efficiency gains can be achieved by calculating some of the 
derivatives present in (17) using finite differences, and saving 
the results for re-use over multiple time steps.  Since small time 
steps will be taken using an explicit procedure, little error is 
introduced in doing so if the total elapsed time between 
recalculation (and thus the change in the deformation state) is 

small.  This strategy is carried out for 
γ∂

∂ ijr , 
γ∂

∂ ijkθ , 
κ∂

∂ ijr , and 

κ∂

∂ ijkθ  at each of the four rve’s at each Gauss point.  Note that 

closed-from expressions are easily derived for 
ij

rve
stretch

r
E
∂

∂  and 

ijk

rve
angleE

θ∂

∂  and therefore these expressions are evaluated exactly at 

each time step. 
 
 JIa  I = 1 I = 2 I = 1 

    

 

J = 1 l
15
2  l

15
1  l

30
1

−  

 

J = 2 l
15
1  l

15
8  l

15
1  

 

J = 3 l
30
1

−  l
15
1  l

15
2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 JIb  I = 1 I = 2 I = 1 

    

 

J = 1 l
4
1

−  l
3
1  l

12
1

−  

 

J = 2 l
3
1

−   
    0 l

3
1  

 

J = 3 l
12
1  l

3
1

−  l
4
1  

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1:  Tabulated coefficients for the three-noded element 
where l is the element length.   

5.2 Inner Displacements 
An inner displacement calculation can also be done at each 

time step that new values of 
γ∂

∂ ijr , 
γ∂

∂ ijkθ , 
κ∂

∂ ijr , and 
κ∂

∂ ijkθ  are 

calculated.  The inner displacements of the Bravais lattices, 
1xη  

and θη , at each of the four rve’s at each Gauss point, are found 
using a Newton-Raphson routine which computes the 

1xη  and 

θη  required to minimize the rve energy.  During this 
calculation, the deformation state ( , ) and the current time 
are held constant.  Note that for small deformations, inner 
displacements may be unnecessary for the rve energy to be 
approximately stationary. 

K γ

5.3 Temporal Integration 
The semi-discrete finite element equations (23) must still 

be integrated temporally to compute the nanotube response.  In 
this study, an explicit 2nd order-accurate Heun Predictor-
Corrector algorithm, incorporating a lumped mass matrix, has 
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been chosen for the computations.  Casting (23) into the 
standard form 

             [ ] ),( t
dt
d yfyM =⋅ ,        

where  has been diagonalized using the “special lumping 
technique” 2 [Hughes, 1987], the integration in time proceeds 
with two steps.  First, a predictor  is computed via, 

[ ]M

1
~

+ny
                           ( )),(][~ 1

1 nnnn tt yfMyy ⋅∆⋅+= −
+ ,      

where subscript n denotes an already-calculated value at a 
previous time tn, tn+1 denotes the current time,  denotes the 
time step, and  is a trivial inverse in the sense that 

t∆
][ 1−M

ii
-1 M1]M[ =ii , no sum on i intended.  The corrector step then 

follows to yield the desired state at tn+1, 

( ),~(),(][
2 11

1
1 ++

−
+ +⋅

∆
+= nnnnnn ttt yfyfMyy ). 

6. Example Simulation Results 
Although the formulated nanotube element is expected to 

be incorporated into a more general framework capable of 
evaluating the mechanical response of a nanocomposite (e.g. 
fiber-like nanotubes embedded in a traditional matrix material), 
example simulations of a (10,10) armchair in vacuum are 
presented in this section in order to assess the accuracy of the 
formulation, and to illustrate the nanotube’s inherent response 
to a variety of loading.  Simulations are presented for moderate 
deformation of the order likely in a typical composite material 
application.  Specific focus is on the equilibrium configuration 
of the simulated nanotube, for which the results can be readily 
compared to similar results in the literature, and hence damping 
is introduced into the simulations.  The damping is not 
necessary for numerical stability, and in fact, all damping is 
decreased until none exists in the later time increments.   
Undamped, or nearly undamped, vibration response of a carbon 
nanotube will be considered in a follow-up study.  Here, 
damping is introduced through proportional damping elements 
which simply resist relative nodal changes in , , , 3 
while mass-scaling is utilized to increase the stable time step 
individually for each equation.  Note that eight damping 
elements exist for each three-noded nanotube element – two 
rectilinear damping elements situated between local nodes one 
and two, and between local nodes two and three; similarly two 
rotational damping elements, two curvature damping elements, 
and two strain damping elements.  For all simulations 
presented, four-point Gauss quadrature is employed when 
integrating to compute  and 

kV kΩ kK kγ

J
kF~ J

kM~ , and a three element 
(equal) discretization is used to represent the nanotube, 
although the development is general enough to include any 
number of Gauss points or elements.  The parameter space for 
the (10,10) nanotube is given in Table 2 while a depiction of 
the nanotube discretization is shown in Fig. 3.  

 
 

                                                           

 

2 The special lumped massing technique preserves the relative mass ratios 
of the diagonal terms in the consistent mass matrix, and also conserves the total 
mass.  Note that the “mass matrix” associated with (25c, 25d) is not a real mass 
matrix – however, the same lumping technique is used with these equations.      

3 This damping isn’t strictly nonconservative since the absolute direction 
of Bi varies from node to node in the deformed configuration.  

 
l

( ) o
A

r 
( )  o

A

µ 
(amu/ ) o

A

i1 
(amu ) o

A

i2 
(amu ) o

A

i3 
(amu ) o

A
      

300 6.875 710 7100 7100 7100 

 

Vd  

( o
A/eVamu ⋅ ) 

Ωd  
( eVamuA

o
⋅ ) 

Kd  
( amueV ) 

γd  
( amueV ) 

    

12 48 0.12 0.48 

Table 2:  Parameter space for the (10,10) armchair nanotube.  
Coefficients used for the proportional damping elements are 
given by Vd , Ωd , Kd , and γd .   
 

The simulation units used are in large part chosen to 
correspond with atomic-scaled units.  Lengths are expressed in 

Angstroms (1 = 1 × 10-10 meters) while forces are expressed 

as electron volts per Angstrom (eV/ ; 1 eV = 1.60217646 × 
10-19 Newton-meter).  Mass is expressed in terms of atomic 
mass units (1 amu = 1.660 538 73 × 10−27 kilogram).  As a 
result of these choices, the time unit is determined to be 

o
A

o
A

eVamuA
o

 which is equivalent to 1.018 × 10−14 seconds, or 
approximately one one-hundredth of a picosecond.  Heretofore, 

the unit of time measure eVamuA
o

 will simply be referred 
to as the time unit.   

The first computed results given in Fig. 3 illustrate bending 
response of the (10,10) armchair nanotube loaded at the ends by 
equal and opposing bending moments in the B3 direction.  No 
inner displacements are computed during the simulation and 
hence the results are termed unrelaxed.  The center node (global 
node 4) is constrained to have zero velocities (rectilinear and 
angular) to prevent drifting of the solution.  The moments are 
ramped up linearly in time from zero to their final value of 35 
eV at time 1.5 × 104 units.  Damping is such that the simulation 
proceeds nearly quasi-statically to its final equilibrium 
configuration.  Note that all damping coefficients are ramped 
down to zero in a quadratic manner beginning at time 3.5 × 104 
units and ending at time 5 × 104 units.   
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Figure 3: Bending response of the (10,10) armchair nanotube without lattice relaxation. 

 
For completeness, all state time-histories (twelve in total) 

are presented in Fig. 3.  Of interest specifically is the third 
curvature component time-history given in the first sub-figure.  

The nanotube’s equilibrium curvature of 13.8  results in a 
substantial angle of bending of roughly 24 degrees.  From this 
result, an average nanotube bending stiffness can be calculated 

1o
A

−
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as M3  / K3  =  (35 eV) / (13.8 × 10-4 ) = 2.53 eV-µm.  For 
comparison, an approximate bending stiffness of 2.60 eV-µm 
can be calculated using the elastic theory of beam bending 
[Srivastava et al., 2003].  The bending expression from this 
theory is Yhπr3 where Y is Young’s Modulus (taken as 1.2 
TPa), h is the van der Waal radius of a single carbon atom 

(3.4 ), and r is the (10,10) nanotube radius (6.875 ).  Note 
that the two bending stiffness values compare favorably and 
serve as a first verification of the presented formulation.  A 
comparison can also be made with a simulation in which 
lattice relaxation is performed using inner displacements.  
Results for the third component of curvature are given in Fig. 
4 when inner displacements are calculated every one-hundred 
time steps.  Notice that the predicted equilibrium curvature is 

now 15.5  leading to a bending stiffness of 2.3 eV-µm, 
which as expected, is lower than that calculated without 
relaxation.  For small deformations, the added numerical 
instabilities (as evident in the high frequency content of Fig. 4) 
associated with a relaxation step, and hence an abrupt system 
stiffness change, must be weighed versus the incremental 
change in the system response.  As a final remark, the only 
other deformation state variable of significance is the axial 
strain 11

1o
A

−

o
A

o
A

1o
A

−

γ , whose time-history demonstrates a residual value at 
equilibrium of -0.02%.  This residual strain is also present in 
simulations where the loading is absent, and indicates that the 
initial configuration used (dictated by the initial bond lengths 

[1.39 ], bond angles [π/3 rads], and tube radius [6.875 ]) 
closely, but not exactly, approximates the actual unloaded 
equilibrium configuration.  

o
A

o
A
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Figure 4: Bending response of the (10,10) armchair nanotube 
with lattice relaxation.   

 
A second illustration of the damped response of the same 

(10,10) armchair nanotube (without relaxation) is given in Fig. 
5a in which the axial strain time-history is shown for an 

applied end force of 30 eV/  in the B1 at global node 7.  In 
this simulation, global node 1 is held fixed by enforcing zero 
values for its rectilinear and angular velocities.  In all other 
respects, the simulated nanotube and its loading and damping 
are identical to that used to compute the bending response.  As 
evident in Fig. 5a, the equilibrium axial strain is computed to 
be 3.11%.  This value can be used to calculate an equivalent 
Young’s Modulus when the cross-sectional area is taken to be 
that of an annular region in which the outer radius is the 

6.875  and the inner radius differs by the van der Waal 

radius of a single carbon atom (3.4 ).  The calculation for the 
Young’s Modulus then yields a value of 1.4 TPa, which is 
well within the reasonable range of values calculated by 
several previous methods [Srivastava et al., 2003; Zhang et 
al., 2004].  Note that if lattice relaxation is performed (Fig. 
5b), the computed Young’s Modulus drops to 1.3 TPa.  

o
A

o
A

o
A

A final illustration of the damped (10,10) armchair’s 
response to loading is given in Fig. 6 in which time-histories 
for unrelaxed and relaxed lattices are carried out for a twisting 
moment simulation (35 eV in the B1 direction applied at node 
7).  The boundary conditions employed are the same as in the 
axial extension simulation.  For the unrelaxed lattice, the 

equilibrium axial curvature is computed to be 1.76 × 10-3  
while the equilibrium axial curvature for the relaxed lattice is 

computed to be 2.37 × 10-3 .  This results in predicted 
average torsional stiffnesses of 1.99 eV-µm and 1.48 eV-µm, 
respectively.  For a comparison, elastic beam theory predicts 
an approximate torsional stiffness of 1.3 eV-µm computed 
from the expression G(2πh)r3 where G is the shear modulus 
(taken as 0.30 TPa [Srivastava et al., 2003]).  Reasonable 
agreement between a result predicted in this study and an 
approximate one predicted by a simplified continuum model 
can again be documented. 
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Figure 5: Axial extension of the (10,10) armchair nanotube  
(a) without lattice relaxation and (b) with lattice relaxation.   

7. CONCLUSIONS 
An anisotropic beam formulation has been presented for 

efficient reduced-order modeling of carbon nanotubes in 
which the intrinsic deformation metrics are taken as curvatures 
and strains.  The material constitutive modeling is derived 
directly from an atomistic potential and a four-atom 
representative volume element.  An explicit, dynamic finite 
element framework has also been developed which can be 
used to simulate the dynamic response of a nanotube to 
external loading.  The resulting computational model has a 
number of advantages over other continuum and MD 
formulations, including low-order interpolation functions 
which describe generally curved and twisted nanotube 

centerlines using a small number of degrees of freedom; 
absence of finite rotational variables; and matching of inter-
element displacements, slopes, and curvatures at the element 
boundaries.  The equilibrium configuration of an example 
carbon nanotube in response to bending, axial extension, and 
torsional loading has been computed and compared to known 
results in the literature, with good agreement documented in 
all cases.  It is anticipated that the efficiency of the presented 
nanotube finite element will allow for its use in a more general 
framework for analyzing nanocomposites where large 
quantities of nanotube fibers must be simulated together with a 
matrix material. 
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Figure 6: Axial rotation of the (10,10) armchair nanotube (a) 
without lattice relaxation and (b) with lattice relaxation.   
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