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Abstract—In this study we consider the problem of how vl xln] ~ sin]

s[n]
to design an optimal multichannel blind deconvolution (MBD) — MIMO MBD =
algorithm in the case where the probability density functions 5 5 5
0] 0]
[0 0]

of the source signals are known. We assume existence of a System Algorithm
parametric channel model that accurately characterizes the
propagation environment. Through three major steps we derive a
blind channel parameter estimator that is used to jointly compute M; sources M, receivers M; estimated sources
the separation system and recover all the source signals. First, we Channel/source statistics

replace the normally assumed nonparametric channel model with
a physical model. Next, we introduce a symbolic pseudoinverse

HIn] °

} FU - ) Fig. 1. High level block diagram of information flow from source signals,
for our separation model to replace the ubiquitous inverse filter to observations, to estimated source signals. The multichannel blind decon-

separation model. Thirdly, we introduce a minimum divergence . tion algorithm attempts to “invert’ the multi-input multi-output channel
estimator formulation to replace the commonly used minimum  given only partial knowledge of channel or sources.

entropy formulation. We prove that the new estimator formed

in this way is asymptotically consistent and Fisher-efficient.

Through simulation we show the superior performance of our . .. .
algorithm compared with existing techniques based on entropy I MBD problems the channel is a multi-input multi-output
minimization and inverse filter separation. (MIMO) system that is generally linear time-varying, but it

Index Terms— optimal multichannel blind deconvolution, blind can be modelgd as "?‘ linear time-invariant (LTI) Syte”? over a
source separation, parametric channel model, known source SMall enough time window. The MIMO LTI systef|[r] is a
densities polynomial matrix which acts as a multichannel convolution

mapping from the source signal space with-vector process

s[n] to the observation space witl/,.-vector procesy|[n| as
. INTRODUCTION

oo

!—|E prqblem of blindly separat_mg multiple source S|gnals y[n] = Z H{lJs[n — 1] L
impinging on an array of receivers spans numerous fields

including multi-antenna wireless communications, sensor net- )
works, sonar, radar, speech, and biomedical sensing. The g¥gg¢re M: and M, are the number of source signals and

of multichannel blind deconvolution (MBD) is to procesdeceived signals respectively (see Fig. 1). The job of the MBD
an array of observations consisting of mixed and potentia}g0rithm is to recover an approximation to the source vector
delayed and convolved source signals in such a way asPi9cesss[n] given only the observation and known statistics
extract every source signal without knowing the channel 8f the channel and/or source. Every MBD algorithm consists
the transmitted waveforms. The impact of such a capabili§f four essential components:

is profound. Yet, to date, there is no known algorithm that [C1] Signal and System Model

provides a stableonsistentand Fisher-efficientestimate for  [C2] Separation Model

general convolutive mixture models. For these reasons andC3] Separation Criterion

others MBD fails for many practical scenarios. This is likely [C4] Optimization and Initialization Method

the reason why we have not seen much of an insertion of tg separation criteria use some form of prior information such
kind of technology in products today despite the abundange non-gaussianity of the source signals (e.g. [6]-[8]), non-
of scholarly attention in the recent past (see e.g. [1]-[3]) stationarity of second order statistics (e.g. [9], [10]), or time

o _ _ dependence (e.g. [11], [12]). In this study we will restrict our
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Proposec another example, speech signals are frequently modeled with
Channel Model Knowr | Density Functions Know Method @ Laplace distribution (see eg. Rabiner et al. [17]). The
: : | other Level 1 assumption that the channel be parametric is
Level 2 ii:r;Zfﬁcr;itlrEnowJ also quite acceptable since most sensor and communication
! systems possess a well understood statistical-physical model
1 of the environment derived from the underlying physics. To
Level 3 | Nonparametric Channbll [Density attractor (generall)ﬂ current  restrict the scope of this paper, we assume that we know
gaussian) is Known Methods  how many source signals are present. We assume that the
Increasing source signals are nongaussian strict sense stationary ergodic
Difficulty processes within a given observation window. (They can
be nonstationary from window to window). We introduce a
Fig. 2. Levels of information that may be used in design of a muItichannglara‘metrIC Symbo“? pSG.Udomver_se for our separation syst.em
blind deconvolution algorithm. to replace the typical inverse filter system. We also will
replace the minimum entropy formulation which assumes
source densities are unknown with a minimum divergence
methods utilize an inverse filter separation model (see e.g. [fprmulation which assumes the source densites are known.

Level 1 [Physical—Statistical J [Source Signal Probabilitﬂ

Platykurtic (subgaussian) or
Leptokurtic (supergaussian)
of Source Densities Known

[8] and the reference therein) which has the form: Table | shows the fundamental differences between current
MBD methods and the proposed method.
x[n] = ZW[l}y[n—l] @ We derive an optimal MBD algorithm to simultaneously
l

estimate the multi-channel impulse response and recover the
for all n = ng,np + 1,...,n9 + N — 1. The variableW[l] sources up to an unknown amplitude and source index per-
is the multichannel equalization filtethat must be estimated mutation. Most MBD algorithms also contain an ambiguity
and x[n| is the estimate for source signal vectdn]. The in the delay and sign of the estimated sources. Our proposed
problem here is that every element of the polynomial matrbatch estimator finds the channel parameter vector that mini-
Wl] must be estimated since there is no knowledge of physitézes the Kullback-Leibler divergence between the probability
or phenomenology to createreducedparameterized system.density of the estimated sources and the probability density
This can lead to prohibitively slow convergence for mangf the true sources. Borrowing from concepts in information
applications (eg. packet communications, fast moving emitteggometry, our update equation moves the estimate along the
resource limited sensor networks). To complicate issues ewvemimum path of the induced Riemannian manifold. See
more, most nonparametric channel models are construcféd] for a thorough introduction to information geometry.
to be minimum phase even though most channels obsen&kcifically, the list of contributions are as follows:
in nature are not. Nonminimum phase channels lead to an
unstable inverse filter. Additionally, when the source densities
are unknown the only admittable cost functions are those that
maximize nongaussianity (assuming the gaussian density is 2)
the stable attractor density). This leads to minimum entropy
formulations which generally yield statistically inconsistent
and inefficient (in Fisher sense) estimators. The cost function )
used by Amari [7], Douglas [5], and many others has the

1) We develop a closed form parameterized separation
model that asymptotically approaches the true inverse
MIMO LTI system.

We derive a minimum divergence estimator that is
asymptotically Fisher efficient and asymptotically lo-
cally consistent.

We show that the estimator satisfies these optimal-
ity properties by proving uniqueness of the global

form minimum, convexity of the objective function about
M, the global minimum, and equivalence of the objective
J(W(z,n)) == log fx, (xi[n]) 3) function to the maximum likelihood estimator.
=1 4) We derive the Riemannian metric for the sum of
b fbg | det W (z,n)|z"'dz Kullback-Liebler divergence functions. (This is used
2my to compute the natural gradient direction for faster

convergence than conventional gradient.)

5) We show through simulation that our estimator vastly
outperforms minimum entropy inverse filter MBD
algorithms.

wherefx, () is the pdf of thej’" estimated source signal and
W (z,n) is the z-transform of the multichannel equalization fil-
ter W[l] at time instancer. Amari [13] showed that stochastic
approximation based on (3) can only be made Fisher efficient
in certain cases. The advantages of proposed method are that it: 1) provides

The focus of this paper is to address MBD design at Levaymptotically optimal separation of sources when source
1. The requirement that the source signal probability densitidensities and channel structure are known, 2) works with
be known is not unreasonable since for many applicationgnimum or nonminimum phase systems. 3) converges rapidly
of interest the mechanisms for their generation are knowfor relatively small parameter spaces, and 4) encompasses any
For example, in communication systems, knowledge of thénd of channel model. The disdvantages of proposed method
modulation format and pulse-shaping filter is sufficient tare that it is computationally intensive and does not scale well
generate the pdf of the source (see eg. Proakis [16]). &slarge number of source signals.



TABLE |
FUNDAMENTAL DIFFERENCES BETWEEN CURRENTMBD METHODS AND THE PROPOSED METHOD

Components of MBD Algorithms]| Current Approaches \ Proposed Approach
Signal and System Model ad hoc nonparametric model Parameterized statistical-physical model
Separation Model Inverse filter Parameterized symbolic pseudoinverse
Separation Criteria Minimize entropy (maximize non-gaussianity) Minimize divergence to known source density
Optimization and Initialization Cannot incorporate any channel knowledge Incorporates all channel knowledge and priars

The remainder of the paper is organized as follows. In The channel model in (8) is very general and applies to any
Section Il we derive parametric models for the receiveehvironment in which a receiver is collecting samples over
signal, channel, separation system, estimated source sigaatoherence time for which the channel is quasi-static. Later
and estimated source probability density function. In Secti@am in Section V we will examine the real-valuéde-of-sight
[l we describe our new minimum divergence estimator. Wehannelin which the termh;; (7, ©) inside the integral has the
analyze the asymptotic optimality of the new estimator iform:

Section IV. We show simulation results in Section V and hii(T,0) = a;8(1 — 73;) (9)
conclude in Section VI. Y ! !
whereq; is the received signal amplitude for sourged(r)
Il. PARAMETRIC SIGNAL AND SYSTEM MODELS is the Dirac delta function, and; is the relative time delay

A. Received Signal and Channel Model between receiver and the array origin for source signal

Here, we briefly derive the received signal model for the
output qf the MIMO LT] system. ForM; source signals B. Separation Model
{sj(t),Vj = 1,..., M} with pdf fs (x) passing through a _ _ _ _ _
linear time-invariant channel;;(; ©) with parameterization ~ The received signal model (6) can be written in matrix
© and impinging on aM,-element receiver array, thé" vector form as
received signaly;(¢),vi =1,...,M,} is

y1[no] Cu - Cuim, s1[no]
M roo — : : : 10)
yi(t) = / hij(T;0)s;(t — T)dr . (4) : . : :
j; o ! ! ¥, [no] Cm,1 o Cupn, s, [no]
In pursuit of a discrete-time equivalent representation weylno]€RNMrx1 CERNMrxX(N+L-1)My  g[pg]eRINVFE-1)Myx1
use the sampling theorem to write the source signals as C11(0%) - Cip, (0%) x1[no]
s;(t) = >0 sjlmsinc((t — mT)), plug this into (4), ~ : : :
and sample at = nT (T'=sampling period) to get: _ - '
u Cm,1(07) -+ Charn, (07) X, [10]
yi(nT) = ; ; 55 [m] /r hij (7;0)sinc(n —m — %)dT C(©%)ERN My x NM; x[no] ERN M x1
hi[non—m] where y;[no] = [yi[no], yi[no + 1], ,yi[no + N — 1]]T_’
(5) sjlno] = [sjlnol, sj[no + 1], zj[no + N = 1]]7, x;[no] is

Letting I = n — m in (5) allows us to write the discrete-timethe approximation o&;[ng], ©* is the true parameter vector
input-output convolutive mixture modseti = 1,2, ..., M, as  for the generally unknown channel parameter veéorand

M, oo C;; is the “fat form” convolution matrix between sourgeand

yiln] = Z Z hai[l: ©]s;[n — 1] 6) receiver; written as:
J=hi=ee hig[L — 1] - hi;[0]
which is trueVn = ng,ng + 1,...,ng + N — 1. The time- Cij = . (11)

invariant discrete-time channel impulse response is
- P e Pl =11+ hylo]
. T
higll; O] = /T_foo hij (7, ©)sine(l - f)dT viel (7)) WhenN >> L, z;[n] is a suitable approximation te;[n].
B . ) ) . Note that the actual MIMO LTI system expressed in the first
The channel matrix polynomid;; [/; ©] as written this way is |ine of (10) is a non-invertible linear mapping unless. N >
a noncausal infinite impulse response (lIR) filter. For practicajjt(N + L —1). Furthermore, the inverse mapping is not pa-

purposes we must truncate the IIR filter to lengtho make .,y eterizable in closed form using the actual system mapping.
it FIR and delay by the appropriate number of sampleso o ever, if we replace’;; by the circular (parameterizable)

enforce causality. We therefore use the approximatibn= .. c1ution matrixC;;(©), we obtain an approximation to

0., L1t the true mapping that admits a closed form parameterizable
hiill; 0] ~ /°° T separation model. Furthermore, with the approximate system
17 Uy ~
-

g (7, ©)sine(l = Ly = )dr . (8) mappingC(©), invertibility only requires that\/, > M.
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The eigendecompositio@’;; (©) = VA;;(©)VH allows us respectively. Letd[k; ©] and A[k; ©] respectively denote the

to write determinant and adjoint matrix of
C(©) = diag(V,---,V) x (12) _ M, i
M NxM.N Elk; ©] = { &pslk; O] = thp[k?@]hqj[kQ o] (17)
s i :1
All(e) e AlM,, (@) 1
: : diag(VH ... V) such thatvk =0,1,...,. N — 1
Ap1(©) oo Apa, (©) MyNxM;N d[k; ©] = det(Z[k; O]) (18)
M, NXM;N and

Note that 1 Alk; 0] = {a;plk; O]} = adjoint(Z[k; €]) . (19)
V= {“kl - Ukl = ﬁe"p(ﬂ”(k -~ 1)/N)} 13) From (13), (14), (16), (18) and (19), we write th€& source

. . . . ignal estimateas:
is the N x N scaled inverse discrete fourier transform (IDFT')S g

matrix. Consequently’ is the scaled (forward) DFT. Note 1 N=1ggemkn/N M M, )
also that zj[n; 8] = > ko] a;plk; ©] > By [k; ©]5; k]
N2 2kl o - (20)
— 1 7 .. . J— e _‘777(
Ai;(©) = diag (h”[k’ o] = ZZ: hij[l; O] exp(———) Vj=1,2,..., M, and¥n = ng,ng + 1, ...,no + N — 1. Since

14) this is the scalar form of (15), this separation model equation

is the diagonal matrix of th&/-point discrete fourier transform maps us from the observatign[n] contained ing;[n] to the
(DFT) of hy;[l;©] since Cy;(O) is a circular convolution estimated source signal;[n] where the only unknown is the

matrix. channel parametes.
We can pseudoinvert the approximate system in (10) andProposition 1 (Convergence of Estimated Sourcé<jr
write our separation model as: M, > M; asN — oo, thenz;[n; © = 7] — s;[n].
. b Proof: From (10), asN — oo C(©*) — C since L is
X[ng; ©] = C1(©")y[no] (15 fixed and finite. When\Z, > M,, C(©*) has full rank and the

wheret denotes the Moore-Penrose pseudoinverse. Since Ygore-Penrose pseudoinverse in (16) is unique. Since (20)
don't generally know the true channel parameg@f, we IS just the scalar form of (15), this unique inverse mapping

will write the estimated source signal in (15) a&dng;©] Causedimy—_ooz;[n:© = O] = s;[n]. . O
where® is the parameter vector estimate we will be solving The probability density estimate for thé" estimated source
for. From (12) and using the orthogonality ¢f we can Signalin (20) is writtervz € X' as

show thatC’(©) can be written as (16) (bottom of page) no+N—1
where we have suppressed te dependence on\;; for F (|, ylno)) = — > @ —=n;0)]) . (21)
notational compactness. In this way the separation model is ~’ N n=no

parameterized the same as the channel model. So by estima\}\ilﬂ%re (z) is an appropriately chosen basis function. We
the parameter vecto® we can simultaneously compute the Y@ pprop y '

inverse system mapping to recover the source signals a(séﬁndardlze the random processn; ©] before plugging into
ri

determine channel parameters of interest (e.g. angle of ar ) FO ensure it has zero mean and unit variance. _It is worth
of sources). pointing out here that the known pdf of the source signals can

be described using an infinite sum of the same basis functions
as
C. Estimated Source Signal and Probability Density Model 1 Nl

We now desire to move from the matrix-vector form of fs;(x) = leﬂooﬁ Z b(x = s4[n]) - (22)
the estimated sources in (15) back into the scalar time series "
expressions for each of th&/; source signals. Defing;[k] We gene2rally choose our basis function to lpér] =
and h;;[k; ©] as the N-point DFT of the observationy;[n] rexp(—45z) wheres parameterizes the variance of the kernel
starting at sampley and channel impulse responkg(n; ©] andx is a normalization constant.

v S AN M AN, 7T AL e AR, TV
clo) = : : 5 5 .
14 Zﬁ’i AR A - Zf\iﬁ ARy, Ain, Ay, - M vH
M NXMN MNxM,N M NXM,N M,.NxXM,N

(16)



[1l. MINIMUM DIVERGENCEESTIMATOR y[no]
Instead of minimizing the entropy of the estimated sources o) Segafe?“"“ O(r+1)
S) Mod )
as in (3), we desire to minimize the “distance” between our —  Cl) X
estimated source pdf and the known source pdf. For reasons [s,(x) x[ng; ©0)]
we will show later, we select our cost functigh(©) to be Minimize A .
the Kullback-Leibler divergence between the joint pdf of the Divergence /fx, (z0",y[no]) Vj

source densities and the joint pdf of the estimated source

it ; r=r+1
densities written as

J(©,y[no]) = DKL(fSh“,ﬁM (@1, ..., zar,)|| (23) Fig. 3. lllustration of the separation and optimization components for one
(N) ¢ iteration of the batch estimator given in (28). The inputs in order are the

le,....XM (21, ..., 01,]©)) observations starting at time samplg, the channel parameter vector at

o iteration r, and the known source densityj. The outputs in order are the

where DKL _ lo P(I)_ For the case Cchannel parameter vector at iteration- 1 and the estimated source signals
(p(x)||q(x)) erx p(z) 08 () at time sampleng.
of M, spatially independent source signals we have

M
_ KL (N)
J(©,ylno]) = ;D (s, (x)HfXj ([0, y[nol))  (24) Eguchi [15] showed that any divergence functiti:||-)
=

induces a uniqu®iemannian metric;(0©) = {g,;;(©)} on the
which is the objective function we will use throughout thetatistical manifold at the poir® given by:
remainder of the paper. We define our minimum contrast

estimator to be: 9 o
~ i ——— _"_D / "
6 = argg min J(@,y[no]) . (25) g j(e) 89; 69;/ (fX (Il(_:) )HfX (:C‘@ )) @/,@//7?
. . (29
Note that our estimator only has to search over all poss@%r the following theorem and proof we will shorten

channel parameter vectol® instead of over all possible the notation on the marainal and ioint pdfs by dr
polynomial matricesiW[l]. This reduction in the dimension e notation o € marginal and Joint pais Dby drop-

of the search space enables much faster convergence of i the subscript on the .pdf and replacinfg, () and
estimator. X1X2"'.)(Alt (1}17 X9, ...,.LL'Mt) with f(xp) andf(xl, X9, :EMt)
Amari proved in [13] that the steepest descent direction (r)ef:spectlvely for notational convenience.

a cost function7 (6, y[ng]) in a Riemannian space is given__1heorem 1 (Riemannian Metric for (24)Fhe _
by its natural gradientdefined as: Riemannian metric elements for the contrast function

~ given in (24) is
VI (©,ylno]) = GTH(O)VI(6,y[n]) (26)
where G(©) is the Riemannian metric tensor at the padt
0 i J
8TMP~7(@7 y[no))] (30)
27) Proof: See Appendix I. O
is the conventional gradient of the cost function defined in Following the chain rule of differentiation, we compute the
(24), and M), is the dimension of the parameter vec®r terms in (27)vm as:
The natural gradient exploits the geometric structure of the
statistical manifold and provides faster convergence than th%
conventional gradient.

My
0 0
55(0) =3 Bytay e | 55108 ,10) 5 08 2,16)
p=1

VI O.¥ln) = [T (O,ylno).

T(©.¥l0]) = Y 5D, ()17 410, ¥Ino)

We will use this same technique but with a slight modifi-agm
cation. We choose to use the following descent algorithm to _ (€1
optimize (25): which usesvm, j
A(r+1) _ ) _ VJ(@(T)7y[’I'L0D 0 KL (N)
© © H@j(é(r)’y[no])”Q (28) aemD (ij (m)HfXJ (J;|@,y[n0])) - (32)
where || - ||z is the Ly-norm andy is a fixed step size _ Z 9 M (210, ylno)) fs;(x)
parameter. If any priori information about the channel exists 00y, "5 7 f)((]j) (x]©, y[no])

zeX
(e.g. possible cone of angles over which signals may arrive,

channel estimate from training data, etc.), this information cggich usesvm, j, z
be used to assigh(? for initialization. Fig. 3 illustrates the

separation and optimization approach we use in our estimator. 9 o N-1
The estimator update equation in (28) adjusts the channel 50 )((]j)(a:|®,y[n0}) =Nz > (x - xj[n; O)(83)
parameter vector in a way so as to reduce the Kullback-Leibler mo R

divergence between the pdf of the estimated sources and the 0 )
——x;[n; ©] exp(—

1 . 2
pdf of the true sources at each iteration. 00, (z = 2;[n: O])%)
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which usesvm, j,n ng,-..,ng + N — 1. This means that; =1, ..., M,

_1 no+N—-1

=2

J2mkn : . .1
O ayni0] = - Y e @) Jm £ @O = Jim % 3T vl sl = S, ()
k=0 o (36)
id[k: O] . o .
_ 99m Z [k; 0] Zh* [k; ©]5 since from (22) we formed's, () as an infinite basis expan-
d2[k: ] . sion usingy(x) basis functions. Therefore,
My
[k; ©] hi,lk; O]y % *
g, ek 01 2 g©) = S DELf @Y wlen) @D
j=1
M,
[k; 9] h* [k; ©)g . S0
12 g il QU T YD @l o) -

Our new algorithm is based on finding the minimum d'wh|ch proves the Ieft to right implication. Now we must

vergence between the parameterized estimated source S'@)ri‘é‘ve the right to left implication which we do through the
densities and the true source densities. We call it the m'”'mLHBntraposnwe

divergence parameterized multichannel blind deconvolution é7é@* éj(é) >0 (38)
(MDPMBD) algorithm and summarize it here:
MDPMBD Algorithm To this we simply turn to the definition of a divergence
1) Select channel modél;;[n; O] (see e.g. (54)) function (which the Kullback-Leibler divergence satisfies). A

divergence function is any smooth functidp(-||-) : M x

2) Set estimator update counter= 0, = 0, and L .
) ! " " 0. 7o M — R satisfying for any pointp, g € M

initialize channel parameter estima@™) with any

prior knowledge. o _ D(pllg) = 0, and D(p|lg) =0'iff p=¢q . (39)

3) Computeh,;[k; ©()] (the N-point discrete fourier )
transform of channnel model evaluatedét’). For © # ©* we havelimy_.. fX '(2|6) # fs,(x). There-

4) Collect N-sample observatiom;[n] Vi = 1,..., M, fore, under this condition the d|vergence functlon is strictly
andVn = ng,ng + 1, ...,ng + N — 1 and compute its positive and the reverse implication is satisfied. O
N-point discrete fourier transform to form[k]. This completes the first part of the consistency proof. Now, we

5) Form matrix2[k; ©(")] asin (17)vk = 0,1, ..., N—1 must show that the objective function surface is convex about
and compute its adjoint matri¥[k; o) ] and deter- the global minimum in order for the optimization of (28) to
minantd[k; ©(")] as in (19) and (18) respectively. ~converge for the appropriate fixed step size

6) Compute source signals estimatg[n; 6 ("] from Theorem 3 (Convexity about Global MinimunAs N —
(20)Vj = 1,...M; andVn = ng,no+1, ...,ng+N—1. oo the objective function in (24) is locally convex about the

7) Compute pdf estimatdé)((]j) (:U|é(r),y[n0]) from (21). global minimizer®*.

8) Compute conventional gradient vect/ (0, y[no]) Progf: Since our ot?jgctive . f_unction is twice—_
in (27) from (31)-(33). differentiable we can use positive definiteness of the Hessian
9) Compute Riemannian metriG(6(") in (30) and Matrix to prove convexity. We start with
natural gradienV. 7 (0, y[no]) in (26). 52 M, 52
10) Update channel parameter vector as in (28). ——J(©) = Z ————DKL(fs (2)||f (N)(g;|@))
11) Set r=r+lny = ng + (window step size) and go to 90,00, j=1 007,00
step 3. (40)
where
2
IV. ASYMPTOTIC OPTIMALITY OF ALGORITHM ﬁDKL( fs; (@) f (N>(:c|@)) = (41)
In this section we prove that the estimator formed from (24) Z (N)( 1) Is; ()
is locally asymptotically consistent and Fisher efficient. For 00,, 39 )((N)(93|@)

the proof of consistency we first prove the global minimizer e
is unigue and then that the objective function is convex abo (N) 9) fs;(@) 9 <N)( 10)

ini ae V) 00,7 X5\
the global minimum. [ij (2|©)]% IVm/

reX
Theorem 2 (Uniqueness of Solutiods N — oo there is (N) . (N) .
one and only one global minimizer of (24). o0 p o Olog fy, (2|07) Olog fy; (x|07)
Proof: We need to show that Fx; (@07 0 D0rns
O=0"=JO=0"=0 (35) From the second line to third line we have used the fact that

limpy oo f)((]j)(aj@*) = fs;(z). In the last line of (41) we
We start by proving the forward implication. From Propositioobserve that we're left with thém,m’) component of the
1, we know that asN — oo, z;[n;©0*] — s;[n] Yn = Fisher information matrix-which is always positive definite.



The Hessian components of the objective function in (4@. Comparison Algorithm

are simply a sum of\/, of these Fisher information matrix  Amari's multichannel blind deconvolution algorithm [7]
components. Since the sum of any number of positive definiig) serve as our benchmark algorithm for comparison. It is
matrices is also positive definite, the Hessian in (40) is algRrived from a entropy minimization formulation as in (3),
positive definite. Therefore, the objective function in (24) igag very good performance under special circumstances, and
convex about the poind*. ~'is computationally efficient. For this reason and others, it has
It is interesting to note that the Hessian of our cost functicg}nerged as a top MBD algorithm for researchers in the field
is equivalent to the Riemannian metric in (30). Now Wesee e.g. [5)).
proceed to show that the estimator is asymptotically Fisher-The estimator update for the polynomial matrix separation
efficient (achieves the Cramer-Rao bound asymptotically). system is:
Theorem 4 (Fisher Efficiency of Estimatorfhe estimator

formed from (24) is asymptotically Fisher-efficient. WD) = WOl + p AW O — a(x[r — L)u" [r — 1]}
Proof: We prove the estimator is asymptotically efficient (43)

by proving that (24) is equivalent to the maximum likelihood'here I

objective function. ufr] = Z[W(r)}H[L —q|x[r —q] (44)

éA{LE =argeg max IOg lemYMT (y17 oYM, |@) (42) =0

and whereg; () is a nonlinear (nonpolynomial) function to be

_ (N) ,
=argg maxlog fx,© x, (%1, %1,|0) specified by the user. The estimated source signals at update

spatial M stepr are formed from the inverse filter separation as in (2):
Z'Z:'darg@ max Z log f)((N) (x;]10)
i—1 J L
e n x[r] =Y Wllylr —1 (45)
i.i.d. (N) 1=0
=Zarggmax » log || fx. (2;:|©)
© ]2 11 Xai 9 Amari (and most others using a minimum entropy objec-
M, tive function) incorporate knowledge of the source densities
NZ%ee maXZ Ejy (nllog F ()0)] through the judicious choice of the nonlinear functigiz) in
- ! (43). The optimal choice when the source densities are known
M, r 7 is given in [7] as:
_ . B log 15 (x)
=argemin Y _{ s ) |10g 5y — 4;(x) = —dlog(fs, (x)) /0 (46)
j=1 fXj (2|©) '

where fs,(z) is the known pdf of thej’” source signal.

To be fair we must initialize Amari’s algorithm with the
M, fo (@) same amount of prior information we use in the proposed

—arge min Z Efy (@) |log W +H(fs,) method. To incorporate a parameterized channel with an initial
= : fx, (x|©) parameter estimate into an inverse filter method formulation

M, we will make use of the following relation:
—arggmin y_ DFE(fs ()| {7 (2]6)) . 5[]
i=1 SN WHR -1 = (47)
Here, we have used the one-to-one correspondence between i=1 =0 5[n]
x[no] andy[ng] from (10) in step two, spatial independence

of sources in step three, temporal independence of sequerlE¥¢€ limit our attention to thel/, = M, case we can solve for
in step four, strong law of large numbers in step five arige inverse filter polynomial matrix initial estimate from the

the definition of entropy fo(fs) = —Ey [log fs(z)] in the system of equations produced by the discrete fourier transform
penultimate step. - of (47) to yield:

T —T

+Eys, (@) [~ log fs, ()]

—

Note that we used temporal independence in the proof of N-1
: : (0) 1 P2 (5] 1 §O)
Theorem 4 even though we previously stated that this was not W' [n] = N E e’N 2VH ™ [k; 0] (48)
a necessary condition. We get around this technicality in the k=0

proof by assuming that we can downsample the infinitely |°rWhereI§[[k- 0] = {ﬁi-[k- 0] Vi, j}.
sequence until the samples are temporally independent. ’ I ’

B. Experimental Setup

We test our algorithms using 512-sample windows of two

In this section we present the results from computer sirapatially independent source signals. We use two different
ulation of the observed signals and the estimator algorithexamples to show the performance of the MDPMBD algo-
To motivate the significance of the proposed estimator, wighm. In the unrealistic example in Section V-B.1, we use
compare its performance to the algorithm of Amari et. al. ian i.i.d. gaussian mixture model for the source signals and
[41, 7. a parameterized two-point minimum-phase FIR filter. This

V. SIMULATION RESULTS



example is created to allow Amari’'s algorithm to successfully

converge. It has no connection to any known channel but Average Slgnal to- Interference Ratio vs. Time
Is chos_en for illustrative purposes. In the realistic example ~—~Amari (1=0.00005)

in Section V-B.2, we use two different speech waveforms
sampled at 8kHz for the source signals and pass them throughm* ——MDPMED (11=0.001) i
a line-of-sight (LOS) channel. Conceptually, this example that
is closer to what we would observe in nature. We use (6) tg or } |

create the observations. We use the MDPMBD algorithm give&
at the end of Section Il to compute the estimate of the chann@ or

parameter and source signals. We make use of the grad|entsujn M
Appendix Il to calculate the components of (35). We then usg aof h il
(43) - (48) to implement Amari’s algorithm. To measure the3 Wt

performance of the proposed and comparison algorithm, we so- J w \ ‘«J‘w\l ]
will use the average signal-to-interference ratio (SIR) defined At w LY
. PN N
as. 20 /w‘ NN ! ’ B
no+N—-1 A112 g
o x;i[n; 0 S L
SIRan Z Znino | JA[ ]| (49) 10 - = . ; ) )
M no+N—1 ) (__)] _ [ H2 400 600 800 1000 1200 1400 1600
1D no | |%j [n; S5 Time Sample
where z;[n; ©] and s;[n] are the standardized estimated and Average Signal-to—Interference Ratio vs. Time

true source signals respectively. (We must also properly align * P
z;[n;©] and s;[n] before computing the denominator.) This -~ ~Amari (1=0.001)
appears to be the best way to compare the performance of anwo- —MDPMBD (u=0.01) 1
algorithm based on inverse filter separation to our algorithm

based on parametric symbolic pseudoinverse separation. Sl |
1) Unrealistic Example:Here we define the channel models
to be o ~
. g 40+ 4
hijln; ©] = é[n] + (=1)'0;0[n — 1] 0; € (0,1)  (30) o “ '
Vi=1,2, Vi=1,2, andVn = ny,...,ng + N — 1 and :%30, J“{J ’ ‘ ‘ ‘l M W NM i
. | | | |
. e | ) H M W Nu I
—  h.. k- — ) | || |
0, hij I ©] { 0, otherwise ) U JNJ \ M *\M 'J “ w ' .
The source signals are i.i.d. and have common pdf given by
the gaUSSIan mIXture 1200 f7;6;7‘AM;(;[)kiii»l:]‘O;-Arile‘Ogi7771:1‘();7‘7 1600
fs (2) 1 G 1 @imn)? (52) Time Sample
x) = e 202 e 202
% V2mo? V2mo?

Fig. 4. Unrealistic Example Performance: Average SIR as computed in (49)
where we choser = 0.4, m =1, and Ny = —1 for our for relatively small step sizes in the top figure and relatively large step sizes

simulation. This means the nonlinear functi@-tﬁx) from (46) in the bottom figure. (Note that the convergence time and variability of the
. s SIR in Amari’s algorithm is unnoticable since the difference in dB between

will be qj.(x) = 3—‘5 We choos®™ = [0.2, O.§]T and initialize . algorithms is go large.)

the algorithm with©(® = [0.3,0.7]”. In Fig. 4 we plot the

average SIR from (49) for both the Amari algorithm and the

proposed algorithm as a function of the time sample index.

We compare and show the performance for two different sets s,[n] ™

of step sizes. Generally, the larger the step size, the faster T

the algorithm converges but the more it oscillates about the 53 [”] '

solution. Picking a step size that is too large can also lead to - v
convergence failure. ® :---

2) Realistic Example:We now consider a number of ob-

servable signals arriving in planar wavefronts upon an arbi- e ® [qu_ py]_]
trary collection of sensors at known positiols = {p, = o o, [77]

[ps;»py:]T Vi} as in Fig. 5. When the sensors are spaced

far enough apart, each receiver sees a different delay for each

source. Now, we define the 2-D directional unit vector for i ) )
. B 9. 0 6. ] and proiect it onto the position Fig. 5. In this line-of-sight channel model we illustrate a sensor array with

sourcej as[— cos fl;, — sin proj p source signalss; [n] impinging at angles of arrivad; to create a received

vector p; = [pa,;,py,;]7 for sensori. This gives the distance signaly;[n] at sensor positiofp., , py, |7

between the sensor and the origin along the direction of arrival



Average Signal-to—Interference Ratio vs. Time the probability density functions of the source signals are
1“ *H ‘ ‘ — ‘ known. We focused attention on parametric channel models
il )r‘ -~ -Amari (u=0.001) || {5 reduce the dimension of the search space compared with
|

N I ‘ | ~— MDPMBD (p=0.01) nonparametric channels (in which case every element of the
‘ v‘uﬁ, ] separation system polynomial matrix must be estimated). We
w derived a new MBD algorithm and proved its asymptotic opti-
mality in the sense of being statistically consistent and Fisher
efficient. We compared the performance of our new estimator
to a popular minimum entropy inverse filter technique used for
4r 1 MBD. For the contrived example where the minimum entropy
inverse filter method actually achieves source separation, the
average signal-to-interference ratio of the proposed estimator
ok , exceeded it by 15-20 dB. For the more realistic physics-based
line-of-sight acoustic example, the minimum entropy inverse
2f SIS filter method completely failed, while the proposed estimator
. ‘ ‘ ‘ ‘ achieved an average SIR around 7 dB.

400 600 800 Time ggmple 1200 1400 1600 We would like to extend the algorithm to do multichannel
blind deconvolution on complex-valued wireless communica-
tion signals operating in both line-of-sight and non-line-of-

Fig. 6. Realistic Example Performance: We plot average SIR versus tirsrrght multipath models. We would like to derive a recursive
samp!e for the two algorithms as b_efore. Notice that the average SIR . . .
Amari's algorithm is below 0 dB which means that the algorithm is falllngf%rm of the estimator instead of the current batch formulation.
to separate the sources. We need to examine effects of channel and source modeling
errors and devise methods and cost functions to make the
estimator robust against these effects. Finally we would like
(DOA) of the j-th source signal. The relative time delay is theg, analyze what happens when the number of sources is
simply this distance divided by the speedof propagating ynknown. Or, analogously, what happens when the algorithm

Average SIR (dB)

N

wavefront to give is designed to handle more source signals than actually appear?
1 .
Tij = =~ (P, c03(0;) + py, sin(6;)) (53)
¢ APPENDIX |
For a real-valued signal in a LOS channel, plugging (53) PROOF OFTHEOREM 1
into (8) gives the far-fieldeal-valued line-of-sight channel ) ) ) )
model To derive the Riemannian metric for (24), we use (29) on

(23) and assert spatial independence. For notational compact-

1
hi;[l; ©] = ajsinc(l + C—T(px cos(0;) + py, sin(6;))) (54) ness we def""@:zl,...,mt =Y e ZthGX

Vi=1,2, Vi=1,..,8, andV¥n = ng,....,ng + N — 1 and .

N-1 . y = - ) /

O ool O] = N cos(Mign)vij  SI(1ijn) Vi 9i1(©) 06, 067 > S0 X
80 17"y Ym] — - 7424 L1yeer T My

m n=0 771]71 ]’L]n /

(55) 10 f(xl,...,th‘G )
where Nijn = 7T(’rl — Ll) + CLT(pJ;7 cos(ﬁj) + Dy, sin(ﬁj)) f(x17"'>$Mt|®//) 0'—0"—0
and v;; = a%jmjn. We have o;=amplitude of source
J, c=propagation speedfd;=source j direction of arrival,
T=sampling period[p,, p,,]=2-D position of sensof, and =0 7] o
© = [01,60s,...,0,,] are the DOAs of the source signals. We ~—  gg7 > aiggf(xl’ 20, |©7)%
let the source signals for this simulation be two acoustic wave- P ,
forms impinging on a 8-element uniformly spaceq circular log f(wh-..,xMtl@H) Z F(@1s oy 21,0 X
array. We us@®* = [45°,60°]7 andO(® = [55°,70°] in the [y, s an|©7) A~
simulation. In Fig. 6 we plot average SIR versus time sample D ‘ o
for the two algorithms as before. Amari's algorithm fails to (1, ey 221,10") o7/ (715 20, |O7)
converge primarily due to the fact that the polynomial matrix flxy, .z, |©)  f(z1, ..., 20,|©") o —or—6
with terms from (54) is not minimum phase. Notice that the T
average SIR for Amari's algorithm is below 0 dB which means
that the algorithm is failing to separate the sources. _ Z 0 | o
= 0, og f(w1,...,70,]0) | X
VI. CONCLUSION Il"é’mt
In this paper we examined the problem of multichannel (aejlog f(3317-~-7$Mt|@)) f(@1, .., 20,10)

blind deconvolution (MBD) for the specific case in which
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spatial M 0 £y 10) 0 2 . 2
i, Z Z 56; : |z(79| y o, k: €)= Z | o[k 62)| Z\hu[k;alﬂ
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