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Abstract— In this study we consider the problem of how
to design an optimal multichannel blind deconvolution (MBD)
algorithm in the case where the probability density functions
of the source signals are known. We assume existence of a
parametric channel model that accurately characterizes the
propagation environment. Through three major steps we derive a
blind channel parameter estimator that is used to jointly compute
the separation system and recover all the source signals. First, we
replace the normally assumed nonparametric channel model with
a physical model. Next, we introduce a symbolic pseudoinverse
for our separation model to replace the ubiquitous inverse filter
separation model. Thirdly, we introduce a minimum divergence
estimator formulation to replace the commonly used minimum
entropy formulation. We prove that the new estimator formed
in this way is asymptotically consistent and Fisher-efficient.
Through simulation we show the superior performance of our
algorithm compared with existing techniques based on entropy
minimization and inverse filter separation.

Index Terms— optimal multichannel blind deconvolution, blind
source separation, parametric channel model, known source
densities

I. I NTRODUCTION

T HE problem of blindly separating multiple source signals
impinging on an array of receivers spans numerous fields

including multi-antenna wireless communications, sensor net-
works, sonar, radar, speech, and biomedical sensing. The goal
of multichannel blind deconvolution (MBD) is to process
an array of observations consisting of mixed and potentially
delayed and convolved source signals in such a way as to
extract every source signal without knowing the channel or
the transmitted waveforms. The impact of such a capability
is profound. Yet, to date, there is no known algorithm that
provides a stableconsistentand Fisher-efficientestimate for
general convolutive mixture models. For these reasons and
others MBD fails for many practical scenarios. This is likely
the reason why we have not seen much of an insertion of this
kind of technology in products today despite the abundance
of scholarly attention in the recent past (see e.g. [1]–[3])
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Fig. 1. High level block diagram of information flow from source signals,
to observations, to estimated source signals. The multichannel blind decon-
volution algorithm attempts to “invert” the multi-input multi-output channel
given only partial knowledge of channel or sources.

In MBD problems the channel is a multi-input multi-output
(MIMO) system that is generally linear time-varying, but it
can be modeled as a linear time-invariant (LTI) sytem over a
small enough time window. The MIMO LTI systemH[n] is a
polynomial matrix which acts as a multichannel convolution
mapping from the source signal space withMt-vector process
s[n] to the observation space withMr-vector processy[n] as

y[n] =
∞∑

l=−∞
H[l]s[n− l] (1)

where Mt and Mr are the number of source signals and
received signals respectively (see Fig. 1). The job of the MBD
algorithm is to recover an approximation to the source vector
processs[n] given only the observation and known statistics
of the channel and/or source. Every MBD algorithm consists
of four essential components:

[C1] Signal and System Model
[C2] Separation Model
[C3] Separation Criterion
[C4] Optimization and Initialization Method

All separation criteria use some form of prior information such
as non-gaussianity of the source signals (e.g. [6]–[8]), non-
stationarity of second order statistics (e.g. [9], [10]), or time
dependence (e.g. [11], [12]). In this study we will restrict our
attention to separation criteria based on exploiting the non-
gaussianity of the sources.

There are varying levels of information that may be avail-
able for the design of an MBD algorithm (see Fig. 2). To our
knowledge, nearly all MBD techniques based on maximizing
nongaussianity assume the least amount of knowledge and
operate at Level 3 (which is the most challenging). With
this grand pursuit comes many potential pitfalls. Most MBD
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Fig. 2. Levels of information that may be used in design of a multichannel
blind deconvolution algorithm.

methods utilize an inverse filter separation model (see e.g. [1]–
[8] and the reference therein) which has the form:

x[n] =
∑

l

W [l]y[n− l] (2)

for all n = n0, n0 + 1, ..., n0 + N − 1. The variableW [l]
is the multichannel equalization filterthat must be estimated
and x[n] is the estimate for source signal vectors[n]. The
problem here is that every element of the polynomial matrix
W [l] must be estimated since there is no knowledge of physics
or phenomenology to create areducedparameterized system.
This can lead to prohibitively slow convergence for many
applications (eg. packet communications, fast moving emitters,
resource limited sensor networks). To complicate issues even
more, most nonparametric channel models are constructed
to be minimum phase even though most channels observed
in nature are not. Nonminimum phase channels lead to an
unstable inverse filter. Additionally, when the source densities
are unknown the only admittable cost functions are those that
maximize nongaussianity (assuming the gaussian density is
the stable attractor density). This leads to minimum entropy
formulations which generally yield statistically inconsistent
and inefficient (in Fisher sense) estimators. The cost function
used by Amari [7], Douglas [5], and many others has the
form

J (W (z, n)) = −
Mt∑

i=1

log fXi(xi[n]) (3)

− 1
2π

∮
log | detW (z, n)|z−1dz

wherefXj (x) is the pdf of thejth estimated source signal and
W (z, n) is the z-transform of the multichannel equalization fil-
ter W [l] at time instancen. Amari [13] showed that stochastic
approximation based on (3) can only be made Fisher efficient
in certain cases.

The focus of this paper is to address MBD design at Level
1. The requirement that the source signal probability densities
be known is not unreasonable since for many applications
of interest the mechanisms for their generation are known.
For example, in communication systems, knowledge of the
modulation format and pulse-shaping filter is sufficient to
generate the pdf of the source (see eg. Proakis [16]). As

another example, speech signals are frequently modeled with
a Laplace distribution (see eg. Rabiner et al. [17]). The
other Level 1 assumption that the channel be parametric is
also quite acceptable since most sensor and communication
systems possess a well understood statistical-physical model
of the environment derived from the underlying physics. To
restrict the scope of this paper, we assume that we know
how many source signals are present. We assume that the
source signals are nongaussian strict sense stationary ergodic
processes within a given observation window. (They can
be nonstationary from window to window). We introduce a
parametric symbolic pseudoinverse for our separation system
to replace the typical inverse filter system. We also will
replace the minimum entropy formulation which assumes
source densities are unknown with a minimum divergence
formulation which assumes the source densites are known.
Table I shows the fundamental differences between current
MBD methods and the proposed method.

We derive an optimal MBD algorithm to simultaneously
estimate the multi-channel impulse response and recover the
sources up to an unknown amplitude and source index per-
mutation. Most MBD algorithms also contain an ambiguity
in the delay and sign of the estimated sources. Our proposed
batch estimator finds the channel parameter vector that mini-
mizes the Kullback-Leibler divergence between the probability
density of the estimated sources and the probability density
of the true sources. Borrowing from concepts in information
geometry, our update equation moves the estimate along the
minimum path of the induced Riemannian manifold. See
[14] for a thorough introduction to information geometry.
Specifically, the list of contributions are as follows:

1) We develop a closed form parameterized separation
model that asymptotically approaches the true inverse
MIMO LTI system.

2) We derive a minimum divergence estimator that is
asymptotically Fisher efficient and asymptotically lo-
cally consistent.

3) We show that the estimator satisfies these optimal-
ity properties by proving uniqueness of the global
minimum, convexity of the objective function about
the global minimum, and equivalence of the objective
function to the maximum likelihood estimator.

4) We derive the Riemannian metric for the sum of
Kullback-Liebler divergence functions. (This is used
to compute the natural gradient direction for faster
convergence than conventional gradient.)

5) We show through simulation that our estimator vastly
outperforms minimum entropy inverse filter MBD
algorithms.

The advantages of proposed method are that it: 1) provides
aymptotically optimal separation of sources when source
densities and channel structure are known, 2) works with
minimum or nonminimum phase systems. 3) converges rapidly
for relatively small parameter spaces, and 4) encompasses any
kind of channel model. The disdvantages of proposed method
are that it is computationally intensive and does not scale well
to large number of source signals.
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TABLE I

FUNDAMENTAL DIFFERENCES BETWEEN CURRENTMBD METHODS AND THE PROPOSED METHOD.

Components of MBD Algorithms Current Approaches Proposed Approach

Signal and System Model ad hoc nonparametric model Parameterized statistical-physical model

Separation Model Inverse filter Parameterized symbolic pseudoinverse

Separation Criteria Minimize entropy (maximize non-gaussianity) Minimize divergence to known source density

Optimization and Initialization Cannot incorporate any channel knowledge Incorporates all channel knowledge and priors

The remainder of the paper is organized as follows. In
Section II we derive parametric models for the received
signal, channel, separation system, estimated source signal,
and estimated source probability density function. In Section
III we describe our new minimum divergence estimator. We
analyze the asymptotic optimality of the new estimator in
Section IV. We show simulation results in Section V and
conclude in Section VI.

II. PARAMETRIC SIGNAL AND SYSTEM MODELS

A. Received Signal and Channel Model

Here, we briefly derive the received signal model for the
output of the MIMO LTI system. ForMt source signals
{sj(t), ∀j = 1, ...,Mt} with pdf fSj (x) passing through a
linear time-invariant channelhij(τ ; Θ) with parameterization
Θ and impinging on aMr-element receiver array, theith

received signal{yi(t), ∀i = 1, ..., Mr} is

yi(t) =
Mt∑

j=1

∫ ∞

τ=−∞
hij(τ ; Θ)sj(t− τ)dτ . (4)

In pursuit of a discrete-time equivalent representation we
use the sampling theorem to write the source signals as
sj(t) =

∑∞
m=−∞ sj [m]sinc( 1

T (t −mT )), plug this into (4),
and sample att = nT (T=sampling period) to get:

yi(nT ) =
Mt∑

j=1

∑
m

sj [m]
∫

τ

hij(τ ; Θ)sinc(n−m− τ

T
)dτ

︸ ︷︷ ︸
hij [n,n−m]

(5)
Letting l = n−m in (5) allows us to write the discrete-time
input-output convolutive mixture model∀i = 1, 2, ..., Mr as

yi[n] =
Mt∑

j=1

∞∑

l=−∞
hij [l; Θ]sj [n− l] (6)

which is true∀n = n0, n0 + 1, ..., n0 + N − 1. The time-
invariant discrete-time channel impulse response is

hij [l; Θ] =
∫ ∞

τ=−∞
hij(τ, Θ)sinc(l − τ

T
)dτ ∀l ∈ I (7)

The channel matrix polynomialhij [l; Θ] as written this way is
a noncausal infinite impulse response (IIR) filter. For practical
purposes we must truncate the IIR filter to lengthL to make
it FIR and delay by the appropriate number of samplesL1 to
enforce causality. We therefore use the approximation∀l =
0, ..., L− 1:

hij [l; Θ] ≈
∫ ∞

τ=−∞
hij(τ, Θ)sinc(l − L1 − τ

T
)dτ . (8)

The channel model in (8) is very general and applies to any
environment in which a receiver is collecting samples over
a coherence time for which the channel is quasi-static. Later
on in Section V we will examine the real-valuedline-of-sight
channelin which the termhij(τ, Θ) inside the integral has the
form:

hij(τ, Θ) = αjδ(τ − τij) (9)

whereαj is the received signal amplitude for sourcej, δ(τ)
is the Dirac delta function, andτij is the relative time delay
between receiveri and the array origin for source signalj.

B. Separation Model

The received signal model (6) can be written in matrix
vector form as



y1[n0]
...

yMr [n0]




︸ ︷︷ ︸
y[n0]∈RNMr×1

=




C11 · · · C1Mt

...
...

CMr1 · · · CMrMt




︸ ︷︷ ︸
C∈RNMr×(N+L−1)Mt




s1[n0]
...

sMt [n0]




︸ ︷︷ ︸
s[n0]∈R(N+L−1)Mt×1

(10)

≈




C̄11(Θ∗) · · · C̄1Mt(Θ
∗)

...
...

C̄Mr1(Θ∗) · · · C̄MrMt(Θ
∗)




︸ ︷︷ ︸
C̄(Θ∗)∈RNMr×NMt




x1[n0]
...

xMt [n0]




︸ ︷︷ ︸
x[n0]∈RNMt×1

where yi[n0] = [yi[n0], yi[n0 + 1], · · · , yi[n0 + N − 1]]T ,
sj [n0] = [sj [n0], sj [n0 + 1], · · · , xj [n0 + N − 1]]T , xj [n0] is
the approximation ofsj [n0], Θ∗ is the true parameter vector
for the generally unknown channel parameter vectorΘ, and
Cij is the “fat form” convolution matrix between sourcej and
receiveri written as:

Cij =




hij [L− 1] · · · hij [0]
. . .

. . .
hij [L− 1] · · · hij [0]


 . (11)

When N >> L, xj [n] is a suitable approximation tosj [n].
Note that the actual MIMO LTI system expressed in the first
line of (10) is a non-invertible linear mapping unlessMrN ≥
Mt(N + L− 1). Furthermore, the inverse mapping is not pa-
rameterizable in closed form using the actual system mapping.
However, if we replaceCij by the circular (parameterizable)
convolution matrixC̄ij(Θ), we obtain an approximation to
the true mapping that admits a closed form parameterizable
separation model. Furthermore, with the approximate system
mappingC̄(Θ), invertibility only requires thatMr ≥ Mt.
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The eigendecomposition̄Cij(Θ) = V Λij(Θ)V H allows us
to write

C̄(Θ) = diag(V, · · · , V )︸ ︷︷ ︸
MrN×MrN

× (12)




Λ11(Θ) · · · Λ1Mt(Θ)
...

...
ΛMr1(Θ) · · · ΛMrMt(Θ)




︸ ︷︷ ︸
MrN×MtN

diag(V H , · · · , V H)︸ ︷︷ ︸
MtN×MtN

Note that

V =
{

vkl : vkl =
1√
N

exp(2π(k − 1)(l − 1)/N)
}

(13)

is theN ×N scaled inverse discrete fourier transform (IDFT)
matrix. ConsequentlyV H is the scaled (forward) DFT. Note
also that

Λij(Θ) = diag

(
h̃ij [k; Θ] =

N−1∑

l=0

hij [l; Θ] exp(− 2πkl

N
)

)

(14)
is the diagonal matrix of theN -point discrete fourier transform
(DFT) of hij [l; Θ] since C̄ij(Θ) is a circular convolution
matrix.

We can pseudoinvert the approximate system in (10) and
write our separation model as:

x[n0; Θ∗] = C†(Θ∗)y[n0] (15)

where† denotes the Moore-Penrose pseudoinverse. Since we
don’t generally know the true channel parameterΘ∗, we
will write the estimated source signal in (15) asx[n0; Θ̂]
whereΘ̂ is the parameter vector estimate we will be solving
for. From (12) and using the orthogonality ofV we can
show that C̄†(Θ) can be written as (16) (bottom of page)
where we have suppressed theΘ dependence onΛij for
notational compactness. In this way the separation model is
parameterized the same as the channel model. So by estimating
the parameter vectorΘ we can simultaneously compute the
inverse system mapping to recover the source signals and
determine channel parameters of interest (e.g. angle of arrival
of sources).

C. Estimated Source Signal and Probability Density Model

We now desire to move from the matrix-vector form of
the estimated sources in (15) back into the scalar time series
expressions for each of theMt source signals. Definẽyi[k]
and h̃ij [k; Θ] as theN -point DFT of the observationyi[n]
starting at samplen0 and channel impulse responsehij [n; Θ]

respectively. Letd[k; Θ] and A[k; Θ] respectively denote the
determinant and adjoint matrix of

Ξ[k; Θ] =

{
ξpj [k; Θ] =

Mr∑
q=1

h̃∗qp[k; Θ]h̃qj [k; Θ]

}
(17)

such that∀k = 0, 1, ..., N − 1

d[k; Θ] = det(Ξ[k; Θ]) (18)

and

A[k; Θ] = {ajp[k; Θ]} = adjoint(Ξ[k; Θ]) . (19)

From (13), (14), (16), (18) and (19), we write thejth source
signal estimateas:

xj [n; Θ] =
1
N

N−1∑

k=0

e2πkn/N

d[k; Θ]

Mt∑
p=1

ajp[k; Θ]
Mr∑

i=1

h̃∗ip[k; Θ]ỹi[k]

(20)
∀j = 1, 2, ..., Mt and∀n = n0, n0 + 1, ..., n0 + N − 1. Since
this is the scalar form of (15), this separation model equation
maps us from the observationyi[n] contained inỹi[n] to the
estimated source signalxj [n] where the only unknown is the
channel parameterΘ.

Proposition 1 (Convergence of Estimated Sources):For
Mr ≥ Mt asN →∞, thenxj [n; Θ̂ = Θ∗] → sj [n].

Proof: From (10), asN → ∞ C̄(Θ∗) → C sinceL is
fixed and finite. WhenMr ≥ Mt, C̄(Θ∗) has full rank and the
Moore-Penrose pseudoinverse in (16) is unique. Since (20)
is just the scalar form of (15), this unique inverse mapping
causeslimN→∞ xj [n; Θ̂ = Θ∗] = sj [n].

The probability density estimate for thejth estimated source
signal in (20) is written∀x ∈ X as

f
(N)
Xj

(x|Θ,y[n0]) =
1
N

n0+N−1∑
n=n0

ψ(x− xj [n; Θ]) . (21)

where ψ(x) is an appropriately chosen basis function. We
standardize the random processxj [n; Θ] before plugging into
(21) to ensure it has zero mean and unit variance. It is worth
pointing out here that the known pdf of the source signals can
be described using an infinite sum of the same basis functions
as

fSj (x) = lim
N→∞

1
N

N−1∑
n=0

ψ(x− sj [n]) . (22)

We generally choose our basis function to beψ[x] =
κ exp(− x2

2σ2 ) whereσ parameterizes the variance of the kernel
andκ is a normalization constant.

C̄†(Θ) =




V
.. .

V




︸ ︷︷ ︸
MtN×MtN




∑Mr

i=1 ΛH
i1Λi1 · · · ∑Mr

i=1 ΛH
i1ΛiMt

...
...∑Mr

i=1 ΛH
iMt

Λi1 · · · ∑Mr

i=1 ΛH
iMt

ΛiMt




−1

︸ ︷︷ ︸
MtN×MtN




ΛH
11 · · · ΛH

Mr1
...

...
ΛH

1Mt
· · · ΛH

MrMt




︸ ︷︷ ︸
MtN×MrN




V H

. . .
V H




︸ ︷︷ ︸
MrN×MrN

(16)
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III. M INIMUM DIVERGENCEESTIMATOR

Instead of minimizing the entropy of the estimated sources
as in (3), we desire to minimize the “distance” between our
estimated source pdf and the known source pdf. For reasons
we will show later, we select our cost functionJ (Θ) to be
the Kullback-Leibler divergence between the joint pdf of the
source densities and the joint pdf of the estimated source
densities written as

J (Θ,y[n0]) = DKL(fS1,...,SMt
(x1, ..., xMt

)|| (23)

f
(N)
X1,...,XMt

(x1, ..., xMt
|Θ))

whereDKL(p(x)||q(x)) =
∑

x∈X p(x) log p(x)
q(x) . For the case

of Mt spatially independent source signals we have

J (Θ,y[n0]) =
Mt∑

j=1

DKL(fSj (x)||f (N)
Xj

(x|Θ,y[n0])) (24)

which is the objective function we will use throughout the
remainder of the paper. We define our minimum contrast
estimator to be:

Θ̂ = argΘ minJ (Θ,y[n0]) . (25)

Note that our estimator only has to search over all possible
channel parameter vectorsΘ instead of over all possible
polynomial matricesW [l]. This reduction in the dimension
of the search space enables much faster convergence of the
estimator.

Amari proved in [13] that the steepest descent direction of
a cost functionJ (Θ,y[n0]) in a Riemannian space is given
by its natural gradientdefined as:

∇̃J (Θ,y[n0]) = G−1(Θ)∇J (Θ,y[n0]) (26)

whereG(Θ) is the Riemannian metric tensor at the pointΘ,

∇J (Θ,y[n0]) = [
∂

∂θ1
J (Θ,y[n0]), · · · ,

∂

∂θMp

J (Θ,y[n0])]

(27)
is the conventional gradient of the cost function defined in
(24), andMp is the dimension of the parameter vectorΘ.
The natural gradient exploits the geometric structure of the
statistical manifold and provides faster convergence than the
conventional gradient.

We will use this same technique but with a slight modifi-
cation. We choose to use the following descent algorithm to
optimize (25):

Θ̂(r+1) = Θ̂(r) − µ
∇̃J (Θ̂(r),y[n0])

||∇̃J (Θ̂(r),y[n0])||2
(28)

where || · ||2 is the L2-norm and µ is a fixed step size
parameter. If anya priori information about the channel exists
(e.g. possible cone of angles over which signals may arrive,
channel estimate from training data, etc.), this information can
be used to assignΘ(0) for initialization. Fig. 3 illustrates the
separation and optimization approach we use in our estimator.
The estimator update equation in (28) adjusts the channel
parameter vector in a way so as to reduce the Kullback-Leibler
divergence between the pdf of the estimated sources and the
pdf of the true sources at each iteration.

Divergence
Minimize

Model
Separation

fSj
(x) x[n0; Θ̂

(r)]

r = r + 1

Θ̂(r)

y[n0]

f
(N)
Xj

(x|Θ̂(r)
,y[n0]) ∀j

C̄
†(Θ̂)

Θ̂(r+1)

Fig. 3. Illustration of the separation and optimization components for one
iteration of the batch estimator given in (28). The inputs in order are the
observations starting at time samplen0, the channel parameter vector at
iteration r, and the known source density∀j. The outputs in order are the
channel parameter vector at iterationr + 1 and the estimated source signals
at time samplen0.

Eguchi [15] showed that any divergence functionD(·||·)
induces a uniqueRiemannian metricG(Θ) = {gij(Θ)} on the
statistical manifold at the pointΘ given by:

gij(Θ) = − ∂

∂θ′i

∂

∂θ′′j
D(fX(x|Θ′)||fX(x|Θ′′))

∣∣∣∣∣
Θ′=Θ′′=Θ

(29)
For the following theorem and proof we will shorten
the notation on the marginal and joint pdfs by drop-
ping the subscript on the pdf and replacingfXp(x) and
fX1X2···XMt

(x1, x2, ..., xMt) with f(xp) andf(x1, x2, ...xMt)
respectively for notational convenience.

Theorem 1 (Riemannian Metric for (24)):The
Riemannian metric elements for the contrast function
given in (24) is

gij(Θ) =
Mt∑
p=1

Ef(xp|Θ)

[
∂

∂θi
log f(xp|Θ)

∂

∂θj
log f(xp|Θ)

]

(30)
Proof: See Appendix I.

Following the chain rule of differentiation, we compute the
terms in (27)∀m as:

∂

∂θm
J (Θ,y[n0]) =

Mt∑

j=1

∂

∂θm
DKL(fSj (x)||f (N)

Xj
(x|Θ,y[n0]))

(31)
which uses∀m, j

∂

∂θm
DKL(fSj (x)||f (N)

Xj
(x|Θ,y[n0])) = (32)

−
∑

x∈X

∂

∂θm
f

(N)
Xj

(x|Θ,y[n0])
fSj (x)

f
(N)
Xj

(x|Θ,y[n0])

which uses∀m, j, x

∂

∂θm
f

(N)
Xj

(x|Θ,y[n0]) =
κ

Nσ2

N−1∑
n=0

(x− xj [n; Θ])×(33)

∂

∂θm
xj [n; Θ] exp(− 1

2σ2
(x− xj [n; Θ])2)
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which uses∀m, j, n

∂

∂θm
xj [n; Θ] =

1
N

N−1∑

k=0

e
2πkn

N × (34)

[
−

∂
∂θm

d[k; Θ]
d2[k; Θ]

∑
q

ajq[k; Θ]
∑

i

h̃∗iq[k; Θ]ỹi[k]+

1
d[k; Θ]

∑
q

∂

∂θm
ajq[k; Θ]

∑

i

h̃∗iq[k; Θ]ỹi[k] +

1
d[k; Θ]

∑
q

ajq[k; Θ]
∑

i

∂

∂θm
h̃∗iq[k; Θ]ỹi[k]

]
.

Our new algorithm is based on finding the minimum di-
vergence between the parameterized estimated source signal
densities and the true source densities. We call it the minimum
divergence parameterized multichannel blind deconvolution
(MDPMBD) algorithm and summarize it here:

MDPMBD Algorithm

1) Select channel modelhij [n; Θ] (see e.g. (54))
2) Set estimator update counterr = 0, n0 = 0, and

initialize channel parameter estimatêΘ(r) with any
prior knowledge.

3) Compute h̃ij [k; Θ̂(r)] (the N -point discrete fourier
transform of channnel model evaluated atΘ̂(r).

4) Collect N -sample observationyi[n] ∀i = 1, ..., Mr

and∀n = n0, n0 + 1, ..., n0 + N − 1 and compute its
N -point discrete fourier transform to form̃yi[k].

5) Form matrixΞ[k; Θ̂(r)] as in (17)∀k = 0, 1, ..., N−1
and compute its adjoint matrixA[k; Θ̂(r)] and deter-
minantd[k; Θ̂(r)] as in (19) and (18) respectively.

6) Compute source signals estimatexj [n; Θ̂(r)] from
(20)∀j = 1, ...Mt and∀n = n0, n0+1, ..., n0+N−1.

7) Compute pdf estimatef (N)
Xj

(x|Θ̂(r),y[n0]) from (21).
8) Compute conventional gradient vector∇J (Θ,y[n0])

in (27) from (31)-(33).
9) Compute Riemannian metricG(Θ̂(r)) in (30) and

natural gradient̃∇J (Θ,y[n0]) in (26).
10) Update channel parameter vector as in (28).
11) Set r=r+1,n0 = n0 + (window step size) and go to

step 3.

IV. A SYMPTOTIC OPTIMALITY OF ALGORITHM

In this section we prove that the estimator formed from (24)
is locally asymptotically consistent and Fisher efficient. For
the proof of consistency we first prove the global minimizer
is unique and then that the objective function is convex about
the global minimum.

Theorem 2 (Uniqueness of Solution):As N → ∞ there is
one and only one global minimizer of (24).

Proof: We need to show that

Θ̂ = Θ∗ ⇔ J (Θ̂ = Θ∗) = 0 (35)

We start by proving the forward implication. From Proposition
1, we know that asN → ∞, xj [n; Θ∗] → sj [n] ∀n =

n0, ..., n0 + N − 1. This means that∀j = 1, ..., Mt

lim
N→∞

f
(N)
Xj

(x|Θ∗) = lim
N→∞

1
N

n0+N−1∑
n=n0

ψ[x− sj [n]] = fSj (x)

(36)
since from (22) we formedfSj

(x) as an infinite basis expan-
sion usingψ(x) basis functions. Therefore,

J (Θ∗) =
Mt∑

j=1

DKL(fSj (x)||f (N)
Xj

(x|Θ∗)) (37)

N→∞=
Mt∑

j=1

DKL(fSj (x)||fSj (x)) = 0

which proves the left to right implication. Now we must
prove the right to left implication which we do through the
contrapositive

Θ̂ 6= Θ∗ ⇒ J (Θ̂) > 0 (38)

To this we simply turn to the definition of a divergence
function (which the Kullback-Leibler divergence satisfies). A
divergence function is any smooth functionD(·||·) : M ×
M→ R satisfying for any pointsp, q ∈M

D(p||q) ≥ 0, andD(p||q) = 0 iff p = q . (39)

For Θ̂ 6= Θ∗ we havelimN→∞ f
(N)
Xj

(x|Θ̂) 6= fSj (x). There-
fore, under this condition the divergence function is strictly
positive and the reverse implication is satisfied.
This completes the first part of the consistency proof. Now, we
must show that the objective function surface is convex about
the global minimum in order for the optimization of (28) to
converge for the appropriate fixed step sizeµ.

Theorem 3 (Convexity about Global Minimum):As N →
∞ the objective function in (24) is locally convex about the
global minimizerΘ∗.

Proof: Since our objective function is twice-
differentiable we can use positive definiteness of the Hessian
matrix to prove convexity. We start with

∂2

∂θm∂θm′
J (Θ) =

Mt∑

j=1

∂2

∂θm∂θm′
DKL(fSj (x)||f (N)

Xj
(x|Θ))

(40)
where

∂2

∂θm∂θm′
DKL(fSj (x)||f (N)

Xj
(x|Θ)) = (41)

−
∑

x∈X

∂2

∂θm∂θm′
f

(N)
Xj

(x|Θ))
fSj (x)

f
(N)
Xj

(x|Θ)
+

∑

x∈X

∂

∂θm
f

(N)
Xj

(x|Θ)
fSj (x)

[f (N)
Xj

(x|Θ)]2
∂

∂θm′
f

(N)
Xj

(x|Θ)

Θ=Θ∗= E
f
(N)
Xj

(x|Θ∗)


∂ log f

(N)
Xj

(x|Θ∗)
∂θm

∂ log f
(N)
Xj

(x|Θ∗)
∂θm′


 .

From the second line to third line we have used the fact that
limN→∞ f

(N)
Xj

(x|Θ∗) = fSj (x). In the last line of (41) we
observe that we’re left with the(m,m′) component of the
Fisher information matrix–which is always positive definite.
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The Hessian components of the objective function in (40)
are simply a sum ofMt of these Fisher information matrix
components. Since the sum of any number of positive definite
matrices is also positive definite, the Hessian in (40) is also
positive definite. Therefore, the objective function in (24) is
convex about the pointΘ∗.

It is interesting to note that the Hessian of our cost function
is equivalent to the Riemannian metric in (30). Now we
proceed to show that the estimator is asymptotically Fisher-
efficient (achieves the Cramer-Rao bound asymptotically).

Theorem 4 (Fisher Efficiency of Estimator):The estimator
formed from (24) is asymptotically Fisher-efficient.

Proof: We prove the estimator is asymptotically efficient
by proving that (24) is equivalent to the maximum likelihood
objective function.

Θ̂MLE =argΘ max log fY1···YMr
(y1, ...,yMr

|Θ) (42)

=argΘ max log f
(N)
X1,···XMt

(x1, ...,xMt
|Θ)

spatial

i.i.d.=argΘ max
Mt∑

j=1

log f
(N)
Xj

(xj |Θ)

temporal

i.i.d.=argΘ max
Mt∑

j=1

log
N∏

i=1

f
(N)
Xji

(xji|Θ)

N→∞=argΘ max
Mt∑

j=1

EfSj
(x)[log f

(N)
Xj

(x|Θ)]

=argΘ min
Mt∑

j=1



EfSj

(x)


log

fSj (x)

f
(N)
Xj

(x|Θ)




+EfSj
(x)

[− log fSj (x)
]}

=argΘ min
Mt∑

j=1



EfSj

(x)


log

fSj (x)

f
(N)
Xj

(x|Θ)


 +H(fSj )





=argΘ min
Mt∑

j=1

DKL(fSj (x)||f (N)
Xj

(x|Θ))

Here, we have used the one-to-one correspondence between
x[n0] andy[n0] from (10) in step two, spatial independence
of sources in step three, temporal independence of sequences
in step four, strong law of large numbers in step five, and
the definition of entropy forH(fS) = −EfS [log fS(x)] in the
penultimate step.

Note that we used temporal independence in the proof of
Theorem 4 even though we previously stated that this was not
a necessary condition. We get around this technicality in the
proof by assuming that we can downsample the infinitely long
sequence until the samples are temporally independent.

V. SIMULATION RESULTS

In this section we present the results from computer sim-
ulation of the observed signals and the estimator algorithm.
To motivate the significance of the proposed estimator, we
compare its performance to the algorithm of Amari et. al. in
[4], [7].

A. Comparison Algorithm

Amari’s multichannel blind deconvolution algorithm [7]
will serve as our benchmark algorithm for comparison. It is
derived from a entropy minimization formulation as in (3),
has very good performance under special circumstances, and
is computationally efficient. For this reason and others, it has
emerged as a top MBD algorithm for researchers in the field
(see e.g. [5]).

The estimator update for the polynomial matrix separation
system is:

W (r+1)[l] = W (r)[l] + µr{W (r)[l]− q(x[r − L])uH [r − l]}
(43)

where

u[r] =
L∑

q=0

[W (r)]H [L− q]x[r − q] (44)

and whereqj(x) is a nonlinear (nonpolynomial) function to be
specified by the user. The estimated source signals at update
stepr are formed from the inverse filter separation as in (2):

x[r] =
L∑

l=0

W (r)[l]y[r − l] (45)

Amari (and most others using a minimum entropy objec-
tive function) incorporate knowledge of the source densities
through the judicious choice of the nonlinear functionqj(x) in
(43). The optimal choice when the source densities are known
is given in [7] as:

qj(x) = −∂ log(fSj (x))/∂x (46)

where fSj (x) is the known pdf of thejth source signal.
To be fair we must initialize Amari’s algorithm with the
same amount of prior information we use in the proposed
method. To incorporate a parameterized channel with an initial
parameter estimate into an inverse filter method formulation
we will make use of the following relation:

Mr∑

i=1

L−1∑

l=0

W [l]H[n− l] =




δ[n]
. ..

δ[n]


 (47)

If we limit our attention to theMr = Mt case we can solve for
the inverse filter polynomial matrix initial estimate from the
system of equations produced by the discrete fourier transform
of (47) to yield:

W (0)[n] =
1
N

N−1∑

k=0

e 2πk
N (n+dL

2 e)H̃−1[k; Θ̂(0)] (48)

whereH̃[k; Θ] = {h̃ij [k; Θ] ∀i, j}.

B. Experimental Setup

We test our algorithms using 512-sample windows of two
spatially independent source signals. We use two different
examples to show the performance of the MDPMBD algo-
rithm. In the unrealistic example in Section V-B.1, we use
an i.i.d. gaussian mixture model for the source signals and
a parameterized two-point minimum-phase FIR filter. This
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example is created to allow Amari’s algorithm to successfully
converge. It has no connection to any known channel but
is chosen for illustrative purposes. In the realistic example
in Section V-B.2, we use two different speech waveforms
sampled at 8kHz for the source signals and pass them through
a line-of-sight (LOS) channel. Conceptually, this example that
is closer to what we would observe in nature. We use (6) to
create the observations. We use the MDPMBD algorithm given
at the end of Section III to compute the estimate of the channel
parameter and source signals. We make use of the gradients in
Appendix II to calculate the components of (35). We then use
(43) - (48) to implement Amari’s algorithm. To measure the
performance of the proposed and comparison algorithm, we
will use the average signal-to-interference ratio (SIR) defined
as:

SIRavg =
1

Mt

Mt∑

j=1

∑n0+N−1
n=n0

|xj [n; Θ̂]|2
∑n0+N−1

n=n0
|xj [n; Θ̂]− sj [n]|2

(49)

wherexj [n; Θ] and sj [n] are the standardized estimated and
true source signals respectively. (We must also properly align
xj [n; Θ] and sj [n] before computing the denominator.) This
appears to be the best way to compare the performance of an
algorithm based on inverse filter separation to our algorithm
based on parametric symbolic pseudoinverse separation.

1) Unrealistic Example:Here we define the channel model
to be

hij [n; Θ] = δ[n] + (−1)iθjδ[n− 1] θj ∈ (0, 1) (50)

∀j = 1, 2, ∀i = 1, 2, and∀n = n0, ..., n0 + N − 1 and

∂

∂θm
h̃ij [k; Θ] =

{
(−1)ie 2πk

N , m = j
0, otherwise

. (51)

The source signals are i.i.d. and have common pdf given by
the gaussian mixture

fSj (x) =
1√

2πσ2
e−

(xj−η1)2

2σ2
1√

2πσ2
e−

(xj−η2)2

2σ2 (52)

where we choseσ = 0.4, η1 = 1, and η2 = −1 for our
simulation. This means the nonlinear functionqj(x) from (46)
will be qj(x) = 2x

σ2 . We chooseΘ∗ = [0.2, 0.6]T and initialize
the algorithm withΘ̂(0) = [0.3, 0.7]T . In Fig. 4 we plot the
average SIR from (49) for both the Amari algorithm and the
proposed algorithm as a function of the time sample index.
We compare and show the performance for two different sets
of step sizes. Generally, the larger the step size, the faster
the algorithm converges but the more it oscillates about the
solution. Picking a step size that is too large can also lead to
convergence failure.

2) Realistic Example:We now consider a number of ob-
servable signals arriving in planar wavefronts upon an arbi-
trary collection of sensors at known positionsP = {pi =
[pxi , pyi ]

T ∀i} as in Fig. 5. When the sensors are spaced
far enough apart, each receiver sees a different delay for each
source. Now, we define the 2-D directional unit vector for
sourcej as[− cos θj ,− sin θj ]T and project it onto the position
vector pi = [pxi , pyi ]

T for sensori. This gives the distance
between the sensor and the origin along the direction of arrival
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Fig. 4. Unrealistic Example Performance: Average SIR as computed in (49)
for relatively small step sizes in the top figure and relatively large step sizes
in the bottom figure. (Note that the convergence time and variability of the
SIR in Amari’s algorithm is unnoticable since the difference in dB between
the algorithms is so large.)

Fig. 5. In this line-of-sight channel model we illustrate a sensor array with
source signalssj [n] impinging at angles of arrivalθj to create a received
signalyi[n] at sensor position[pxi , pyi ]

T .
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Fig. 6. Realistic Example Performance: We plot average SIR versus time
sample for the two algorithms as before. Notice that the average SIR for
Amari’s algorithm is below 0 dB which means that the algorithm is failing
to separate the sources.

(DOA) of thej-th source signal. The relative time delay is then
simply this distance divided by the speedc of propagating
wavefront to give

τij = −1
c
(pxi cos(θj) + pyi sin(θj)) (53)

For a real-valued signal in a LOS channel, plugging (53)
into (8) gives the far-fieldreal-valued line-of-sight channel
model:

hij [l; Θ] = αjsinc(l +
1
cT

(pxi cos(θj) + pyi sin(θj))) (54)

∀j = 1, 2, ∀i = 1, ..., 8, and∀n = n0, ..., n0 + N − 1 and

∂

∂θm
h̃ij [k; θm] =

N−1∑
n=0

e−
2πkn

N

(
cos(ηijn)γij

ηijn
− sin(ηijn)γij

η2
ijn

)

(55)
where ηijn = π(n − L1) + π

cT (pxi cos(θj) + pyi sin(θj))
and γij = ∂

∂θj
ηijn. We have αj=amplitude of source

j, c=propagation speed,θj=source j direction of arrival,
T=sampling period,[pxi pyi ]=2-D position of sensori, and
Θ = [θ1, θ2, ..., θMt ] are the DOAs of the source signals. We
let the source signals for this simulation be two acoustic wave-
forms impinging on a 8-element uniformly spaced circular
array. We useΘ∗ = [45o, 60o]T andΘ(0) = [55o, 70o]T in the
simulation. In Fig. 6 we plot average SIR versus time sample
for the two algorithms as before. Amari’s algorithm fails to
converge primarily due to the fact that the polynomial matrix
with terms from (54) is not minimum phase. Notice that the
average SIR for Amari’s algorithm is below 0 dB which means
that the algorithm is failing to separate the sources.

VI. CONCLUSION

In this paper we examined the problem of multichannel
blind deconvolution (MBD) for the specific case in which

the probability density functions of the source signals are
known. We focused attention on parametric channel models
to reduce the dimension of the search space compared with
nonparametric channels (in which case every element of the
separation system polynomial matrix must be estimated). We
derived a new MBD algorithm and proved its asymptotic opti-
mality in the sense of being statistically consistent and Fisher
efficient. We compared the performance of our new estimator
to a popular minimum entropy inverse filter technique used for
MBD. For the contrived example where the minimum entropy
inverse filter method actually achieves source separation, the
average signal-to-interference ratio of the proposed estimator
exceeded it by 15-20 dB. For the more realistic physics-based
line-of-sight acoustic example, the minimum entropy inverse
filter method completely failed, while the proposed estimator
achieved an average SIR around 7 dB.

We would like to extend the algorithm to do multichannel
blind deconvolution on complex-valued wireless communica-
tion signals operating in both line-of-sight and non-line-of-
sight multipath models. We would like to derive a recursive
form of the estimator instead of the current batch formulation.
We need to examine effects of channel and source modeling
errors and devise methods and cost functions to make the
estimator robust against these effects. Finally we would like
to analyze what happens when the number of sources is
unknown. Or, analogously, what happens when the algorithm
is designed to handle more source signals than actually appear?

APPENDIX I
PROOF OFTHEOREM 1

To derive the Riemannian metric for (24), we use (29) on
(23) and assert spatial independence. For notational compact-
ness we define

∑
x1,...,xMt

≡ ∑
x1∈X · · ·

∑
xMt∈X

gij(Θ) = − ∂

∂θ′i

∂

∂θ′′j

∑
x1,...,xMt

f(x1, ..., xMt |Θ′)×

log
f(x1, ..., xMt |Θ′)
f(x1, ..., xMt |Θ′′)

∣∣∣∣
Θ′=Θ′′=Θ

=
−∂

∂θ′′j


 ∑

x1,...,xMt

∂

∂θ′i
f(x1, ..., xMt |Θ′)×

log
f(x1, ..., xMt |Θ′)
f(x1, ..., xMt |Θ′′)

+
∑

x1,...,xMt

f(x1, ..., xMt |Θ′)×

f(x1, ..., xMt |Θ′′)
f(x1, ..., xMt |Θ′)

∂
∂θ′i

f(x1, ..., xMt |Θ′)
f(x1, ..., xMt |Θ′′)

]∣∣∣∣∣
Θ′=Θ′′=Θ

=
∑

x1,...,xMt

(
∂

∂θi
log f(x1, ..., xMt |Θ)

)
×

(
∂

∂θj
log f(x1, ..., xMt |Θ)

)
f(x1, ..., xMt |Θ)
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spatial
i.i.d.=

∑
x1,...,xMt

(
Mt∑
p=1

∂
∂θi

f(xp|Θ)
f(xp|Θ)

)
×

(
Mt∑
q=1

∂
∂θj

f(xq|Θ)

f(xq|Θ)

)
Mt∏
r=1

f(xr|Θ)

=
∑

x1,...,xMt

Mt∑
p=1

∂
∂θi

f(xp|Θ) ∂
∂θj

f(xp|Θ)

f2(xp|Θ)

Mt∏
r=1

f(xr|Θ) +

∑
x1,...,xMt

Mt∑
p=1

∑

q 6=p

∂
∂θi

f(xp|Θ) ∂
∂θj

f(xp|Θ)

f(xp|Θ)f(xq|Θ)

Mt∏
r=1

f(xr|Θ)

=
Mt∑
p=1

Ef(xp|Θ)

[
∂

∂θi
log f(xp|Θ)

∂

∂θj
log f(xp|Θ)

]

This completes the proof of Theorem 1. In the second and
penultimate step we are able to cancel the second term
altogether using the fact that

∑
x∈X

∂
∂θ f(x|Θ) = 0. Also,

throughout the proof, we use∂∂θ log f(x|Θ) =
∂

∂θ f(x|Θ)

f(x|Θ) . We
see thatG(Θ) = {gij(Θ)} is the sum of Fisher information
matrices.

APPENDIX II
GRADIENT CALCULATIONS FOR SIMULATION EXAMPLES

For the two examples given in Section V-B we have the
following gradients for the terms in (33)

∂

∂θ1
a11[k; Θ] =

∂

∂θ2
a22[k; Θ] = 0 (56)

∂

∂θ1
a12[k; Θ] = −

Mr∑

i=1

∂

∂θ1
h̃∗i1[k; θ1]h̃i2[k; θ2]

∂

∂θ1
a21[k; Θ] =

[
∂

∂θ1
a12[k; Θ]

]∗

∂

∂θ1
a22[k; Θ] = 2<{

Mr∑

i=1

∂

∂θ1
h̃∗i1[k; θ1]h̃i1[k; θ1]}

∂

∂θ2
a11[k; Θ] = 2<{

Mr∑

i=1

∂

∂θ2
h̃∗i2[k; θ2]h̃i2[k; θ2]}

∂

∂θ2
a12[k; Θ] = −

Mr∑

i=1

∂

∂θ1
h̃i1[k; θ1]h̃∗i2[k; θ2]

∂

∂θ2
a21[k; Θ] =

[
∂

∂θ2
a12[k; Θ]

]∗

∂

∂θ1
d[k; Θ]=

Mr∑

i=1

∂

∂θ1
|h̃i1[k; θ1]|2

Mr∑

i=1

|h̃i2[k; θ2]|2 (57)

−2<
[

Mr∑

i=1

∂

∂θ1
h̃∗i1[k; θ1]h̃i2[k; θ2]

Mr∑

i=1

h̃∗i2[k; θ2]h̃i1[k; θ1]

]

∂

∂θ2
d[k; Θ]=

Mr∑

i=1

∂

∂θ2
|h̃i2[k; θ2]|2

Mr∑

i=1

|h̃i1[k; θ1]|2

−2<
[

Mr∑

i=1

∂

∂θ2
h̃∗i2[k; θ2]h̃i1[k; θ1]

Mr∑

i=1

h̃∗i1[k; θ1]h̃i2[k; θ2]

]

ACKNOWLEDGMENT

The authors would like to thank the reviewers of this paper
for their time and consideration.

REFERENCES

[1] S. Haykin, editor,Unsupervised Adaptive Filtering Volume I: Blind
Source Separation, John Wiley and Sons, 2000.

[2] A. Hyvärinen, J. Karhunen, E. Oja,Independent Component Analysis,
John Wiley and Sons, 2001.

[3] A. Cichocki and S. Amari,Adaptive Blind Signal and Image Processing,
John Wiley and Sons, 2002.

[4] S. Amari, S. Douglas, A. Cichocki, H. Yang “Novel on-line adaptive
learning algorithms for blind deconvolution using the natural gradient
approach,”IEEE 11th IFAC Symposium on System Identification, July
1997.

[5] S. Douglas, H. Sawada, and S. Makino, “Natural gradient multichannel
blind deconvolution and speech separation using causal FIR filters,”
IEEE Transactions on Speech and Audio Processing, Vol. 13, No. 1,
January 2005.

[6] Tugnait, J.K., “Identification and deconvolution of multichannel linear
non-Gaussian processes using higher order statistics and inverse filter
criteria” Signal Processing, IEEE Transactions on, Volume: 45, Issue:
3 , March 1997.

[7] S. Amari, S. Douglas, A. Cichocki, H. Yang “Multichannel blind
deconvolution and equalization using the natural gradient,”IEEE Signal
Processing Advances in Wireless Communications, 1997.

[8] Inouye, Y.; Tanebe, K., ”Super-exponential algorithms for multichannel
blind deconvolution”Signal Processing, IEEE Transactions on, Volume:
48, Issue: 3 , March 2000.

[9] K. Rahbar, J. Reilly, J. Manton, “Blind identification of MIMO FIR
systems driven by quasi-stationary sources using second order statistics:
a frequency domain approach,”IEEE Trans. on Signal Processing, Vol.
52, Issue: 2, Feb. 2004.

[10] L. Parra and C. Spence, “Convolutive blind separation of nonstationary
source,”IEEE Trans. Speech Audio Processing, vol. 8, no. 3, pp. 320-
327, May 2000.

[11] K. Rahbar and J. Reilly, “Blind source separation of convolved sources
by joint approximate diagonalization of cross-spectral density matrices”,
Acoustics, Speech, and Signal Processing, IEEE International Confer-
ence on, Volume: 5 , 7-11 May 2001.

[12] C. Ma; Z. Ding; S. Yau, “A two-stage algorithm for MIMO blind
deconvolution of nonstationary colored signals”Signal Processing, IEEE
Transactions on, Volume: 48 , Issue: 4 , April 2000.

[13] S. Amari, “Natural gradient works efficiently in learning,”Neural
Computation, 10, 251-276, 1998.

[14] S. Amari and H. Nagaoka,Methods of Information Geometry, American
Mathematical Society, 2000.

[15] S. Eguchi, “Second order efficiency of minimum contrast estimators in a
curved exponential family,”Annals of Statistics, Vol. 11, No. 3, 793-803,
1983.

[16] J. Proakis,Digital Communications: Fourth Edition, McGraw-Hill,
2001.

[17] L. Rabiner and R. Schafer,Digital Processing of Speech Signals,
Prentice-Hall Inc., 1978.

[18] T. Cover and J. Thomas,Elements of Information Theory, John Wiley
and Sons, Inc. 1991.



11

Robert M. Taylor Jr. received the B.S. degree in
Electrical Engineering in 1996 and the M.S. degree
in Electrical Engineering in 1997 from the Georgia
Institute of Technology, Atlanta, GA. After gradu-
ation, he was a research engineer with Johns Hop-
kins University Applied Physics Laboratory, Laurel,
MD until 2001. Since then he has been a senior
signal processing engineer at MITRE Corporation,
McLean, VA. He enrolled at Virginia Tech in 2003
where he is currently pursuing a Ph.D. in Electrical
Engineering. His research interests include statistical

signal processing, information theory, digital communications, and informa-
tion geometry.

Lamine Mili (SM90), received the electrical engi-
neering diploma from the Swiss Federal Institute of
Technology, Lausanne, in 1976, and the Ph.D. de-
gree from the University of Liege, Belgium, in 1987.
Currently, he is a Professor of electrical engineering
at the Alexandria Research Institute of Virginia Tech.
His research interests include robust statistics, robust
estimation and detection, clutter mitigation in radar
systems, image and speech processing, long memory
processes, system identification, risk management of
complex systems, nonlinear dynamics and control,

and power system analysis and control. Dr. Mili is a senior member of the
Power Engineering Society of IEEE, the recipient of a 1990 NSF Research
Initiation Award, and of an 1992 NSF Young Investigator Award.

Amir I. Zaghloul (F’92) received the Ph.D. and
M.A.Sc. degrees from the University of Waterloo,
Canada in 1973 and 1970, respectively, and the B.Sc.
degree (Honors) from Cairo University, Egypt in
1965, all in electrical engineering. In 2001 he joined
Virginia Polytechnic Institute and State University
(Virginia Tech) as Professor in the Bradley Depart-
ment of Electrical and Computer Engineering. Prior
to Virginia Tech, he was at COMSAT Laboratories
for 24 years performing and directing R&D efforts
on satellite communications and antennas, where he

received several research and patent awards, including the Exceptional Patent
Award. He held positions at the University of Waterloo, Canada (1968-
1978), University of Toronto, Canada (1973-74), Aalborg University, Denmark
(1976) and Johns Hopkins University, Maryland (1984-2001). He is a Fellow
of the IEEE and the recipient of the 1986 Wheeler Prize Award for Best
Application Paper in the IEEE Transactions on Antennas and Propagation. He
is also an Associate Fellow for The American Institute of Aeronautics and
Astronautics (AIAA), a Member of Commissions A & B of the International
Union of Radio Science (URSI), and member of the IEEE Committee on
Communications and Information Policy (CCIP).

Dr. Zaghloul is the general chair of the ”IEEE International Symposium
on Antennas and Propagation and USNC/URSI Meeting,” Washington, D.C.,
July 2005.




