
IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 1, FEBRUARY 2005 63

Integrating Large-Scale Group Projects and
Software Engineering Approaches for

Early Computer Science Courses
M. Brian Blake, Senior Member, IEEE

Abstract—The utilization of large-scale group projects in early
computer science courses has been readily accepted in academia.
In these types of projects, students are given a specific portion of
a large programming problem to design and develop. Ultimately,
the consolidation of all of the independent student projects inte-
grates to form the solution for the large-scale project. Although
many studies report on the experience of executing a semester-long
course of this nature, course experience at Georgetown University,
Washington, DC, shows the benefits of embedding a large-scale
project that comprises just a segment of the course (three to four
weeks). The success of these types of courses requires an effective
process for creating the specific large-scale project. In this paper,
an effective process for large-scale group project course develop-
ment is applied to the second computer science course at George-
town University.

Index Terms—Collaboration skills, computer science II,
object-oriented design, programming, software engineering
education and training.

I. INTRODUCTION

AN INTRODUCTION of the most effective combination of
training techniques is essential for students who are pro-

gramming for the first time. This initial stage enables students
to learn the foundation of their programming skills and develop
individual practices that will remain with them throughout
their careers as computer professionals. Because students are
pliable at this initial stage, they need to be immersed in skills
that expand further than programming syntax. Students who
understand the big picture at an early stage tend to adopt
advanced programming techniques more seamlessly later in the
curriculum [1], [2]. In addition, understanding how software
can be modularized encourages the development of more robust
and reliable software [3]. Since programming and debugging
skills are so important, introducing these higher order soft-
ware engineering skills should not decrease the amount of
programming reinforcement training offered in the early com-
puter science courses. In addition to the work at Georgetown

Manuscript received July 30, 2003; revised October 1, 2003. This work
was supported in part by The Rational Corporation under a grant of software
licenses. The author’s affiliation with The MITRE Corporation is provided for
identification purposes only and is not intended to convey or imply MITRE’s
concurrence with, or support for, the positions, opinions, or viewpoints ex-
pressed by the author.

The author is with Georgetown University, Washington, DC 20057 USA.
He is also with the Center for Advanced Aviation System Development, The
MITRE Corporation, McLean, VA 22102 USA (e-mail: blakeb@mitre.org).

Digital Object Identifier 10.1109/TE.2004.832875

University, Washington, DC, [4], many researchers [5]–[9] pro-
mote semester-long, large-scale programming courses. These
courses provide students with an understanding of low-level
developmental tradeoffs, such as choosing the most efficient
data structure or the use of recursion versus iteration. However,
such courses may be more effective if offered later in the com-
puter science curriculum. Introducing these types of courses
later in the curriculum would prevent problems [3] such as the
following:

• students understanding small portions of the big problem;
• advanced students hindering the development of students

who perhaps need more programming experience;
• a decrease in the students’ exposure to the array of con-

cepts, as programming tends to be more specific to a par-
ticular technique in each part of the large-scale project.

These problems may be alleviated if group projects are inte-
grated for no more than one third of the course. Although this
type of approach requires additional effort by the instructor
to scope the large-scale project appropriately, the remaining
two thirds of the course can be used to provide the reinforce-
ment programming training that students need at this stage.
This approach can be separated into several phases within the
three-to-four-week classwide project that promotes design,
development, and utilization of advanced techniques (such as
programming techniques with abstract data types). Another
important consideration is the effective placement of the special
project as it relates to the typical course topics presented in
early computer science courses.

In the following section, the computer science curriculum at
Georgetown University is described in detail. A discussion of
earlier shortcomings in the curriculum plan is presented and
goals are set to address them. In Section IV, the general struc-
ture of the large-scale project and a procedure for integrating
it into the second introductory computer science course is de-
tailed. In Section V, a description of the large-scale project that
was integrated into the Spring 2003 computer science course at
Georgetown University is given. In the remaining sections, this
approach is compared with related projects, and the benefits and
drawbacks based on quantitative and anecdotal results are eval-
uated.

II. BACKGROUND: THE COMPUTER SCIENCE CURRICULUM

AT GEORGETOWN UNIVERSITY

The computer science curriculum at Georgetown University
is similar to other curricula in computer science departments

0018-9359/$20.00 © 2005 IEEE

SABROWN
Text Box
Approved for Public Release; Distribution UnlimitedCase # 05-0694

64 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 1, FEBRUARY 2005

Fig. 1. Initial curriculum.

Fig. 2. Curriculum with emphasis on programming reinforcements.1

of similar stature. There are some variations in the depth of
coverage in some areas; however, most programs cover similar
topics. With significance to the Computer Science Department
at Georgetown University, no graduate program exists. An
emphasis on undergraduate education is a focus of the depart-
ment and of the college. The required curriculum consists of
introductory programming courses, such as Computer Science
I and II (CS1 and CS2). The required coursework also includes
foundational courses, such as Math Methods, Data Structures,
Algorithms, Programming Languages, Hardware, Systems,
and Operating Systems. Courses such as Artificial Intelligence,
Software Engineering, Networking, Machine Learning, Natural
Language Processing, Information Assurance, and Electronic
Commerce are offered as a choice of electives (four electives
are required). Figs. 1 and 2 illustrate two prerequisite structures
for the aforementioned required coursework. The initial struc-
ture (Fig. 1) represents the curriculum prior to 2001, and the
2002 curriculum (Fig. 2) shows a new, more focused plan.

In the initial curriculum, CS1 and CS2 were split into two dif-
ferent programming languages (C++ and Java). As a result, sig-
nificant time was spent in each class introducing each program-
ming language. The two courses lacked cohesiveness, and the
introductory nature of the courses limited the depth of the pro-
gramming training. In addition, the Data Structures course was
not taught as a programming course. Moreover, courses such
as Algorithms, Programming Languages, and Systems were not
intensive programming courses with respect to students solving
complex problems by conceptualizing programming solutions.
Because of the dynamic nature of computer science technolo-
gies, the faculty perceived that the students would be better

1Figs. 1 and 2 are reproductions of illustrations developed by the departmental
curriculum committee of Georgetown University (the faculty members are listed
in the Acknowledgment).

prepared if more programming training was provided for the
two-year period central to the curriculum. This perception was
reinforced based on the large amount of programming back-
ground required in later programming-intensive courses, such
as Operating Systems and a majority of the electives. More re-
inforcement training in programming would better prepare the
students to handle the advanced problems presented in the more
focused elective subjects.

The faculty curriculum committee decided to make major
changes to the curriculum and the underlying courses to help
alleviate these issues and promote reinforcement training in pro-
gramming (shown in Fig. 2). Several major changes were made
that are highlighted in Fig. 2. One change was the use of one
language (C++) that would be consistent across CS1, CS2, and
Data Structures. Another change was encouraging the instruc-
tors teaching the Data Structure course to include more pro-
gramming-intensive exercises. In addition, an advanced pro-
gramming course that uses Java was introduced which would
give students exposure to the Java programming language while
introducing advanced programming approaches to networking,
web development, database connectivity, and graphical user in-
terfaces. Finally, the committee encouraged better connection
between CS1, CS2, and Data Structures, in addition to an em-
phasis on problem solving with programming in CS2.

III. THE CONNECTION BETWEEN CS1, CS2, AND DATA

STRUCTURES COURSES

The focus of this paper is on changes to CS2. However, the
connection of CS1, CS2, and Data Structure courses provides
the additional motivation with respect to the importance of these
changes to CS2. The first action for making these three courses
more cohesive was to align the underlying subjects taught in

BLAKE: INTEGRATING LARGE-SCALE GROUP PROJECTS AND SOFTWARE ENGINEERING APPROACHES 65

Fig. 3. The connections between CS1, CS2, and Data Structures courses.

each course. The CS1 course serves as an introduction to pro-
gramming and programming syntax, while the Data Structures
course provides training for the advanced manipulation of ab-
stract data types (ADTs). Therefore, the ability to connect the
three courses lies in changes that must occur in the CS2 course.
Consequently, several new goals for the CS2 course were cre-
ated, as follows:

1) reinforce and expand on CS1 topics;
2) include an introduction to Data Structures;
3) promote the use of software design to solve problems.

In reinforcing subjects from CS1, the goal in CS2 is to review
subjects, such as file input and output routines, vectors, classes,
and linked lists, while introducing other advanced approaches
(e.g., inheritance, polymorphism, and doubly/circularly linked
lists).

Although abstract data types are not the focus of CS2, the
introduction to the data types in the context of solving real
problems completes the mapping between CS1, CS2, and Data
Structures courses. A sampling of relevant subjects in these
courses and their mappings are illustrated in Fig. 3.

IV. DEVELOPING A COURSE WITH A SHORT-TERM

CLASSWIDE GROUP PROJECT

In general, instructors of engineering and science courses
tend to build the basic skills of students for a significant portion
of their courses. The acquisition of these basic skills helps to
build a cumulative aptitude in the students. For the computer
science domain, basic programming techniques can be used
to develop the students’ ability to apply the combination of
multiple techniques to unique problems. Likewise, in other
domains, such as circuit evaluation in electrical engineering
courses, students learn to evaluate circuits using techniques
such as loop, mesh, and node before being given an advanced
problem that relies on a combination of techniques.

A. The General Course Development Approach

The objective in these introductory courses is to develop both
training for basic skills and the use of higher level composite
skills.

In developing such a course, several steps have been deter-
mined.

1) Create a list of basic competencies for the course—These
basic competencies tend to be consistent with course ob-
jectives.

2) Schedule individual portions of the course to train stu-
dents in each competency (such as weekly lectures and
problem sets)—This scheduling constitutes the basic
training of the students, which should precede later
training in higher level skills which utilizes the combina-
tion of basic skills.

3) Design a set of independent modules that students must
perform that require the higher level combination of
competencies—These modules should require students
to leverage their basic skills. The focus of these modules
can vary, but the difficulty should be consistent.

4) Formulate a large-scale project through the combination
of the set of modules (in some cases, modules must be
duplicated).

The final two steps in developing this type of course are the
most difficult. Developing the classwide project requires exten-
sive planning by the instructor. The problem space should con-
sist of a number of modules or interrelated black boxes. Students
should be able to implement each module or black box with a
variation, extension, or combination of basic skills. For the CS2
course, such a problem may require the utilization of an abstract
data structure or some other advanced programming technique.
Once the technique is determined, the instructor should estimate
the amount of time needed to implement specific modules. To
the greatest extent possible, the modules should be evenly dis-
tributed among the class. In classes with a large number of stu-
dents, one may find necessary the assignment of multiple stu-
dents to a module. The project is most interesting to students if
it is associated with a real-world application.

Alternatively, multiple groups of students could be assigned
the same large-scale project. This approach would be optimal
when scaling the problem to larger class sizes. One positive
effect of having multiple concurrent groups is that a student or
subteam on one project team can be used to supplement the
shortcomings of the mirror student or subteam of the other

66 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 1, FEBRUARY 2005

Fig. 4. Placement of the three-to-four-week large-scale project in Computer Science II.

project team. This possibility is particularly important to the
instructor who would otherwise personally have to supplement
this gap with his or her own solution. This situation also allows
the instructor to evaluate multiple solutions for a particular
module and to demonstrate to the students the tradeoff in design
and implementation.

B. Specifying the Large-Scale Project for the CS2 Course

A major goal of the CS2 course is to introduce new pro-
gramming techniques continually while encouraging students to
think independently in solving unique problems. This approach
utilizes weekly programming exercises. A new programming
problem is introduced weekly that allows the students to get
hands-on knowledge on the techniques presented. However, the
brief and well-defined nature of these projects presents prob-
lems, as discussed in Section I. In order to see the usefulness
of the advanced programming techniques, the students need to
conceptualize solutions to problems that are not so well defined.
In addition, students should get an introduction to the collabora-
tion necessary in large-group programming environments. Im-
mersion in such an environment greatly benefits their apprecia-
tion for interface design and software reliability. As mentioned
previously, other academicians promote a semester-long course
to incorporate the benefits of the group programming environ-
ments. In this context, the semester-long approach would inter-
fere with the reinforcement training needed in CS2. Therefore,
a project that represents 30% of the programming assignments
is preferable.

A normal semester consists of 16 weeks. There are two weeks
without projects based on the first and second exam weeks and
one additional nonproject week prior to final exams. Typically,
two additional weeks are without projects because of the place-
ment of holidays in the semester. Therefore, an instructor can
typically assign 11 to 12 weekly projects per semester. In this
approach, large-scale projects are used to substitute three to four
weeks of weekly projects. Fig. 4 illustrates the proposed time
line for weekly projects. In the first row, there is a list of the
total number of weeks for the semester. The second row shows
a sample list of subjects covered in the first computer science
course. In the first seven weeks and in the last one to two weeks,
regular weekly projects are assigned; and in weeks 10 to 13, a
large-scale project is incorporated.

The large-scale project should optimally be assigned concur-
rently with the introduction of data structures. The goal is for
students to begin thinking about solutions to the unique projects

at the same time that they receive lectures on abstract data-type
concepts and usage. The project consists of a week for design,
a week for development, and a week or two for enhancements.
In the first week, students are presented with the full software
problem, which is composed of parts that students can achieve
independently or in small groups. The instructor explains each
independent part as a black box with specific inputs and outputs.
Students are required in the first week to provide a design solu-
tion for mechanisms internal to their specific black box. One
group is assigned the central black box that acts as the control
for the program, thus integrating the entire software solution.
The responsibility of each student who represents a black box is
to submit a software design visually and with anticipated func-
tion prototypes. In addition, at the end of the first week, the stu-
dents must present their designs during class. Copies of each
of the designs are given to the group responsible for the central
black box. At the end of the second week, students must submit
their portion of the project with a test driver and stub programs.
The group with the central portion of the project integrates the
software in the third week, when all students are required to
enhance their designs based on the latest lectures of data struc-
tures. The responsibility of the instructor is to create modular
components of the classwide project that are applicable to the
use of data structures, such as queues, stacks, and trees.

V. A PROJECT EXAMPLE: CREATING AN AGENT-BASED

WORKFLOW SIMULATION

This approach is best understood when illustrated with a
concrete example. A large-scale project was integrated into
the Spring 2003 course of Computer Science II at George-
town University. The project was introduced using a time
line similar to the time frame proposed in Section IV-B. The
large-scale project was substituted for the sixth, seventh, and
eighth projects of a ten-project semester. The project portion of
the course was conducted during three 75-minute classes and
represented 20% of students’ course grade. Students indicated
that they spent from six to ten hours per week working on the
project, depending on their skill level.

The problem dealt with the creation of a simulation appli-
cation. The students were asked to model intelligent software
robots or agents. These software agents would be used to
manage Internet-based travel reservations. Thus, intelligent
software agents would fulfill the orders for making travel
arrangements of users that schedule travel over the Internet.
Students had to determine the efficiency of the intelligent agents

BLAKE: INTEGRATING LARGE-SCALE GROUP PROJECTS AND SOFTWARE ENGINEERING APPROACHES 67

Fig. 5. Agent-based workflow project: an example of a classwide project.

to handle increasing loads of travel requests. The class first had
to develop a simulation that would allow the entry of traffic in-
formation in the form of text files. This traffic information would
be used to task multiple software objects, acting as software
agents. These software objects (modeled as agents) would main-
tain a list of scheduled tasks. Each time a new task was sched-
uled, the object would record numerical measures of the service
time delay and the operational delay based on its current queue
size (outstanding tasks).

A. Assigning the Agent-Based Workflow Simulation
Project (Week 1)

The instructor decided that the best way to visualize the
project was to create a class diagram [10]. By decomposing
the class diagram into lower level groups of classes, one class

or group of classes could represent an individual black box
as described in Section IV-B. In addition, the instructor could
specify interface functions or methods as opposed to specifying
input and output data. The application was composed of nine
classes: ProcessBuilder, ProcessManager, Process, Task, Map-
pingBuilder, SimProcessor, StatManager, Workflow Manager
Agent (WMA), and Role Manager Agent (RMA). Participation
in the classwide project was on a voluntary basis, but most
of the students decided to participate. Therefore, 14 of 16
students in the class participated, and the instructor assigned
two students per module. The class diagram for the agent-based
workflow simulation is illustrated in Fig. 5.

In Fig. 5, the separation of subprojects (modules) is illustrated
by dotted lines, and the functions illustrated are the interface
methods and data structures agreed upon by the students and

68 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 1, FEBRUARY 2005

Fig. 6. Record of business process information.

Fig. 7. Main algorithm of the simulation application to be performed by the SimProcessor.

instructor after the first project week. The task of the Process-
Builder module is to collect a list of processes from a text file
(traffic file) and to construct, in memory, containers for storing
the information. The instructor suggested the use of Process
and Task classes to store the information. The information is
composed of the start time of the process, the process name,
new/existing status, a sequential list of tasks, with service time
and new/existing status (Fig. 6). The students involved with this
module were tasked to design software that could retrieve the
information from a text file in a format of their choice. The
module also had to provide methods to access the information
once stored in memory.

The requirements of the ProcessManager module were to
access the traffic information and cycle through the tasks at
simulation time. Thus, the ProcessBuilder and ProcessManager
groups were required to work together. In fact, the Process and
Task classes were a shared component of both groups. The
team that built the MappingBuilder was responsible for reading
a text file that contained information about the relation between
the software objects and the processes and tasks. This class was
used to assure that tasks were distributed to the correct software
objects at run time.

The RMA was a software object (agent emulator) repre-
senting an individual travel reservation task, such as car rental,
hotel reservation, or airline ticket purchases. Tasks from the
traffic file were assigned to RMAs using the mappings main-
tained by the MappingBuilder. The RMA had a scheduling
method that accepted new assignments and placed them in a
task list.

The WMA object emulated a process-level agent that kept
track of the entire travel reservation process (composed of mul-
tiple services). Like the RMA, processes from the process file
could be assigned to WMAs using the bindings maintained by
the MappingBuilder. In addition, the WMA maintained a list of

active processes. Both RMAs and WMAs had the requirement
to record a delay when new tasks and processes, respectively,
were assigned.

A StatManager was passed to the RMAs and WMAs to record
statistics. In addition, this class was responsible for showing a
display of the statistics in some format. The statistics would
be in the form of total delay per operation time for all RMAs,
delay per operation time for all WMAs, or total system delay
per process at a given time.

Finally, the SimProcessor was the central black box that con-
trols the entire simulation. The ambitious students who agreed
to be assigned this part had the task of integrating all parts in
addition to working on the main algorithmic process. With the
initial suggestion of the instructor, the students worked to re-
vise an algorithm that would incorporate all classes to manage
the simulation.

The algorithm is shown in Fig. 7. The focus of this paper is
not to describe the inner workings of this algorithm but to show a
method of describing the operation of the main algorithm using
a pseudocode approach. The instructor also introduced sequence
diagrams from the Unified Modeling Language as a method to
demonstrate the operation, but the students seem to adopt the
pseudocode representations more easily.

Admittedly, the resulting application represents a basic ap-
proach to simulation. The major shortcoming of the simulation
design is that service times and assigned service completion
times remain static once the software objects assign them. In a
true simulation, service time and processing times are dynamic
as the simulation executes. However, despite the static nature of
the processing times, this simulation application has been effec-
tive in evaluating alternative types of traffic. In fact, this simu-
lation has been useful in evaluating agent interaction protocols
on various streams of traffic as recorded in other literature [11].

BLAKE: INTEGRATING LARGE-SCALE GROUP PROJECTS AND SOFTWARE ENGINEERING APPROACHES 69

B. Implementing the Project (Weeks 2 and 3)

During the first week, the students were somewhat over-
whelmed with the scope of the total project. In addition, they
realized that it would be difficult for one person to complete
the entire project in the time allotted. As the students began to
understand their individual responsibilities, their enthusiasm
for successfully completing the project began to increase. Stu-
dents were conscientious about appropriately developing their
particular piece of the project. During the second week of the
project, students presented their project designs and submitted
their designs both to the instructor and to the group integrating
the entire project.

In the second week, students began to think about what pro-
gramming techniques could be used to implement their classes.
It was the intention of the instructor to allow the students to pro-
gram the classes in any manner necessary, but then to suggest
using data structures in the third week. Some of the names used
in Fig. 6 suggest the use of certain data structures for particular
modules. Although these were not available during the first two
weeks of the class, in this offering of the course, the students
began to suggest the use of abstract data structures, particularly
in the development of the ProcessManager, WMA, RMA, and
MappingBuilder. This outcome was a positive effect of holding
this special project concurrently with the lectures on abstract
data types. Some groups were savvy enough to use the data
structures in the second week and, on the third week, were as-
signed other extension tasks to enhance their modules. Other
students were assigned enhancements to their module using a
specific data structure. The fourth week was used for students
to present their completed modules and to demonstrate the com-
pleted classwide application.

VI. COMPARISON TO RELATED WORK

As previously mentioned, several studies have been made
into semester-long courses of this sort. Bareiss [1], Turner [2],
Rebelsky and Flynt [3], and Adams [9] endorse the use of large-
scale, course-long projects to enhance the students’ ability to
discover developmental tradeoffs. Other literature by Krone, et
al. [7], and the earlier work of the author [4] show how the de-
velopmental training is greatly enhanced when combined with
formal training in coordination and collaboration. In addition,
other literature [12]–[14] concentrates on the general benefits
of collaborative approaches to teaching in engineering and sci-
ence education.

The approaches presented in this paper attempt to leverage
all three approaches. Students learn to work collaboratively as
a large developmental team. The major difference is that this
approach utilizes a shortened large-scale project that represents
just a portion of the course. There are other departments that
adopt similar approaches of short-term, large-scale projects.
However, this approach is one of few approaches in publication
that presents a process to develop and incorporate this type
of course. Decreasing this project to a smaller portion of the
semester allows students to have regular individual program-
ming exercises during the semester to reinforce developmental
skills while also having the experience of large-scale software

development (shown to be valuable in the aforementioned
related literature).

In addition, in this approach, the early introduction of ob-
ject-oriented modeling techniques is used to explain the group
projects. This introduction has been helpful in later courses [1]
although additional training may be needed before the first-year
students can totally understand the modeling techniques. Of all
the design models introduced, the students, at this level, best un-
derstood the structural diagrams (class diagrams).

This approach also supports less group work at the module
level. In the curriculum at Georgetown University, the instructor
found that, at this early stage, students should benefit from
participating in individual programming projects. However,
there are barriers to creating the individual programming
components. Even in a class of 16 students, a problem that
decomposes easily into 16 parts is difficult to develop. In the
case of the course presented in Section V, two students were
assigned per module. The goal should be to minimize the
number of students in each group when individual work is not
possible.

VII. EVALUATION OF THIS APPROACH

In evaluating the impacts of this approach, both quantita-
tive impacts (comparison to an earlier course) and anecdotal
responses from the students were considered. In the following
sections, the course is evaluated using both methods, including
a discussion of the results.

A. Quantitative Evaluation Based on Earlier Courses

This paper describes the first offering (Spring 2003) of this
type of course that combines weekly projects with a short-term,
large-scale project. However, there was an earlier course using
a semester-long project taught by the same instructor in the pre-
vious year (Spring 2002). The Spring 2002 course contained a
large-scale project spread over the entire semester. Each module
during the semester was performed independently by the stu-
dents and represented a building block to the final large-scale
application. Consequently, each student individually developed
the large-scale project over the length of the semester.

1) Comparing the Two CS2 Courses: The major difference
between the Spring 2002 and Spring 2003 courses was the lower
level of collaboration among the students in the instance of
Spring 2002. In addition, the Spring 2002 instructor did not
develop a problem that the students could develop in its en-
tirety. Instead, each week, students were given assignments to
modify pre-existing modules with techniques learned that week.
This type of training is common in courses taught at George-
town University, but developing modules without pre-existing
“starter” modules was discovered to be more valuable to the stu-
dents.

A common thread of both courses was the format of the final
exam. Both final exams consisted of programming problems.
In one part of the exam, students were given a specific problem
and were required to demonstrate a programming solution using
a specified data structure. Another portion of the final exam was
an abstract problem that allowed the students to showcase their

70 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 1, FEBRUARY 2005

TABLE I
PERCENTAGE OF STUDENTS EXCELLING AT SPECIFIC COURSE COMPETENCIES

Fig. 8. Graphical display of students’ aptitude at specific competencies.

ability to designate the most efficient design to solve a problem
and their ability to implement that design in code.

The Spring 2002 course was composed of 31 students while
the new Spring 2003 had only 16 students. The Spring 2003
student course evaluation was a quarter of a point higher (.25)
than the Spring 2002 student evaluations on a five-point scale.
The average of the two most relevant issues (i.e., evaluate how
much you learned in this course and the effectiveness of spe-
cial training techniques) was virtually the same. In addition, the
grade point average of the Spring 2003 course was four points
higher than the Spring 2002 course on a 100-point scale.

2) Evaluation Approach and Assessment: In evaluating the
impact of the new Spring 2003 course, the student course evalu-
ations and grade point average comparisons were somewhat in-
effective. The instructor historically has had strong student eval-
uations, which do not vary enough to be particularly useful. Al-
though the grade point average was higher in the new course, the
increase was not significant considering the historical variance
in the averages of all the CS2 courses taught by the instructor.
Although both the increased score in student evaluations and in
the class grade average suggest positive improvement of the stu-
dents’ performances in the latter of the two courses, the decision
was reached that evaluating the performance on the cumulative
final exams (which were similar in both semesters) was a better
indicator of improvement.

Both sets of final exams were evaluated based on ten pro-
gramming competencies similar to those presented in Fig. 4. In
addition, the number of students that achieved an aptitude of
80% or better in that competency was calculated. This number
was used to create a percentage of students in the class that
excelled in that particular programming competency. The per-
centage based on the ratios for both classes are shown in Table
I and is graphically shown in Fig. 8.

Based on the evaluation, the students were significantly better
prepared in Spring 2003 to understand and program the ad-
vanced techniques, such as templates, linked lists, and imple-
menting abstract data types. Initial programming techniques,
such as file input/output, strings, vectors, and inheritance, were
virtually the same for both classes. In addition, the category that
considered the nuances in programming syntax significantly in-
creased from Spring 2002 to Spring 2003. These results support
the conclusion that students accepted the advanced program-
ming training better in Spring 2003 than in Spring 2002.

However, the evaluation also shows that neither class was par-
ticularly effective in training students on identifying the most ef-
ficient advancing programming solution. In addition, class and
software design (selecting the proper ADT) was below antici-
pated standards in the overall performance on final exams for
both courses.

B. Anecdotal Student Responses

Students were encouraged to fill out anonymous evaluation
forms or send e-mail to the instructor making suggestions on
improving the course. Most students felt comfortable sending
comments directly to the instructor. A paraphrased list of anec-
dotes is discussed below.

• Parts of the design that were not totally specified were dif-
ficult because the communication channels were not estab-
lished among students. In the first offering of this approach,
the instructor did not set up proper communication chan-
nels; therefore, design inconsistencies were more difficult for
students to alleviate. In future courses, an online discussion
forum should be set up to help students communicate manda-
tory changes that must deviate from the original design. Stu-
dents suggested that regular updates during the development
week (week 2) would have been helpful.

• A strong characteristic of the project was the level of freedom
given in designing the solution. This freedom allowed the
independent group to make programming choices without
having to refer to the instructor beforehand.

• Although groups were highly interdependent, it was a benefit
to give the central module group the global picture. Allowing
one group to have the responsibility to connect all of the
projects was better than having totally independent projects.

C. Anecdotal Instructor Responses

• The instructor should have in-depth knowledge of the
project. Even if the instructor does not have the solution to
the special project, he or she should have in-depth knowl-
edge of the domain. Students will introduce new ideas and
variations that the instructor may not have envisioned; thus,
thorough familiarity will benefit the process.

• The instructor should expect that students will not under-
stand the project in the first discussion. Several students
needed multiple iterations to digest the specification for their
module. Using an entire week for design is helpful in al-
lowing the students to digest their individual problems. Fur-
thermore, additional class time can assist in clarifying issues
in the individual projects. Courses of this nature require the

BLAKE: INTEGRATING LARGE-SCALE GROUP PROJECTS AND SOFTWARE ENGINEERING APPROACHES 71

instructor to utilize a significant amount of coaching exper-
tise.

• The instructor should use interface methods to help explain
the initial expectations. Showing example methods of their
individual modules helped students understand what their
module is expected to do. This method is the most effective
way to describe the inputs and outputs for this approach to
black box design.

• Ambiguity in design has both positive and negative effects.
Some students responded favorably to having freedom of
design in their implementations. Other students desired
more details. The instructor should make an effort to allow
some freedom in development to accommodate for the more
ambitious students. However, the same vagueness, although
uncomfortable, may cause other students to become more
proactive.

• Students that implement the central module receive the
greatest challenge. The students who agreed to be re-
sponsible for the central module received by far the best
experience in code integration. The instructor suggests that
these students be given freedom to contact other students
in the final week to make small changes that assist the
integration effort. This contact empowered the students as
they gained ownership of the project.

D. Discussion

The most positive result from this new course is that students
proactively suggested the use of data structures prior to the third
week of the special project. This suggestion exceeded the expec-
tation of the instructor and suggests that the use of the special
project was valuable in helping students conceive the impor-
tance of data structures to certain real-life applications. There
are also positive effects as a result of reinforcing CS1 subjects.
At times, there is a disparity between the teaching approaches of
multiple instructors that teach the prerequisite CS1 course. Re-
visiting introductory subjects helps to balance the experience of
students that had different instructors for CS1. At the same time,
other variations of the subjects were introduced to prevent stu-
dents from seeing this review as redundant (such as the introduc-
tion of arrays as opposed to vectors in the second course). Quan-
titative studies show that students in the new course performed
better in implementing advanced programming techniques.

Several drawbacks were discovered in the offering of this
course. One drawback was that the instructor had to invest a
substantial amount of time conceptualizing a sufficient problem
with classwide scope. Even with the substantial project prepara-
tion, the instructor was unable to distribute the work. The main
reason is that, as in any class, some students are better equipped
to handle certain parts than others. More specifically, a module
that may be particularly difficult for one student could be imple-
mented by another student with ease. Additional coaching on the
part of the instructor addresses this problem. Finally, this course,
as with earlier courses, does not seem to provide strong enough
training in software design. In future offerings, there should be
additional attempts to focus on software design.

VIII. CONCLUSION AND FUTURE OFFERINGS

In this paper, a method was discussed for inserting a class-
wide, large-scale project into one of the early computer sci-
ence courses. This approach was useful in helping students un-
derstand advanced programming techniques. In addition, the
students found the exercise helpful in building skills to con-
ceptualize solutions for unique problems. The students agreed
that collaborating on a solution to a classwide project presented
other aspects to software design and development that they did
not perceive when performing individual projects. As with ear-
lier literature [3], [13], communication is a major consideration
in these types of courses. The communication challenges are rel-
evant to approaches presented in this paper and in semester-long
courses. Online discussion forums would largely alleviate com-
munication barriers among the students.

In future course offerings, the intention will be to extend the
project to a fixed four weeks (35% of the course projects) in
an attempt to alleviate some concerns with communication and
ambiguity in the project design. In addition, the project will be
split into a hierarchy of large-scale projects that work together.
Depending on the size of the class, multiple groups may exe-
cute several concurrent large-scale projects. This development
will allow more students the opportunity to gain experience in
software integration, which has a significant impact on students
at this level.

ACKNOWLEDGMENT

The discussions of the curriculum committee helped to
develop the motivation for the course changes. The cur-
riculum committee was composed of Prof. S. Caraballo,
Prof. D. Denning, Prof. B. Kalyanasundaram, Prof. M. Maloof,
Prof. R. Squier, and Prof. M. Velauthapillai. J. R. Alston,
M. A. Bittmann, J. Devallon, Jr., M. D. Dinkov, S. E. Sardari,
J. M. Fier, J. M. Helmink, R. P. Kashyap, P. S. Kumar, K. S. Lee,
W. A. Mitchell, C. J. Piro, A. Ngua, and K. E. Quinlan were
students who participated in the course and provided useful
comments that served as qualitative results. In addition, other
students in the Computer Science II course are acknowledged
for allowing the special project to run concurrently with the
course. This paper was greatly enhanced by the anonymous
reviewers who added to both the quality and the completeness
of this work. Finally, B. Blake and D. Innerarity are acknowl-
edged for enhancing the clarity of the work.

REFERENCES

[1] M. B. Blake and T. Cornett, “Teaching an object-oriented software de-
velopment lifecycle in undergraduate software engineering education,”
in Proc. IEEE Conf. Software Engineering Education and Training
(CSEET2002), Feb. 2002, pp. 234–241.

[2] J. A. Turner and J. L. Zachary, “Using course-long programming
projects in CS2,” in Proc. 30th Tech. Symp. Computer Science Educa-
tion, 1999, pp. 43–47.

[3] S. A. Rebelsky and C. Flynt, “Real-world program design in CS2: The
roles of a large-scale, multi-group class project,” in Proc. 31st Tech.
Symp. Computer Science Education (SIGCSE 2000), Mar. 2000, pp.
192–196.

[4] M. B. Blake, “A student-enacted simulation approach to software engi-
neering education,” IEEE Trans. Educ., vol. 46, no. 1, pp. 124–132, Feb.
2003.

72 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 1, FEBRUARY 2005

[5] C. C. Bareiss, “A semester project for CS1,” in Proc. 27th Tech. Symp.
Computer Science Education (SIGCSE 1996), Mar. 1996, pp. 310–314.

[6] M. Godfrey and D. Grossman, “JDuck: Building a software engineering
tool in Java as a CS2 project,” in Proc. 30th SIGCSE Tech. Symp. Com-
puter Science Education, 1999, pp. 48–52.

[7] J. Krone, D. Juedes, and M. Sitharam, “When theory meets practice:
Enriching the CS curriculum through industrial case studies,” in Proc.
15th Conf. Software Engineering Education and Training (CSEET
2002), 2002, pp. 207–215.

[8] R. J. Daigle, M. V. Doran, and J. H. Pardue, “Integrating collabora-
tive problem solving throughout the curriculum,” in Proc. 27th SIGCSE
Tech. Symp. Computer Science Education (SIGCSE 1996), Philadelphia,
PA, Feb. 1996, pp. 237–241.

[9] E. J. Adams, “A project-intensive software design course,” in Proc. 25th
ACM SIGCSE Tech. Symp. Computer Science Education, Indianapolis,
IN, Mar. 1993, pp. 112–116.

[10] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Lan-
guage Guide. Reading, MA: Addison-Wesley, 1998.

[11] M. B. Blake. Evaluating Agent-to-Agent Workflow Interactions for
Service Composition: Third-Party Control or P2P?. Department of
Computer Science, Georgetown University, Washington, DC. [Online],
Tech. Rep. CSTR-20 030 420-5. Available: http://www.cs.georgetown.
edu/techreports/

[12] D. Hanesiane01– and A. J. Perna, “An interdisplinary collaborative ap-
proach in teaching freshman engineering design,” in Proc. Int. Conf. En-
gineering Education, Oslo, Norway, 2001, pp. 6E5-1–6E5-5.

[13] M. Michael, “Fostering and assessing communication skills in the com-
puter science context,” in Proc. 31st SIGCSE Tech. Symp. Computer
Science Education (SIGCSE 2000), Austin, TX, Feb.–Mar. 2000, pp.
119–123.

[14] L. Pollock, “Integrating an intensive experience with communications
skills development into a computer science course,” in Proc. 32nd
SIGCSE Tech. Symp. Computer Science Education (SIGCSE 2001),
Charlotte, NC, 2001, pp. 287–291.

[15] The Joint Task Force on Computing Curricula: IEEE Computer Society
and Association for Computing Machinery, Computing Curricula
2001—Computer Science. [Online]. Available: http://www.computer.
org/education/cc2001/final/cc2001.pdf

M. Brian Blake (S’98–M’01–SM’03) received the B.S. degree in electrical en-
gineering from the Georgia Institute of Technology, Atlanta, the M.S. degree in
electrical engineering (minor in software engineering) from Mercer University,
Atlanta, GA, and the Ph.D. degree in information technology with a concentra-
tion in information and software engineering from George Mason University,
Fairfax, VA.

He is currently an Assistant Professor with the Department of Computer Sci-
ence, Georgetown University, Washington, DC. His current research interests
are in the area of systems and software engineering with an emphasis on applica-
tion of fundamental software engineering techniques to cooperative information
systems. He has authored more than 40 refereed journal and conference proceed-
ings in the area of software systems engineering and agent-based information
systems. He also maintains an ongoing relationship with The MITRE Corpo-
ration, McLean, VA, as Lead Software System Engineer Consultant, where he
brings a unique blend of academic and industry experience to the software engi-
neering courses that he teaches both at Georgetown University and for industry.

	toc
	Integrating Large-Scale Group Projects and Software Engineering
	M. Brian Blake, Senior Member, IEEE
	I. I NTRODUCTION
	II. B ACKGROUND: T HE C OMPUTER S CIENCE C URRICULUM AT G EORGET

	Fig.€1. Initial curriculum.
	Fig.€2. Curriculum with emphasis on programming reinforcements.
	III. T HE C ONNECTION B ETWEEN CS1, CS2, AND D ATA S TRUCTURES C

	Fig.€3. The connections between CS1, CS2, and Data Structures co
	IV. D EVELOPING A C OURSE W ITH A S HORT -T ERM C LASSWIDE G ROU
	A. The General Course Development Approach

	Fig.€4. Placement of the three-to-four-week large-scale project
	B. Specifying the Large-Scale Project for the CS2 Course
	V. A P ROJECT E XAMPLE: C REATING AN A GENT -B ASED W ORKFLOW S
	Fig.€5. Agent-based workflow project: an example of a classwide
	A. Assigning the Agent-Based Workflow Simulation Project (Week 1

	Fig.€6. Record of business process information.
	Fig.€7. Main algorithm of the simulation application to be perfo
	B. Implementing the Project (Weeks 2 and 3)
	VI. C OMPARISON TO R ELATED W ORK
	VII. E VALUATION OF T HIS A PPROACH
	A. Quantitative Evaluation Based on Earlier Courses
	1) Comparing the Two CS2 Courses: The major difference between t

	TABLE I P ERCENTAGE OF S TUDENTS E XCELLING AT S PECIFIC C OURSE
	Fig.€8. Graphical display of students' aptitude at specific comp
	2) Evaluation Approach and Assessment: In evaluating the impact
	B. Anecdotal Student Responses
	C. Anecdotal Instructor Responses
	D. Discussion
	VIII. C ONCLUSION AND F UTURE O FFERINGS
	M. B. Blake and T. Cornett, Teaching an object-oriented software
	J. A. Turner and J. L. Zachary, Using course-long programming pr
	S. A. Rebelsky and C. Flynt, Real-world program design in CS2: T
	M. B. Blake, A student-enacted simulation approach to software e
	C. C. Bareiss, A semester project for CS1, in Proc. 27th Tech. S
	M. Godfrey and D. Grossman, JDuck: Building a software engineeri
	J. Krone, D. Juedes, and M. Sitharam, When theory meets practice
	R. J. Daigle, M. V. Doran, and J. H. Pardue, Integrating collabo
	E. J. Adams, A project-intensive software design course, in Proc
	G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Lan
	M. B. Blake . Evaluating Agent-to-Agent Workflow Interactions fo
	D. Hanesiane01 and A. J. Perna, An interdisplinary collaborative
	M. Michael, Fostering and assessing communication skills in the
	L. Pollock, Integrating an intensive experience with communicati

	The Joint Task Force on Computing Curricula: IEEE Computer Socie

