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ABSTRACT 
In order to increase antenna placement options on 
crowded platforms, three methods for synthesizing 
conformal phased array excitations on curved surfaces 
were computer programmed and compared: the 
Alternating Projections method (AP), the Successive 
Projections method (SP), and the Genetic Algorithm 
method (GA). The comparison was based on how closely 
the synthesized patterns conformed to the desired pattern 
amplitudes, and on the resulting taper efficiency. An 
expression for taper efficiency of a curved array was 
derived, showing directivity compared to a linear array. 
Greater efficiency would increase gain for a given 
antenna size. Taper efficiency is useful in evaluating the 
synthesis methods since different methods can produce 
very different aperture illuminations despite similarity in 
the resulting patterns. Curved arrays were computer 
modeled ranging from 17 to 97 elements. Different initial 
excitations, element patterns, and desired pattern masks 
were investigated. The AP method synthesized patterns 
closest to the desired patterns, closely followed by the GA 
method. The SP method tended to get stuck in local 
minima for difficult cases. The GA method was 
programmed to optimize taper efficiency, but it takes 
much longer to run than the other two methods.  
 
KEY WORDS:  phased-array antennas, conformal array 
synthesis, beam scanning capability, taper efficiency. 
 
1. Introduction and Problem Formulation 
 
This paper addresses efficient beamforming techniques 
for conformal phased array antennas. The far field 
radiation pattern Fr ( )φθ ,  of a general array is given as:  
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where: 
an is the nth element’s complex excitation (amplitude 
and phase).  
gn(θ, φ) is the complex element directivity pattern of 

the nth element in the array environment, with its 
far-field phase referenced to the element’s local 
origin at xn, yn, zn. 

N is the number of elements  
xn, yn, zn  =  location of nth element 
λ  = wavelength  
u  = sinθ cosθ 

v  = sinθ sinθ 
c  = cosθ 

 
Equation (1) allows the elements to have arbitrary 
locations so the array can be curved. For the ith far field 
direction ( )ii φθ , , Eq. (1) can be written as: 
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Gi,n  is therefore the complex element directivity pattern of 
the nth element in the ith far-field direction, with its far-
field phase reference now translated to the array common 
origin. Eq. (2) can be written in matrix form as:  
 

[Fr] = [G][A]                               (4) 
 
where the column vector [A] contains all the complex 
excitations  an for the array elements, and [Fr] is a 
column vector with the far field values at the set of far 
field points i, and [G] is a complex matrix with i as the 
row number and n the column number. Therefore each 
individual pattern point is computed using one row of 
[Fr] and [G] and using the entire column vector [A]. The 
[G]  are also known as the “basis functions” in Eq. (4). 
The system of equations in Eq. (4) is typically 
overdetermined (has more rows than columns, requiring 
more field points than number of elements). If element 
patterns are measured or computed in the array 
environment with other elements terminated, then the an 
are incident forward voltages at each element. 
 
2. Synthesis Methods Programmed 
 
Using Eq. (4) we applied three conformal array synthesis 
methods to obtain a desired far field directivity pattern 
[Fd], without concern for the phase of the pattern which 
is usually of much less interest than amplitude. The three 
methods programmed were: the Alternating Projections 
(AP) method, the Successive Projections (SP) method, 
and the Genetic Algorithm (GA) method. All three 
methods are iterative and are described in the references. 
The comparison between synthesis methods was based on 
how closely the synthesized patterns conformed to the 
desired pattern amplitudes, and also on the resulting taper 
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efficiency. MATLAB was used for the computer 
programming. Other synthesis methods were briefly 
reviewed using published literature, several are 
summarized in [1]. The three methods programmed were 
selected for some of the following reasons: widely used 
(AP, GA), fast convergence (AP, SP), resistant to local 
minima (GA), easily incorporate additional optimization 
criteria (GA), not limited to larger radii of curvature (all 
3), availability of information describing the method (all 
3), and pre-programmed software tools (GA).  
 
The Alternate Projections (AP) Method [2,3,4,5,6]  is fast 
and yielded patterns that most closely met the desired 
pattern masks in our study. The steps for AP synthesis are 
summarized as follows (details are in the references):  
 
(a) Use an initial or preceding array excitation to compute 
[Fr] in Eq.4.  (b) Determine an [Fd] by making minimum 
amplitude adjustments in [Fr].  (c) Solve system of 
equations [G][A] = [Fd] using least-squares for a new [A]  
that minimizes the difference  [G][A]  - [Fd]. (d) Repeat 
from step (a).  
 
The Successive Projections (SP) Method [[77]]  iiss  aallssoo  ffaasstt 
but we found the SP method tended to get stuck in local 
minima for difficult cases. The projection we used for this 
method is given by [7]:  
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Where  
[A] is the previous excitation vector for all elements 
[Ak] is the new excitation vector, it will yield zero 

pattern error at the i=k pattern point.    
 k is value of i indicating the pattern point with the 

largest error between desired and realized patterns 
Gk is one row of matrix Gi,n  of basis functions defined 
in Eq. (3) (with i=k and including all elements n). 
Gk*  is the Hermetian conjugate of Gk (i.e. complex 
conjugate of each term of Gk 

 
For the Genetic Algorithm (GA) method we used 
MATLAB’s easy-to-use Genetic Algorithm Toolbox [8]. 
For GA, a ‘population’ or set of many different excitation 
vectors [A] is improved by mimicking biological 
evolution. Each real or imaginary part of each element 
excitation of [A] was considered a “gene”, so if there are 
N elements in the array, there were 2N genes in each 
excitation vector [A], and we usually set the population 
size equal to 2N also. The GA applies a fitness test to 
each [A] based on how closely the realized pattern [Fr] fit 
a desired pattern [Fd] at each pattern point, and the 
highest scoring [A] used to generate the next generation. 
The fitness cost function we used for GA was: 
 
Score= (∑( | [G][A] | - | [Fd] | )2 )1/2  +We dbTε          (6) 
 

Where the pattern difference summation is done over all 
the pattern points,  dbTε is the taper efficiency in dB, and 
We is the weight selected for taper efficiency.  
 
Eq. (6) is similar to the least squares metric usually used 
in the AP method, but in Eq. (6) the absolute values of the 
fields are used since [G][A]  is complex but it is only the 
far-field amplitude we really need to synthesize. Also the 
taper efficiency is optimized when We is non-zero.  
 
For this study the baseline GA parameters included a 
population size that was double the number of elements 
and the synthesis was run for 5000 generations.  This was 
apparently sufficient since increasing the number of 
generations rarely produced any significant improvement 
for these problems. However, if population was decreased 
and generations increased proportionally, those two 
changes approximately canceled each other so it usually 
produced equivalent results and run-times as the GA 
baseline.  
 
The GA provides a robust global ‘random walk’ 
convergence. As shown in Eq. 6, the GA easily added 
additional optimization goals such as taper efficiency, but 
this produces a tradeoff between the different 
optimization goals, generally neither goal is met as fully 
as would be possible if it was the only goal. The results 
depend in large part on how heavily each goal is weighted 
relative to the other goal(s).  
 
3. Array Geometries 
 
Several different curved arrays were modeled, two are 
reported on here and are summarized in Table 1. For each 
array, a single curved column of elements was modeled. 
Both curves are portions of a circle: the small arc 
subtends 120°, and the large semi-circle subtends 180°. 
The element spacing along each curve was 0.5 
wavelengths. The far-field pattern cuts were synthesized 
in the plane containing the curve. The small arc (sa) is 
almost identical to the array used by reference [4].  
 

Table 1. Curved Array Geometries  
Array Curve Shape 
(and abbreviation) 

# Elem Array Width 
(Chord Length) 

Small Arc (sa) 17 7 wavelengths 
Large Semi-Circle (ls) 97 32 wavelengths 

 
4. Directivity Masks 
 
All three synthesis methods use a desired directivity mask 
to synthesize a far field pattern that lies within the upper 
and lower bounds of the mask. Two masks are reported 
on in this paper:  
 
4.1 Cosecant-squared Pattern Mask (CSC):  
This is a csc2 power pattern from +5° to +35°, with -20 
dB max sidelobes from -180° to 0°, and -30 dB max 



sidelobes from +40° to +180°. It is listed in Table 2a. 0-5° 
and 35-40° are the skirts of the main lobe. The peak of the 
beam is near +5°, and the half-power beamwidth is 
approximately 10° wide. This mask was the easier of the 
two to synthesize since the wide beamwidth is realizable 
using a small array. This mask is very similar to a mask 
used in another paper [4]. 
 

Table 2a. Desired Directivity Mask “CSC” 
Angles Desired Level 

-180° to -90°  < -30 dB 
-90° to 0° < -20 dB 

+5° to +35° csc2  ±1 dB 
+40° to +180°  < -30 dB 

 
4.2 Pencil-beam and Notch Pattern Mask (P3N):  
This is a pencil-beam scanned to -69°, and with a -55 dB 
notch from -5° to +5°, and -30 dB max sidelobes at other 
pattern angles. It is listed in Table 2b. The -30 dB 
beamwidth is therefore 9°. To meet this mask completely 
requires the use of the larger array (ls).  
 

Table 2b. Desired Directivity Mask “P3N”  
Angles Desired Level 

-180° to -74° < -30 dB 
-69° 0 ±1 dB 

-65° to -5° < -30 dB 
-5° to +5° < -55 dB 

+5° to +180° < -30 dB 
 
5. Element Patterns 
 
An ideal planar array with element spacing  ≤ λ/2 has a 
cosine element power pattern (cosq with q=1) due to the 
projected area in the direction of the main beam, 
assuming perfect match at every scan angle. However, for 
this study a cosine-squared element power pattern was 
used since q=2 agrees better with measured patch element 
patterns on a curved wing array seen in the figures of 
reference [3] where q ranged from q=1.3 to q=2.9. It was 
found that a narrow element pattern improved the 
synthesis results. The element pattern peak value was 1 
and was in the direction normal to the array curve at the 
element location. Mutual coupling is not included except 
via the approximation of the element pattern.  
 
6. Initial Array Excitations 
 
Three different initial array excitations were tried and are 
listed in Table 3. The AP and SP methods started with one 
initial excitation: either UAUP or UACP. For UACP the 
array initially has phase coherence in the desired main 
beam direction. UACP was found to give higher 
efficiency and/or lower sidelobes than a broadside initial 
collimation or UAUP. For the GA method both UAUP 
and UACP were included in the initial populations along 
with numerous random initial illuminations. The initial 

amplitudes used for all cases are close to the anticipated 
average amplitude after synthesis, which was found to 
yield patterns closer to the mask than starting with initial 
amplitudes that are much larger or smaller.  
 

Table 3. Initial Array Excitations 
Initial Array Excitation  Abbreviation Methods 
Uniform Amplitude 
Uniform Phase  

UAUP AP, SP 

Uniform Amplitude 
Collimated Phase 

UACP AP, SP 

Both of the above  BOTH GA  
 
7. Taper Efficiency 
 
Taper efficiency is used to indicate how efficiently the 
physical length of the antenna is utilized and how much 
directivity can be expected from the array taper compared 
to a broadside linear array. Taper Efficiency for linear 
arrays is defined as [9,10,11,12]: 
 

2

2

'

'
 1

n

n
T

a

a
N Σ

Σ
=ε              (7) 

 
Where N is the number of elements and a’n  is the nth 
element’s complex excitation for a broadside beam 
[10,12]).  Eq. (7) is “a measure of coherence for a linear 
array. The numerator is proportional to the total coherent 
field, squared, whereas the denominator is proportional to 
the sums of the squares of the individual fields from the 
various elements” [12].  The directivity  D0  of a 
broadside linear array is related to the above taper 
efficiency by To ND ε=  which is exact only for a linear 
array of isotropic elements spaced λ/2 apart. For a planar 
array the analogous quantity is called aperture efficiency.  
 
For curved arrays Eq. (7) needs to be modified. Firstly, 
because in the curved array, the numerator of Eq. (7) is 
not collimated for broadside beam by simply using equal 
phases, so a broadside collimating phase shift based on 
element locations needs to be included so that the 
numerator is again proportional to the peak power of the 
beam at broadside. Secondly, Eq. (7) uses isotropic 
element patterns which gives equal weight to all elements, 
which could give quite misleading taper efficiency values 
because in a curved array the element patterns face in 
different (sometimes even opposite) directions, unlike a 
large linear array where most of the element patterns are 
the same in any given direction. For a curved array some 
of the elements may not radiate at all in the desired main 
beam direction. As a result, using isotropic elements to 
compute taper efficiency for a curved array can easily 
produce a meaningless value for realistic elements which 
do not have the same element pattern in the main beam 
direction. Therefore the following formula for Taper 
Efficiency was used for curved arrays:  
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Gip,n  is the complex element directivity pattern of the nth 
element in the ipth far-field direction, with phase 
referenced to the array common origin, as defined earlier 
in Eq. (3). The subscript ip denotes the direction 
( )ipip φθ , which is the direction of the desired peak of the 
array main beam. gmax  is the maximum magnitude of the 
element directivity pattern. For the computations in this 
report gmax  = 1 since the element field pattern is cosine.  
 
Eq. (8) yields a taper efficiency between 0 and 1 equal to 
the ratio of the curved array directivity to the directivity 
of a uniform broadside linear array with the same number 
of elements and element pattern. Eq. (8) is therefore 
analogous to Eq. (7) modified for a curved array and 
including the element pattern. Taper efficiency computed 
using Eq. (8) was also used as an optimization goal for 
some GA cases as shown in Eq. (6), in which case the 
efficiency weight We is non-zero and shown under the 
plot title. If We is not shown on the plot then We was zero. 
 
Using the GA an attempt was also made to improve taper 
efficiency by minimizing the total power radiated as part 
of the optimization cost function (instead of using Eq. 8), 
but this approach did not provide improved taper 
efficiency.  
 
8. Results 
 
The patterns show far-field relative directivity in dB. The 
θ=0 angle bisects the arc of the arrays so it can be 
considered as broadside. The plot titles use abbreviations 
shown earlier, and the taper efficiency is also shown. If 
the taper efficiency was optimized (GA method only) then 
We from Eq. (6) is also shown in the plot title. The AP 
will reproduce identical results when re-running the same 
geometry and initial excitation. This is also true of SP, but 
not the GA due to random initial excitations and 
mutations.  
 
8.1 Cosecant-Squared (CSC) Pattern Mask Results:  
All three synthesis methods and all the array geometries 
were able to synthesize the CSC mask. Figure 1 shows 
some patterns for the smallest of the arrays with the CSC 
mask overlay. The GA pattern in Fig. 1 has been 
optimized for efficiency as well as pattern which 
produced a significant improvement in efficiency with a 
small cost to the pattern since it is seen that the ½ dB 
improvement in efficiency comes at a cost of not quite 
making the desired pattern mask at a couple of points in 
the main beam region. If the efficiency is weighted too 
heavily as in Figure 2, then it causes the main beam to 

narrow too much. In general for small arrays, the AP and 
GA methods met the CSC mask more closely and with 
higher efficiency than the SP.  
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  Figure 1.  17-Element Small Arc (sa) Array Patterns, 
Using AP and GA Methods.
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  Figure 2.  17-Element Small Arc (sa) Array Pattern,

GA Method, CSC Mask, Taper Effic = -1.7 dB, We = 2.0

 
For the large array (ls), all three synthesis methods 
produced CSC patterns that closely conformed to the 
mask. Fig. 3 shows a sample result using SP. The SP 
produced the highest (i.e. best) taper efficiencies and the 
AP the lowest taper efficiencies, and the UACP initial 
illumination resulted in higher efficiency than UAUP. 
Optimizing for efficiency at just the beam peak as shown 
in Fig. 4 does not help for the larger array with a wide 
beamwidth because it pushes up a narrow peak within the 
broad-beam of the mask. It therefore might have worked 
better to optimize efficiency over a wide range of angles 
by integrating taper efficiency in Eq. (8) over the entire 
main beam region, not just optimizing the efficiency in 
one beam direction. This may help with Fig. 2 also. This 
was not tried yet due to time limitations. 



 

-60

-40

-20

0

20

-100 0 100

Theta,deg

dB
Fig. 3. 97-Element Large Semi-Circular (ls) Array   

SP Method, UAUP, CSC Mask. Taper effic =  -10.7 dB  
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Figure 4.  97-Element Large Semicircular (ls) Array Pattern,
GA Method, CSC Mask, Taper Effic = -4.5 dB, We = 0.5

 
8.2 Scanned Pencil Beam with Notch (P3N) Results  
Using the largest array (ls) all three synthesis methods 
met the P3N mask. Figure 5 shows an example using the 
AP method, the only shortfall for all the methods was that 
the notch is only 8 degrees wide instead of 10 degrees. 
Also with the SP UAUP the notch was not quite -55 dB 
deep at some points. The UACP again gave higher 
efficiency than UAUP, and the SP gave slightly higher 
efficiencies than AP, with GA intermediate in efficiency. 
The GA results showed significant variations in notch 
depth from one run to the next due to random excitations. 
Optimizing the GA for efficiency improved efficiency at a 
a cost to the pattern notch and sidelobes as seen in Fig. 6. 
Several smaller arrays of varying sizes were also tried but 
the aperture size projected in the main beam direction was 
not wide enough to fully meet the P3N mask 
requirements, the results deteriorating as the array size is 
reduced. The AP method came closest to meeting the 
mask. The GA came the second closest. It was noted in 
numerous cases that the SP did not degrade as gracefully 
and gave especially poor patterns for these more difficult 
masks, apparently getting stuck in local minima. Here, 

UACP typically resulted in a pattern closer to the mask 
than UAUP.  
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Figure 5.  97-Element Large Semicircular (ls) Array Pattern,
AP Method, UACP, P3N Mask, Taper Effic = -5.1 dB  
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Figure 6.  97-Element Large Semicircular (ls) Array Pattern,
GA Method, P3N Mask, Taper Effic =  -4.4 dB We = 0.5  

  

 
Figure 7 shows the effect of a wider element pattern: cosq 
with q=1 element power pattern was used instead of q=2 
which was selected for all the other cases as explained in 
Section 5. A comparison of Figs. 5 and 7 shows the 
patterns deviate much more from the desired mask when 
using the wider element pattern (q=1). This was also 
noted for several other cases. This is probably because the 
spatial selectivity offered by the narrower element field of 
view (q=2) allows each pattern point to be synthesized 
using a smaller number of elements, with each pattern 
point less affected by elements in other parts of the array, 
i.e. each far field point is  coupled to fewer elements, 
which makes optimization easier. A narrower element 
pattern also reduces back-radiation.   
 
8.3 Excitation Taper Results 
It was noted that the smaller arrays with the highest (i.e. 
best) taper efficiency also visually showed the smoothest 
amplitude taper. However, this could not be discerned 
visually for the larger arrays or for the phase excitations. 
It was also found that different synthesis methods can 



produce very different aperture illuminations despite the 
similarity in the resulting patterns.  
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  Figure 7.  97-Element Large Semicircular (ls) Array Pattern,
Using Wider Element Pattern  (q = 1)

AP Method, UACP, P3N Mask, Taper Effic = -2.8 dB  
  

 
8.4 Run Times 
Run time in MATLAB on a PC for the AP and SP 
methods was typically 5 to 45 seconds for the largest 
array (ls) to converge, depending on the difficulty of the 
mask. The number of iterations required was from 10 to 
500. AP usually required fewer iterations but each 
iteration of SP was faster. The GA was much slower:  14 
hours for the ls array for the baseline GA. The GA is too 
slow for real-time beam-shaping but could be used for 
preset beams using look-up tables. The taper efficiency 
optimization added negligible time.  
 
9. Conclusions 
 
The synthesis methods programmed can be used as 
versatile tools to synthesize array excitations for array 
geometries. Of the three methods, the AP most often 
produced a pattern that met or almost met the desired 
pattern mask; the GA was almost but not quite as 
effective as AP in this regard. The SP method met the 
mask for the easier cases, but for difficult pattern 
requirements the SP tended to converge to a pattern that 
deviated much more from the desired mask, apparently 
getting stuck in a local minimum. In terms of speed the 
AP and SP were both approximately equally fast, and the 
GA needed a very much longer run-time.  
 
Different synthesis methods can produce very different 
aperture illuminations despite the similarity in the 
resulting patterns, and some of these illumination 
functions may be more useable or higher efficiency than 
others. An expression for taper efficiency of a curved 
array was derived. Taper efficiency indicates how 
efficiently the physical area of the antenna is utilized and 
how much directivity can be expected compared to a 
linear array. The GA method was programmed to 
optimize taper efficiency which could often produce gains 
in efficiency. A narrow element pattern produces 

synthesized patterns that more closely meet the mask than 
a wider element pattern. An initial excitation that was 
collimated and scanned to the desired direction often 
resulted in higher efficiency and lower sidelobes than 
starting with uniform phases. Results were also better 
using initial excitations near the same order of magnitude 
as the resulting element amplitudes.  
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