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ABSTRACT
The MITRE Corporation has initiated a three-year internally-funded research program in netted sensors, the
first-year effort focusing on vehicle detection for border monitoring. An important component is developing an
understanding of the complex acoustic structure of vehicle noise to aid in netted sensor-based detection and
classification. This presentation will discuss the design of a high-fidelity vehicle acoustic simulator to model the
generation and transmission of acoustic energy from a moving vehicle to a collection of sensor nodes. Realistic
spatially-dependent automobile sounds are generated from models of the engine cylinder firing rates, muffler and
manifold resonances, and speed-dependent tire whine noise. Tire noise is the dominant noise source for vehicle
speeds in excess of 30 miles per hour (MPH). As a result, we have developed detailed models that successfully
predict the tire noise spectrum as a function of speed, road surface wave-number spectrum, tire geometry, and
tire tread pattern. We have also included realistic descriptions of the spatial directivity patterns for the engine
harmonics, muffler, and tire whine noise components. The acoustic waveforms are propagated to each sensor
node using a simple phase-dispersive multi-path model. A brief description of the models and their corresponding
outputs is provided.

1. INTRODUCTION
The Vehicle Acoustic Simulator is an attempt to model the generation and transmission of acoustic energy from
a moving vehicle, as part of a Netted Sensors Initiative vehicle classification effort. The simulator consists of
several modules as shown in Figure 1.

In the Kinematics module, a set of speed and time waypoints are initially specified. From these, the revolutions
per minute (RPM) rates are determined as a function of the vehicle shift speeds, RPM shift points, and the
maximum attainable accelerations in each gear. Therefore, RPM rates (cylinder firing rates) are nonlinearly
related to vehicle speed and may show rapid fluctuations depending on whether the transmission box is in an
up-shift or down-shift mode. In the Engine Harmonics module, the harmonic engine waveforms are generated
from realistic physical models based on the engine RPM rates derived in the Kinematics module, from the vehicle
trajectory and transmission box gear ratios, the piston settling times, the number of cylinders, and the relative
amplitude variations between cylinders.

The Muffler Manifold module generates muffler sounds by bandpass-filtering the engine waveform over a user-
specified frequency band and specifying acoustic time delays corresponding to manifold pipe length differences.
Tire whine is modeled in a separate module by first passing bandlimited white noise through a proportional
bandwidth filter centered around the tread impact harmonics. This generates the tread impact pattern. The
tire resonance waveform is determined by first constructing a bandpass filter with an 800-1200 Hz passband
response and then passing the tread impact waveform through the filter. Directivity patterns are modeled in a
corresponding subroutine, with the muffler directivity pattern approximated by a pipe in an infinite baffle.

The tire whine directivity pattern associated with tire resonance is computed assuming that the tire can be
approximated by a randomly vibrating surface of known correlation length, and the engine directivity pattern
is approximated by a randomly vibrating plate of known correlation length aligned with the front end of the
vehicle. Body occlusions (shadowing) are empirically modeled. Finally, the combined acoustic field at each
sensor is calculated in the Propagation module from the propagation time delays for a two-path model.
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Figure 1. High Fidelity Waveform Simulator.
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Figure 2. Graphical Output of Kinematics Module.

2. KINEMATICS GENERATION

Two algorithms have been designed to compute kinematic variables (position and speed) versus time for an
arbitrary number of vehicles. In the first case, a straight line road model is assumed and in the second, a two
dimensional curvilinear model.

In the straight line road model, rectilinear vehicle speeds, displacements, and engine RPM rates are computed
from input speed versus time waypoints using a table of transmission shift speeds for known engine RPM set
points. Vehicle displacement is then computed from the interpolated speeds given a known initial position for
each vehicle. We begin by defining the minimum and maximum speeds for each speed set point, and proceed
to determine the interval for each input waypoint speed, beginning with the first. If the kth speed is greater
than the current interval, we upshift to the required speed, determine the time to reach the upper set point,
and compute the speed and engine RPMs up to the upper set point. If the kth speed is less than the current
interval, we downshift to the required speed, determine the time to reach the lower set point, and trap the engine
RPM at zero vehicle speed. Finally, if the kth speed is within the current interval, no shifting is required. If the
preset speed is reached before the end of the time interval, then that speed is maintained to the end of interval.
Otherwise, the time interval is extended to accommodate the speed while preserving the interval time differences.
We then accumulate all vehicle speeds, all engine RPM rates and compute the vehicle displacements. Example
results are presented in Figure 2. Subplot 2a is a graph of speed versus time, subplot 2b a graph of RPM rates
versus time. Subplot 2c shows the rectilinear path of a car starting at x = −800 ft, y = 100 ft (red line), with
the green dots marking the sensor positions. Subplot 2d shows the final simulator output, the received power at
the three sensors.

In the curvilinear road model, we begin by choosing the x and y coordinates of a predefined number of
waypoints. The best option for defining the trajectory∗ of the vehicle is to outline the road shape by fitting a
cubic spline to the waypoints. We define the speeds at the waypoints and solve for the corresponding times,
given the arclengths between points. After fitting a cubic spline to the waypoints and choosing the corresponding
speeds, the radius of curvature R, length L and maximum safe speed for each road segment are computed from

∗Strictly speaking, a path is a geometric representation in space, while a trajectory is a path with a velocity-time
profile.



the first and second derivatives for each sampled time along the spline curve:
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1

N(k)
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i=1

(1 + ∆2
i )

3
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|∆∆i| ;
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√
1 + ∆2

i dxi;

vturn =
√

gfsR(k) (1)

where ∆ ≡ dy/dx, ∆∆ ≡ d2y/dx2, N(k) = number of time points in the kth road segment,† g is the acceleration
of gravity = 32.2 ft/sec2, and fs = coefficient of static friction.‡ The following steps are then performed:

a. If the preset speeds exceed the safety limit at each waypoint, then they must be decreased: v(k) =
min(v(k), vturn(k)), for the kth waypoint.

b. Obtain rough estimates of the final times tf for each segment k based on the length L(k) and the average
speed in that segment: .5(vinitial + vfinal). The initial time of motion in each road segment is the final time for
the previous segment.

c. Find the tangents and the vx, vy components at the end points of each segment. Plan the trajectory using
cubic polynomials for the x and y coordinates as functions of time:

x(t) = a0,x + a1,xt + a2,xt2 + a3,xt3;
y(t) = a0,y + a1,yt + a2,yt2 + a3,yt3; (2)

d. Calculate the coefficients of the cubic polynomials, given the coordinates and velocity components at the
endpoints of the road segment and the tentative times ti and tf . Differentiate the polynomials twice to get the
first and second derivatives vx(t), vy(t), ax(t), ay(t).

e. Check that the speeds v(t) do not exceed the maximum safe speeds inside each road segment and that the
accelerations do not exceed the maximum acceleration for the corresponding gear. If these conditions are not
met, lower the input speeds at the waypoints and start again.

f. Find the cumulative displacements for each segment from the speed components, and check on agreement
with L(k) in Eq. (1). Also, check agreement of estimated waypoints with original waypoints. Figure 3 shows
some example results, in which we see that the calculated displacements agree perfectly with the spline fit to the
waypoints.

3. VEHICLE SOUND SOURCES

Vehicles are complex systems made up of many different parts, and have natural frequencies that result from a
combination of their components’ natural frequencies. The total acoustic signal from a vehicle contains contri-
butions from the engine, the exhaust, the tire-road surface interaction, the transmission system, fan, air intake,
etc.1 In this work, we model three sources: engine, muffler and tire noises.

The engine harmonics and filtered muffler sounds are generated based on the number of cylinders Nc, piston
transient settling time Tp, the normalized ratios η, the relative piston ping amplitudes a, the engine RPM rates,
the muffler bandpass frequencies Fm, and the relative propagation time delays ∆t through the manifold pipes
(one per cylinder) and muffler baffles. From these quantities the engine waveform vectors, the manifold waveform
vectors and the vector of average engine/muffler amplitudes are calculated.2

†To make for greater smoothness and ease of computation, waypoints should be spaced not more than ≈ 500 ft apart.
‡On a level road, static friction provides a centripetal force mv2

R
= mgfs, which can be solved for vturn.



Figure 3. Curvilinear Road Model.

3.1. Engine Waveforms
3.1.1. Basics

Assuming a periodic piston ping waveform s(t−nT ), the time-series acoustic signal generated by the engine may
be written as

x(t) =
∞∑

n=−∞
a(n)s(t− nT ), (3)

where T is the constant piston ping period, and a(n) are the individual cylinder weights. Evaluating the Fourier
transform of this expression yields

X(f) = S(f)
∞∑

n=−∞
a(n) exp(−2πifnT ), (4)

where f is the frequency. The piston ping period is related to the RPM rate by T = 120
NcRPM , where it is assumed

that only half the cylinders fire per revolution. Now, a(n) = ã(j), j = mod(n,Nc), where Nc is the number of
cylinders, and ã(j) (0 ≤ j ≤ Nc − 1) are the cylinder weights. Thus, a(n) is Nc−periodic, and a(n), X(f) may
be written as

a(n) =
1

Nc

Nc−1∑

j=0

Ã(j) exp(2πi
jn

Nc
),

X(f) =
1

Nc
S(f)

Nc−1∑

j=0

Ã(j)
∞∑

n=−∞
exp(−2πi(fT − j/Nc)n), (5)

where Ã(j) is the discrete Fourier transform (DFT) of ã(j). Let us look at the expression
∑∞

n=−∞ exp(−2πi(fT−
j/Nc)n) =

∑∞
n=−∞ exp(−2πif̃Tn), where f̃ ≡ f − j

NcT . The DFT is

Γ(f̃) =
∞∑

n=−∞
cn exp(−2πif̃Tn), where

cn = T

∫ 1
2T

−1
2T

Γ(f̃) exp(2πif̃nT )df̃ . (6)



If Γ(f̃) = δ(f̃)/T , then
δ(f̃)
T

=
∞∑

n=−∞
exp(−2πif̃nT );

−1
2T

≤ f̃ ≤ 1
2T

. (7)

Since the series is periodic in 1/T , we can extend f̃ to −∞ ≤ f̃ ≤ ∞, so that
∑∞

n=−∞ exp(−2πif̃nT ) =
1
T

∑∞
r=−∞ δ(f̃ + r

T ). Inserting into Equation (5), we get

X(f) =
1

NcT

∞∑
r=−∞

[Nc−1∑

j=0

Ã(j)S(j/NcT − r/T )δ(f − j/NcT + r/T )
]
, (8)

which represents a series of periodic narrowband lines. To estimate s(t), we begin with a simple spring-dash pot
system of mass m, spring constant k, damping coefficient γ, and an applied force f(t), the equation of motion
ms̈(t) + γṡ(t) + ks(t) = f(t) generates the underdamped piston transients in the time domain as:

s(t) = sin

(
β

t

Tp

)
exp

(
− t

Tp

)
; t ≥ 0;

β =

√
(1− η2)

η
, (9)

where η is the normalized damping factor η = γ/2m√
k/m

. Fourier transforming the above expression for s(t) and

inserting into Eq. (8), we may estimate the narrowband engine spectrum X(f). Figure 4 is an example of a
harmonic line spectrum for a six cylinder engine with constant period T = .01 sec, Tp = .0015 sec, η = .4, and
cylinder amplitudes Ac = [1, 2, 4, 5, 7, 3]. The six series are distinguished by their color and correspond to
motion of the different cylinders.
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Figure 5. Beam Patterns for the Muffler, Engine and
Tire Waveforms.

In general, the piston ping period is a function of time so that Equation (3) is no longer strictly valid. A
more generalized form of Equation (3) is:

x(t) =
∞∑

n=0

a(n)s(t− tn), (10)



where tn =
∑n

j=0 T (tj). Each off-set time is computed by determining the corresponding fixed point of the
equation.§ The engine waveform x(t) is then scaled by a precomputed value ζengine based on the characteristics
of the engine and the amount of acoustic absorption by the vehicle frame:

xengine(t) = ζenginex(t). (11)

3.2. Muffler Waveforms
A muffler is an example of a simple bandpass filter. Each engine cylinder is linked to the muffler through an
exhaust manifold of variable length. The acoustic waveform at the output of the jth pipe can be represented by:

yj(t) = ã(j − 1)
∞∑

n=−∞
s(t− (j − 1)T − nNcT −∆j), (12)

where ∆j are the individual pipe time delays and the piston ping period T is assumed constant. The input to
the muffler can be expressed by Z(t) =

∑Nc

j=1 yj(t). Similarly, the output acoustic waveform from the muffler
can be written as

m(t) = h(t)⊗ Z(t) =
Nc∑

j=1

h(t)⊗ yj(t), (13)

where h(t) is the impulse function corresponding to a bandpass filter approximation to a muffler, and the symbol
⊗ denotes a convolution operation. In general, the piston ping period T is a function of time, so appropriate
adjustments to equation (12) are required in a manner similar to Equation (10). Finally, the muffler waveform
m(t) is scaled by ζmuffler based on the particular characteristics of the muffler:

xmuffler(t) = ζmufflerm(t). (14)

3.3. Tire Noise
Tire noise is a complicated phenomenon which is a function of speed and tread pattern pitch for a periodically
recurring tread pattern.34 Tire noise consists of two components: a tread impact mechanism (tread in contact with
the road surface) and a broadly peaked resonance pattern that includes such physical effects as tire resonance,
Helmholtz cavity resonance, and Aeolian tones generated by vortex shedding off the tire. The Helmholtz cavity
resonance is typically referred to as the Horn effect. The waveforms are generated by first passing bandlimited
white noise through a (triangular) proportional bandwidth filter centered around the tread impact harmonics.
This generates the tread impact pattern. The resonance pattern is determined by first constructing a bandpass
filter with a pass band in the range 800-1200 Hz and then passing the previously computed tread impact waveform
through the filter. A resonance peak is formed only when the tread impact waveform is within the frequency pass
band of the bandpass filter. This typically occurs at speeds in excess of 30 MPH. Two waveforms are output:
xtire is the (omnidirectional) tread impact waveform and xresonance is the directional tire resonance waveform.
An amplitude correction factor is used to adjust the noise level as a function of vehicle speed. To summarize:

xtire(k) = ζtireAkh(k)⊗ w(k), (15)

where h(k) is the tread impact filter:

h(k) = real

[∑

j

wjH0(k, j)
∑

n

xn exp(2πinvktj/S0)

]
, (16)

§For variable engine speeds, T is a function of time. Let ts = t − T (t). Since s(ts) = 0 for ts < 0, we want to
find t such that ts = 0, i.e., t = T (t) is the first fixed point t1. For t ∈ [a, b] and T (t) ∈ [a, b] such that T (t) has
continuous first derivatives, assume T (t) has a fixed point. Also, if |T ′(t)| ≤ K exists and K < 1, then T (t) has a
unique fixed point. We can find the fixed point through iteration: Let p be the fixed point, and let tn = T (tn−1),
|tn − p| = |T (tn−1) − T (p)| = |T ′(ξ)||tn−1 − p| ≤ K|tn−1 − p| where ξ is an intermediate point between tn−1 and p. By

induction, |tn−p| ≤ Kn|t0−p|. As n →∞, |tn−p| → 0, so p = limn→∞ T (tn). Since |T ′(t)| = 120 |RPM′(t)|
NcRPM2(t)

, we require

|T ′(t)| ≤ K < 1, so that the iteration converges. More generally, for the Kth spike: t(k) = T (t(k)) + T (t(k−1)); T0 = 0. A
similar inductive argument leads to the same iterative procedure outlined above.



and H0(k, j) is the proportional bandwidth filter:

H0(k, j) =
[sin(πvktj/S0)]2

(πvktj/S0)2
, (17)

Ak is a speed-dependent amplitude term Ak = (vk/v0)Ptire/20, xn ≡ 1/(1+n2), ζtire is a (constant) predetermined
amplitude correction, vk is the vehicle speed at time index k tk, v0 is a reference speed, S0 is the tread pattern
pitch, tj = −.5 + (j − 1)/Fs; 1 ≤ j ≤ 1 + Fs, Ptire is a predetermined power-law factor, wj are Hanning weights,
and w(k) is bandlimited Gaussian white noise. The expression for xresonance(k) is similar to Equation (15),
except that w(k) is the horn/resonance waveform and the normalization constant ζtire is different.

4. DIRECTIVITY PATTERNS

In this module, the appropriate input waveforms are filtered by the engine, exhaust, and tire whine frequency-
dependent directivity patterns. The exhaust directivity pattern is approximated by a pipe in an infinite baffle.
The tire whine directivity pattern associated with tire resonance is modeled by a vibrating surface of known
correlation length, and the engine directivity pattern is modeled as a randomly vibrating plate with known
correlation length. Acoustic occlusions (car frame, etc.) are approximated by an empirically-derived shadow
zone model. The outputs are [180×N ′] filtered output waveforms (180 bearings spaced 2 degrees apart), where
N ′ is slightly smaller than the number of time samples as a result of the filter time delay.

The muffler beampatterns are computed as

B0(θ, u) = 2
J1(k(u)Rp sin(θ))

kRp sin(θ)
; −180◦ ≤ θ ≤ 180◦;

k(u) = 2π
Fs

cNFFT
u; u =

[
0, .....

NFFT

2

]
, (18)

where NFFT is the FFT size, c = 1100 ft/sec is the speed of sound in air, Rp is the effective pipe exhaust radius
in feet, k(u) represents the wavenumber at time u, and J1 is the Bessel function of the first kind of order one.
The empirically derived shadow zone is described by

Shadow0 = exp(−α|θ − 90◦|); |θ| > 90◦, (19)

where α is the empirical shadow zone parameter (set equal to .1 here, but always less than 1). We then compute
the spatial impulse response function given the beampattern, filter the waveforms and finally correct for the filter
delay.

For tire noise, we let −90◦ ≤ θ ≤ 270◦, and calculate the beampattern for a random surface:

B(θ, u) = exp((.5k(u)Lc sin(θ))2), (20)

where Lc is the front frame/tire correlation distance in feet. The engine beampattern (random surface) is the
same as Equation (20), except than θ ≤ 180◦. An empirically derived shadow zone is also applied in this case
for |θ| ≤ 180◦. Again, we compute the beam impulse response and filter the waveforms. Figure 5 shows the
directivity patterns for the muffler, engine and tire waveforms, respectively. For notational convenience, the
filtered waveforms xengine(t), xmuffler(t), xtire(t), and xresonance(t) are denoted by Wengine, Wmuffler, and
Wtire (xtire and xresonance are combined to form the composite tire waveform).

5. PROPAGATION MODEL

The next step in the simulation process is to compute the individual waveforms at each sensor based on a simple
direct and reflected ray multipath model. Micromultipath effects are modeled by a unit modulus phase dispersive
filter, while travel times include corrections for source motion (Doppler) relative to the individual sensors. The
vehicle displacements and sensor positions are input from the Kinematics module.



Figure 6. Car Motion Along a Road. Figure 7. Geometry of Signal Transmission.

The vehicle may trace out a straight line or curvilinear trajectory with initial position X0, Y0. A reflecting
wall is optional and may be located anywhere. Figure 6 shows a diagram of a hypothetical car moving along
a curvilinear road. Start time for the car’s motion is t0, and we assume a number of total time samples equal
to Fs(t2 − t0), where t2 is the end time. Suppose the minimum time delay tmin for an acoustic signal to reach
the sensor corresponds to time t0 at point P0 on the road, and that the maximum delay tmax corresponds to
point P2 at time t2. The signal from the car at time t0 doesn’t reach the sensor until time t1 = t0 + tmin, when
the car is at position P1. Likewise, the signal from time t2 doesn’t reach the sensor until some time after the
vehicle has stopped. It is, therefore, necessary to incorporate these delays, equivalent to phase differences, into
the waveforms that are provided by the directivity function. Figure 7 shows the geometry of signal transmission
between car and sensor when there is an arbitrarily placed reflecting barrier in the vicinity of the vehicle’s motion.
There are two rays, a direct and a reflected one, to which Snell’s law applies.

In order to calculate the respective time delays tD and tR, we refer to Figure 8: Here, C represents the
position of the car, S the sensor position and C ′ the position of the mirror image of the point C through the
plane of the barrier. The point O denotes the intersection of the incident ray CO with the mirror plane, XB is
the intersection of the barrier with the x axis and YB its intersection with the y axis. The direct path length is
easily seen to be:

|∆−→RD| = −→
CS =

√
∆x2

D + ∆y2
D; ∆xD = xS − xC , ∆yD = yS − yC . (21)

The reflected path length may be calculated by noting that C ′S = CO + OS. Simple geometry considerations
lead us to the following expressions:

|∆−→RR| = C ′S =
√

∆xR + ∆yR;

∆xR = −(xS −XC′) = −xS + xC − 2`
YB

L
;

∆yR = −(yS − yC′) = −yS + yC − 2`
XB

L
;

` = L1 sinφ; φ = arccos
(L2 − L2

1 − L2
2

2L1L2

)
, (22)

where ` is the perpendicular distance of point C from the barrier plane. The corresponding time delays are
∆tD = ∆RD/c, ∆tR = ∆RR/c. This is repeated for all waveform time samples. Figure 9 shows the calculation



Figure 8. Calculation of Direct and Reflected Path
Time Delays.

Figure 9. Calculation of the Velocity-Sensor Angle.

of the course angle ω, measured positive counterclockwise from the velocity vector to the car-sensor vector (direct
path). The angle θ is the bearing of the direct path vector measured from the x-axis counterclockwise. The
angle φ is the bearing of the velocity vector, and ω = θ − φ. The bearings for the direct path (θD), reflected
path (θR), and the velocity vector (φv) are simply

θD = arctan

(
∆yD

∆xD

)
; θR = arctan

(
∆yR

∆xR

)
; φv = arctan

(
vy

vx

)
(23)

where the signs of the x and y coordinates must be taken into account to assign the correct quadrant. The
relative course angles ω are then converted to indexed beams, since the waveform directivity patterns are given
at intervals of two degrees. Direct and reflected path spreading losses are calculated as:

SpreadD =
R0

c∆tD
; SpreadR =

R0

c∆tR
, (24)

where R0 is reference range of 3 ft. We then add together the three waveforms after weight normalizing by the
components of β:

U(t) = β(1)WEngine(t) + β(2)WMuffler(t) + β(3)WTire(t). (25)

where β is a three-component vector of relative engine/muffler/tire component amplitudes. We define V as
the matrix U adjusted for the time delays. Since the waveforms WEngine, WMuffler and WTire are read in as
180×N ′ matrices, we must index into them to find the waveform corresponding to the correct bearing for each
time. After multiplying by the spreading factor

ZD(m, t) = SpeadDV (m, t); ZR(m, t) = αSpreadRV (m, t), (26)

where m is the sensor number, t is the time, and α is the reflectivity loss parameter (set equal to .5 here, but
always ≤ 1), we finally filter the waveforms and combine paths to get the received waveforms:¶

Z(m, t) = −filter(bd, ad, ZD)− filter(br, ar, ZR), (27)

where ad = [1 −Diffused], bd = −ad are the diffuse direct path filter coefficients, while ar = [1 −Diffuser],
br = −ar are the diffuse reflected path filter coefficients. Diffused is a dispersive direct path parameter between
0 and 1, and Diffuser is a dispersive reflected path parameter betwwen 0 and 1.

¶Note that filter(bd, ad, ZD) describes an ARMA filter with vector coefficients bd and ad.



6. RESULTS AND CONCLUSIONS

Some example simulator outputs are presented in Figures 10-13. In this case, there were three sensors at positions
(−500, 500), (0, 500) and (1000, 50). Figure 10 shows the positions, speeds and RPMs of the vehicle, as well as
the received powers at the sensors. The sampling rate was chosen as 4000 Hz, which allows the tire hum around
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Figure 10. Simulator Results: Positions, Speeds,
RPMs, Powers at Sensors.
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Figure 11. Simulator Results: Engine and Muffler
Waveforms and Spectrograms.

900-1000 Hz to be observed in Figure 12. Figure 11 contains the simulated engine and muffler waveforms and
spectrograms. We see that the engine spectrum (subplot 11b) is dominated by a group of narrowband lines
below 500 Hz. The muffler spectrum (subplot 11d) features a couple of strong lines around 100 Hz.
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Figure 12. Simulator Results: Waveform, Spectro-
gram and FRAZ Displays.
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Figure 13. Simulator Results: Tire Whine FRAZ
Display and Sensor Spectrogram.
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Figure 14. Real Data: Spectrogram of a Mercedes
C230 Car.
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Figure 15. Real Data: Spectrogram of a UPS Truck.

The tire noise spectrum in Figure 12 exhibits broadband properties with the tire hum around 900-1000
Hz clearly visible. The engine and muffler frequency-azimuth (FRAZ) displays in the same figure exhibit low
frequency narrowband lines, while the tire whine FRAZ display in Figure 13 has more broadband characteristics
extending to higher frequencies. The received spectrogram at the first sensor in the same figure contains visible
contributions from engine narrowband components and broadband noise from the tires. The spectrograms for the
other sensors are similar. Figures 14 and 15 are spectrograms of real data collected on the MITRE campus. Figure
14 shows a Mercedes C230 car spectrogram, with strong narrowband lines below ∼ 500 Hz and a pronounced
Doppler effect arising from motion speedup, as evidenced by a noticeable shift of the line series beginning around
T = 2 sec. There is also indication of tire hum around 1000 Hz. Figure 15 shows the spectrogram of a UPS
truck, with a dominant broadband component between 8 and 10 seconds, when it was probably speeding up.
There are narrowband lines below ∼ 200 Hz, which start exhibiting Doppler effects around 8 seconds, although
not as pronounced as those of the car. Comparison of these two figures with Figures 11b, 12b and 13b shows
that our model has essentially captured the main components of vehicle acoustic signatures.

In summary, we have attempted to model vehicle acoustic noise by simulating engine and muffler sounds,
which contain primarily harmonic line series, and tire noise which at higher speeds is dominated by broadband
tire hum. The computed waveforms are functions of the RPM rates, which in turn depend on the kinematic
parameters of the vehicle. The waveforms are filtered, time delayed and propagated to the sensor positions using
a phase dispersive two-path model.
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