Approved for Public Release; Distribution Unlimited

Case # 05-0316

MP W

MITRE PRODUCT

Secure Multidestination Delivery in DTN

March 6, 2005

Susan Symington

The views, opinions and/or findings contained in this report
are those of the authors and should not be construed as an
official Government position, policy, or decision, unless
designated by other documentation.

MITRE

Center for Air Force C2 Systems

Approved for public release; distribution unlimited.

SABROWN
Text Box
Approved for Public Release; Distribution Unlimited
Case # 05-0316

Table of Contents

Section Page

1. Introduction 1-1
1.1 Purpose 1-2

2. Multidestination Delivery Redundancies and Their Avoidance 2-1
3. The “Secure” Part of Secure Multidestination Delivery? 3-1
3.1 DTN Infrastructure Protection for Secure Multidestination Delivery 3-1
3.1.1 Perimeter Access Control 3-1

3.1.2 Data Integrity and Endpoint Authentication (hop-by-hop) 3-2

3.1.3 Lack of Replay Detection at Arbitrary Routers 3-2

3.2 DTN Application Protection and Secure Multidestination Delivery 3-3
3.2.1 Application Data Confidentiality 3-3

3.2.2 Data Integrity and Endpoint Authentication (Source-to-Destination) 3-5

3.3 Security Policy Routers 3-8
3.4 Optional Replay Detection at Destination Hosts and Security Policy Routers 3-9
3.5 A Modified Method of PSH Hash Calculation and Bundle Stripping 3-9

4. Secure Multidestination Delivery: walking through an example 4-1
4.1 Source Application Processing 4-2
4.2 Source/Sending Bundle Agent Processing 4-3
4.3 Receiving Bundle Agent Processing 4-5
4.4 Security Policy Router Processing 4-7
4.5 Destination Bundle Agent Processing 4-9
4.6 Destination Application Processing 4-10

5. Summary of Security Ramifications of Multidestination Delivery in DTN 5-1
6. Comparing the security ramifications of DTN multidestination delivery with those of
“real” DTN multicast 6-1
6.1 Avoiding Delivery Loops 6-1
6.2 Perimeter Access Control 6-2
6.3 Hop-by-Hop Bundle Integrity and Endpoint Authentication 6-2
6.4 Confidentiality and Key Management and Distribution 6-2
6.5 End-to-End Bundle Integrity and Endpoint Authentication 6-3
6.6 Optional Replay Detection at Destination Hosts and Security Policy Routers 6-4
6.7 Security Policy Router Processing 6-4
6.8 Bandwidth Savings 6-4

6.9 Custodianship and Bandwidth-Efficient Multidestination Retransmission 6-5

6.10 Multidestination versus Multicast Table Summary 6-8
Table Summarizing the Ramifications of Securing a “real” multicast bundle versus a
bundle addressed to multiple destinations 6-8

vi

List of Figures

Figure Page

1-1. A Bundle Delivered to Two Destinations Via Multidestination Delivery 1-2
2-1. A Multidestination Delivery Redundancy 2-1
6-1. Custodianship and Bandwidth-Efficient Retransmission 6-7

vil

Section 1

Introduction

There are currently no provisions in the Bundle Protocol for multidestination delivery of
bundle payloads. Ideally, however, a multicast delivery capability inherent to DTN will
eventually be defined, complete with a DTN multicast group management protocol to enable
the formation of DTN multicast groups, the association of each group with a DTN multicast
group address, and the ability to add and remove DTN endpoints from these multicast
groups. A native DTN multicast capability will also require the definition of a DTN multicast
routing protocol to enable each DTN router to determine on which interfaces a bundle
destined for a multicast group address should be forwarded. While such a native DTN
multicast capability is desirable, its definition does not seem imminent. In the meantime,
before all the components necessary for such a full-scale native DTN multicast capability are
in place, it has been proposed that the DTN Bundle Protocol be modified with the optional
ability to provide a modified form of multicast, which we will call “multidestination
delivery”. Multidestination delivery can conserve DTN bandwidth by ensuring that a given
payload sent from a single source traverses each link of the DTN at most once, no matter
how many destinations to which the payload is addressed.

The multidestination delivery capability being proposed is to allow a single bundle to
contain multiple destination fields and thereby be explicitly addressed to multiple
destinations. Under this proposal, a source wishing to send a bundle to » destinations need
only include each of those » destination addresses in the destination fields of the bundle and
send the bundle once, and the DTN routers along the paths from that source to each of the
destinations would, upon receipt of the bundle, look at the destination addresses to determine
on which interfaces (one or more) the bundle should be forwarded. The routers would
forward the bundle onto these interfaces so that each instantiation of the bundle can reach its
intended destinations along a tree-shaped delivery path, which has as its root the source of
the bundle and as its leaves each of the destinations. No special multicast group addresses
would be used. In fact, the notion of a group is completely absent from this proposal. The
source of the bundle is assumed to be magically in possession of all of the destination
addresses to which the bundle should be sent. If these destinations are part of a group, that
group was formed and information regarding its members was provided to the source out of
band. Similarly, no special multicast routing protocol is required to enable DTN routers to
determine on which interfaces to forward bundles using this proposal. The routers consider
each individual destination address in turn and route to it using a unicast routing protocol.

Consider, for example, the following figure, in which the source application node on the
left sends a single bundle with two destination endpoint addresses: the address of D1 and the
address of D2. This single bundle would be forwarded to router A, and router A would

1-1

forward this bundle out onto two different interfaces, so that a copy of the bundle will reach
destination D1 and another copy of it will reach destination D2.

=] /RN

X

Source /'E!g' — V]

Application JuJ \/
Node £ 1 P D1

= = >

AEE EEE —_— ry Yy 444

U U U W W

- 4 - L s

1 4 b T p N D2

Router A

Figure 1-1. A Bundle Delivered to Two Destinations Via Multidestination Delivery

This figure depicts how multidestination delivery would work at a high level. In
actuality, several areas of the Bundle Protocol would need to be modified to enable them to
support multidestination delivery. A modification to the bundle delivery paradigm to enable
the receipt of a single bundle at any given DTN router to cause that router to forward the
bundle onto more than one of its interface would have ramifications for the way that bundle
class of service options work, such as custodial transfer, retransmission, and release, and it
would be complicated by the possibility that a given bundle could be fragmented differently
on different downstream paths. Multidestination delivery would also have ramifications for
bundle security, which is what we will focus on here.

1.1 Purpose

This paper examines the ramifications that multidestination delivery would have for
bundle security; it examines the changes that would be required to the bundle protocol to
enable secure multidestination delivery. In particular, it discusses multidestination delivery
loops and their avoidance (section 2), examines the impact that providing secure
multidestination delivery would have on each area of DTN security (section 3), walks
through an example of how each of the available DTN security mechanisms would be
applied to a bundle addressed to multiple destinations (section 4), summarizes the security
ramifications of multidestination delivery (section 5), and then contrasts the security
ramifications of DTN multidestination delivery with the security ramifications of the
eventual ideal of real DTN multicast (section 6).

1-2

Section 2

Multidestination Delivery Redundancies and Their
Avoidance

The figure below shows the undesirable situation in which a bundle that is destined for
multiple addresses suffers from a delivery redundancy. The Source Application Node on the
left sends a single bundle to two destinations: D1 and D2, on the right.

Router A creates two instantiations of the bundle that it receives, one of which is depicted

s [

So_urcc_a "i} T iW“_I
Application ﬁ N4 %‘ o e D:
Router B
- ~ T — Smlf
lRouter ﬂ_l_' —|:|_> Router C D2

Figure 2-1. A Multidestination Delivery Redundancy

as patterned and one of which is not, and forwards each of these instantiations on a separate
interface. The patterned bundle is destined for D1 and the solid bundle is destined for D2.

Router B erroneously creates 2 instantiations of the bundle, forwarding one to D1 and
one to D2.

D2 incorrectly receives the bundle twice.

One way to correct this multidestination delivery redundancy would be to enable router C
to detect that it has received the bundle twice and to discard the second copy of the bundle it
receives. DTN, however, does not include any functionality for arbitrary nodes to detect the
receipt of duplicate bundles. Another way to correct this delivery loop would be to enable
Router B to “know” that it is only responsible for forwarding to D1, but not to D2. In this
case, Router B would only forward the bundle to D1, but not to Router C. In the context of

2-1

DTN multidestination delivery, enabling router B to “know” that it is only responsible for
forwarding to D1 but not to D2 could be accomplished in one of two ways:

e At each router at which the bundle’s path forks, the forwarding router must mark the
“relevant” addresses” on each bundle instantiation. This informs all downstream
routers as to which destination addresses they are and are not responsible for
forwarding the bundle. We refer to this as “marking”. Or,

e At each router at which a bundle’s path forks, the forwarding router must strip
irrelevant addresses from each bundle instantiation. Downstream routers are
responsible for forwarding only to those destination addresses that remain in the
bundle. We refer to this as “stripping”.

In the above example, these two choices would mean either:

e Marking: router A marks destination address D1, but not destination address D2 in
the patterned copy of the bundle that it forwards; and it marks destination address D2,
but not D1, in the solid copy of the bundle that it forwards. This way, when Router B
receives the bundle, it knows that it is only responsible for forwarding the bundle so
that it can reach destination D1, but not destination D2, or

e Stripping: router A strips destination address D2 from the patterned copy of the
bundle that it forwards, and it strips destination address D1 from the solid copy of the
bundle that it forwards. This way, when Router B receives the bundle, it is not even
aware that D2 was originally a destination for this bundle, so it will only forward the
bundle to reach destination D1.

Given the importance of avoiding multidestination delivery loops and the fact that
arbitrary DTN nodes will not be equipped to detect and discard duplicates, our discussion of
multidestination delivery must keep in mind that destination addresses will have to be either
marked or stripped as a multidestination delivery bundle progresses through the network and
its path forks. The choice of whether to mark or strip destination addresses will have
ramifications for the degree of end-to-end security with which the bundle can be provided, as
will be discussed in sections 3.3 and 3.4. The choice of whether to mark or strip destination
addresses will also have ramifications for the amount of bandwidth used by the
multidestination bundle, as will be discussed next.

With regard to the relative merits of marking versus stripping, stripping is much more
desirable in terms of bandwidth conservation. Destination endpoint addresses can be very
long, so stripping, which enables all destination addresses that are no longer relevant to be
removed from the bundle, provides a useful mechanism for enabling the size of each bundle
to be reduced as its path through the network forks en route to its multiple destinations. With
stripping, an address only appears in an instantiation of a bundle if it is needed for delivery of
that instantiation of the bundle to the addressed destination. Marking, on the other hand, is

2-2

very wasteful of bandwidth insofar as it results in destination endpoint addresses appearing
in instantiations of bundles in which the addresses are not needed. Marking does, however,
preserve all of the original destination information that was present when the bundle was
originally sent, so that a destination that receives a bundle that has been marked as opposed
to stripped receives information regarding all destinations to which the bundle was sent. A
destination that receives a bundle that has been stripped as opposed to marked, on the other
hand, has no way to distinguish this bundle from a bundle that was unicast from the source. It
is not clear if preserving all of the bundle destination addresses in all instantiations of the
bundle, however, provides any benefit and, if it does, whether the benefit is worth the
additional bandwidth that is required to support this feature.

With regard to the bandwidth-savings merits of multidestination delivery, it should be
noted that when the addresses of multidestination bundles are marked (as opposed to
stripped), more cumulative bandwidth is required to carry the destination endpoint addresses
on all instantiations of a given bundle than would be required to carry all the destination
endpoint addresses in all bundles if the payload were instead unicast separately to each
endpoint destination. When the addresses of multidestination bundles are stripped, the
amount of cumulative bandwidth that is required to carry the destination endpoint address
portion of all instantiations of a given multidestination bundle is about the same as the
amount of cumulative bandwidth that would be used if the payload were instead unicast
separately to each endpoint destination. (The cumulative amount of bandwidth used for the
destination addresses in the multidestination case versus the unicast case are exactly the same
if all destination addresses are specified completely in the multidestination bundle. If some
addresses share the same region portion, however, then using the data dictionary to capitalize
on this similarity could enable the multidestination case to conserve bandwidth over the
unicast case.) So, regarding the bandwidth saved in the bundle header, multidestination
delivery, when used with address stripping, may provide some, but not a significant
bandwidth savings over unicast delivery. For the most part, the potential bandwidth saving
benefits of multidestination delivery over unicast delivery are realized on the payload portion
of the bundle. That is, when distributing a payload to n destinations using a multidestination
delivery bundle, the amount of bandwidth used by the payload would be at most the size of
the payload on each link of the distribution tree, whereas the cumulative amount of
bandwidth used by the payload in the unicast case would be # times that amount. Therefore,
multidestination delivery is not significantly advantageous over unicast delivery in the case
in which the bundle payload is small relative to the endpoint destination addresses, but it can
be significantly advantageous in the case in which the bundle payload is large, and its benefit
increases as the size of the payload increases.

Section 3

The “Secure” Part of Secure Multidestination Delivery?

DTN security can basically be broken down into three main areas: DTN infrastructure
protection, as provided by perimeter access control and the hop-by-hop Bundle
Authentication Header (BAH); DTN application protection, as provided by the end-to-end
Payload Security Header (PSH) and support for application-layer confidentiality; and
security policy routers, which use the PSH to enforce their own access control decisions at
junctures within a DTN. Let’s examine how each of these areas of DTN security would be
affected by defining a multidestination delivery option within DTN.

3.1 DTN Infrastructure Protection for Secure Multidestination Delivery

This section examines how each of the three areas of DTN infrastructure protection
(perimeter access control, hop-by-hop data integrity, and hop-by-hop endpoint
authentication) would be affected by incorporation of multidestination delivery, and also
discusses how multidestination delivery would affect the existing security risks posed by lack
of replay detection within DTN.

3.1.1 Perimeter Access Control

Recall that when the bundle agent at a source host receives a Send.request primitive from
a bundle application, the first step it may take is to check the permissions of the requesting
application and limit or enforce access control based on source application permissions and
local policy. Multidestination delivery would not affect how this access control security
service operates. If multidestination delivery were to be incorporated into the Bundle
Protocol, perimeter access control could continue to operate as it currently does. The fact that
the bundle is destined for multiple destinations, however, may be used as an additional
criteria according to which the local policy of the source bundle agent determines whether
the bundle should be admitted to the DTN and, if admitted, whether the rate at which it is
injected or the class of service (COS) options it is allowed to use should be limited in any
way. If the local policy of the source host takes destination address into consideration in
determining which bundles to admit into the network or how to treat those bundles, then the
question arises as to how that host bundle agent should treat a bundle that contains two
destination addresses that are expected to be treated differently from each other. The source
host’s local access control policy would need to account for this potentially ambiguous
situation.

3-1

3.1.2 Data Integrity and Endpoint Authentication (hop-by-hop)

Recall that the bundle protocol supports mandatory data integrity and endpoint
authentication services along every hop in the DTN network, and that these services may be
provided on any given DTN link either via the use of the BAH on that link or by the
convergence layer of the receiving host asserting the bundle’s authenticity along that link. If
multidestination delivery were to be incorporated into the Bundle Protocol and the Bundle
Protocol were run over an underlying network that includes security features such as IPsec or
link encryption that make it sufficiently secure that the convergence layer of each receiving
bundle agent could assert the bundle’s authenticity at every hop, then the Bundle Protocol
could continue to operate as it currently does, without any impact on hop-by-hop security.
When using the BAH to provide infrastructure protection, however, some small
modifications would be required to support multidestination delivery.

When a bundle is sent from a single source to a single destination, at each intervening
hop at which a BAH is to be used to provide security on that hop, the sending bundle agent
computes a hash of the bundle, signs the hash with its private key, and forwards the bundle
out a single interface to the next receiving bundle agent. The receiving bundle agent receives
the bundle, verifies the validity of its signed hash value by comparing it with what it
determines the hash value should be, and then computes a new signed hash for the bundle
before forwarding it out a single interface to the next hop along the way. The fact that the
receiving bundle agent can decrypt the signed hash into the correct value serves to
authenticate the sender and recipient of the bundle as well as to verify the integrity of the
bundle.

If multidestination delivery were to be incorporated into the Bundle Protocol, a sending
bundle agent would compute a hash of the bundle, sign the hash with its private key, and
forward the bundle as now occurs in the unicast case. However, as distinguished from the
unicast case, it may forward the bundle out multiple interfaces to the next set of receiving
bundle agents. Given that the forwarding node must either mark or strip some of the
destination addresses on each instantiation of the bundle that is forwarded out multiple
interfaces, and that the addresses that are marked or stripped are interface-specific, the
forwarding node is required to calculate a unique BAH authentication information value for
each interface on which a given bundle is forwarded. With regard to the process of verifying
the validity of this authentication information at the receiving bundle agent, however,
nothing changes from the unicast case.

3.1.3 Lack of Replay Detection at Arbitrary Routers

We have already mentioned that DTNs do not include a mechanism to detect and reject
replayed packets at arbitrary DTN nodes. This means that an attacker could eavesdrop on
DTN traffic, record a legitimate bundle during transmission, and then later inject that bundle
into the DTN network. This replayed bundle would not necessarily be detected at all. If a

3-2

destination application opts to check received bundles for replays, the replay will be detected
at that destination. However, the replay will not be detected until the bundle reaches the
destination host. Repeated injection of a replayed packet into a DTN, therefore, can cause
congestion on the path of that replayed packet through the DTN until the replayed packet
expires. The capacity of a replayed packet to cause congestion in the DTN is increased in the
case of a packet that is destined for multidestination delivery. Instead of causing congestion
on a single linear path from the source to the destination in the network, it causes congestion
on all links of a tree-shaped delivery path from the source to multiple destinations. Therefore,
the risk posed by not detecting and discarding replayed packets in the DTN is increased with
the use of the multidestination delivery option.

3.2 DTN Application Protection and Secure Multidestination Delivery

This section examines how each of the areas of DTN application protection (application
data confidentiality, bundle integrity, endpoint authentication, and replay protection) would
be affected by incorporation of multidestination delivery.

3.2.1 Application Data Confidentiality

DTN users are free to use the DTN Bundle Protocol to support end-to-end confidentiality
for application data, but the actual encryption of the user information to be transmitted as the
application data unit must be accomplished by the application before being passed to the
bundle layer; similarly, decryption of the application data unit received at the destination host
must be accomplished by the destination application rather than the destination bundle layer.
There is no mechanism within the Bundle Protocol itself for the bundle layer to perform
encryption or decryption of the bundle payload or any portion of the bundle header.
Although confidentiality is not provided by the Bundle Protocol itself, however, encryption
at the application layer is supported by the Bundle Protocol’s ability to signal from the
source to the destination which encryption algorithm and encryption key was used to encrypt
the application data. This enables flexibility in the use of various algorithms and keys and in
performing key rollover.

If multidestination delivery were to be incorporated into the Bundle Protocol, the Bundle
Protocol would require modification in order to enable it to support encryption of application
data that is intended for receipt (and decryption) at multiple destinations. Designing a DTN
solution based on the way that secure mail, for example, would typically provide
confidentiality for a message sent from a single source to multiple destinations, a DTN
application wanting to provide confidentiality for data that it is sending to multiple
destinations would use a single symmetric key, known as a content encryption key (CEK) to
encrypt the application data that is eventually transmitted as the bundle payload. It could not
use public key cryptography because in order to use public key cryptography, it would have
to encrypt the data with the public key of the destination. Using public key cryptography on
data intended for multiple destinations, therefore, would require the application to encrypt

3-3

the data separately for each destination, using the private key of each destination, and include
all of the resulting cyphertext in the bundle, which would so diminish the benefits of using
multidestination delivery that it wouldn’t be worthwhile. Instead, the DTN application would
use a symmetric key (a CEK) to encrypt the application data. It would then encrypt this CEK
once for each of the respective destinations, using the public key for each of those
destinations, and include each of these encrypted CEKSs in the bundle along with the
encrypted payload. At a given destination application, upon receipt of the application data,
the destination application would use its private key to decrypt the encrypted CEK that
pertains to the destination, and then use the resulting plaintext CEK to decrypt the received
application data.

Although encryption and decryption of application data for multidestination delivery
would occur in the DTN application rather than at the bundle layer, additional signaling
between the DTN application and the bundle layer would be required to enable this
encryption to be supported, and additional fields would be required in the Bundle Protocol to
carry the encrypted CEKs that pertain to each destination that is included in the bundle. It has
already been recommended that additional optional parameters of the Send.Request and the
Data.Indication primitives of the bundling service should be defined to enable these
primitives to adequately support confidentiality for unicast delivery. In particular, additional
optional parameters are needed to enable the following information to be conveyed:

e Which encryption algorithm (if any) has been used to provide confidentiality
e The key ID of the key that was used with this encryption algorithm

If multidestination delivery were to be incorporated into the Bundle Protocol, the above
parameters would be sufficient, providing that all destinations to which the bundle is to be
sent have the same a priori understanding of what symmetric CEK corresponds with the key
ID used. However, making this assumption only avoids the question of how that key initially
got distributed to each of the destinations. A more robust and complete solution would
support the mechanism of encrypting the CEK once per destination, using the public key of
each destination, and including these CEKSs in the bundle. To support this encrypted CEK
mechanism for multidestination delivery, optional primitives would be required to enable the
DTN application to convey the following information to its underlying bundle agent:

e Which symmetric encryption algorithm (if any) has been used to provide
confidentiality for the application payload

e Which asymmetric encryption algorithm has been used to provide confidentiality for
the CEK (if the payload was encrypted)

e For each destination endpoint ID supplied, the corresponding result of encrypting the
CEK with the public key associated with that endpoint ID.

3-4

Note that this solution is a bit restrictive because it assumes that a given endpoint ID will
unambiguously indicate a corresponding public key, meaning that keys will strictly be
associated with endpoint IDs rather than be associated with specific applications or roles,
several of which could reside at a given endpoint. A more flexible and complete solution that
enables a finer granularity of key identification at the cost of using additional bits of the
header would be to associate not only an encrypted CEK with each destination, but also a
key ID that indicates the private key to be used with the asymmetric algorithm that was used
to encrypt the CEK, with each destination. This solution provides flexibility for supporting
efficient key rollover and the ability to associate keys with whatever entities are most
appropriate for the application. To recap, the additional, optional parameters that would be
needed to support the complete and flexible confidential multidestination delivery solution
would have to convey the following information:

e Which symmetric encryption algorithm (if any) has been used to provide
confidentiality for the application payload

¢ Which asymmetric encryption algorithm has been used to provide confidentiality for
the symmetric CEKs (if the payload was encrypted)

e For each destination endpoint ID supplied,
— the keyID corresponding to the public/private key pair used to encrypt the CEK
— the result of encrypting the CEK with the public key associated with that keyID.
Optional bundle header fields will also need to be defined for carrying the above new values:
e An optional “symmetric encryption algorithm ID” field
e An optional “asymmetric encryption algorithm ID” field
e A keylD field associated with each destination endpoint ID

e An encrypted CEK field associated with each destination endpoint ID

3.2.2 Data Integrity and Endpoint Authentication (Source-to-Destination)

The Payload Security Header (PSH) of the Bundle Protocol can optionally be used to
provide end-to-end data integrity and endpoint authentication for the entire bundle, meaning
that it provides a mechanism whereby the destination bundle agent can verify that the bundle
received has not been modified in transit since being sent by the originating source; it can
also enable the destination bundle agent to verify that the bundle was intended for the named
destination (because the signed hash value was calculated over the contents of the destination
field in the Primary Bundle Header). Lastly, it can enable the destination bundle agent to
verify that the bundle originated from the endpoint ID listed in the source field (because the
signed hash value was calculated over the contents of the source field in the Primary Bundle

3-5

Header). Also, either the source field or some other bundle header field was used to look up
the appropriate public key to use to decrypt the signed hash. Because the signed hash
decrypted correctly, this means that the corresponding private key must have been used to
sign the hash, and given that the private key is known only to the source, this authenticates
either the endpoint ID listed in the source field or the entity associated with the key used to
decrypt the hash as having in fact signed the hash and having been the location from which
the bundle originated.

These services are provided by having the source bundle agent calculate the hash over the
entire bundle, use the private key of the source to sign the hash, and place the signed hash
value in the Security Information Field of the Payload Security Header. Upon receipt of the
bundle, the destination bundle agent applies the source’s public key to the signed hash,
thereby decrypting it into the original unsigned hash value. The destination then calculates its
own hash of the bundle and compares the hash value that it has calculated with the (now
unsigned) hash value received. If the two values are equivalent, then the destination bundle
layer can be assured that the contents of the bundle have not been modified since being sent
from the source. Furthermore, after the destination bundle agent compares the Payload
Security Header hash value with the computed value and finds them to be equivalent, it may
optionally make sure that the bundle is not a replay by comparing its (source, timestamp) pair
value with the (source, timestamp) pair values of bundles that it has already received. This
optional replay detection capability is discussed further in a separate section below. The
signed hash value in the Security Payload Header provides data integrity protection for the
entire bundle (except for the BAH and mutable fields), including source endpoint ID and
timestamp, which determine the bundle’s uniqueness; destination endpoint ID; class of
service; and payload. Because all of these fields are included in the PSH hash calculation and
the hash is signed with the sending application’s private key, the PSH truly provides an end-
to-end data integrity and endpoint identification service from source application to
destination application. The PSH enables a destination application to reliably determine
whether or not a received bundle has been modified while in transit, even in the case in
which one or more of the DTN routers along the path from source to destination have been
compromised.

If multidestination delivery were to be incorporated into the Bundle Protocol, the signed
hash in the PSH that is received at a given destination d has to be calculated over the entire
bundle, minus mutable fields such as the custodian field and the BAH, and including the
source endpoint ID, that particular destination d’s endpoint ID, and the keyID field and
encrypted CEK associated with destination d (if present), but not necessarily including other
destination endpoint IDs or the keyID or encrypted CEK fields associated with those other
destinations. Including the other destinations and their associated encryption information
does not do any harm with respect to the security protection provided, but it is not essential
in order to provide assurance of end-to-end bundle integrity and endpoint authentication from
the source to that particular destination. At a particular destination d, however, the integrity

3-6

of d’s endpoint ID, keyID field, and encrypted CEK (if present) absolutely needs to be
protected by the PSH hash received at d. This leaves designers with two choices regarding
how to calculate the PSH hash at the source:

e Compute a single hash over the entire bundle, less the usual mutable fields such as
the BAH and the custodian field. This means the hash would be computed over all
destination addresses. Sign the hash and put it in the PSH. In this case, the
destination must receive the entire bundle including all destination addresses in order
to be able to verify the correctness of the hash. No destination addresses would be
allowed to be stripped off by intermediate routers at points at which a bundle’s path
forks and thereby eliminates some addresses from being potential destinations for that
particular instantiation of the bundle. This solution requires destination addresses to
be marked rather than stripped.

e Ifabundle is destined for » endpoint addresses, compute n different hashes for the
bundle. The hash for destination d would omit all destination addresses, key IDs, and
encrypted CEKs (if they are present) except for d’s destination address, keyID, and
encrypted CEK. This hash would then be signed by the source and put into the 4
PSH field in the bundle. In this case, the bundle would have to have not only n
destination addresses, n encrypted CEK’s (if present) and n keyIDs (if present), but it
would also have n PSHs. Destination d, however, need not receive the entire bundle.
It need only receive the bundle with d’s endpoint address, d’s encrypted CEK (if
present), d’s keyID field (if present) and d’s PSH. This information is sufficient for d
to be able to compute the hash of the bundle received and compare it with the
decrypted value of the signed hash received in PSH d. Using this method of providing
end-to-end bundle integrity and endpoint authentication, destination addresses could
be stripped off by intermediate routers at points at which a bundle’s path forks and
thereby eliminates some addresses from being potential destination for that particular
instantiation of the bundle. In fact, not only could the destination addresses be
stripped off, but their associated encrypted CEKSs (if present), keyIDs (if present), and
PSHs could also be stripped off.

It must be noted, however, that although such stripping does not interfere with the
ability of the destination bundle agent to authenticate the received bundle, it does
interfere with the ability of a security policy router to authenticate a received bundle and
authenticate all of the destination addresses to which the bundle would eventually be
forwarded from the security policy router. This complication that destination address
stripping causes to security policy routers is discussed further in section 3.3, and a
solution that addresses it is proposed in section 3.4.

3-7

3.3 Security Policy Routers

As discussed in section 3.2.2, the PSH is calculated at the source host, using the source’s
private key, and it is checked at the destination host to provide end-to-end security. It may,
however, also be checked at one or more DTN security policy routers while in transit.
Checking the signed hash in the Payload Security Field is accomplished by having the
security policy router’s bundle agent calculate its own hash of the received bundle and
compare this received hash with the decrypted value of the hash that was received with the
bundle. If the hash values are equivalent, the security policy router can be assured that the
bundle has not been modified in any way since being sent from the source, which is one (of
possibly many) necessary criterion for determining whether the bundle should be forwarded.

In order to be able to verify the correctness of the hash value, the bundle agent must have
access to the bundle as it was when the original hash was calculated on it. This has
ramifications for which of the two choices regarding how to calculate the PSH hash at the
source should be selected, as discussed in section 3.2.2 Data Integrity and Endpoint
Authentication (Source-to-Destination) above. It also has ramifications regarding whether
destination addresses should be marked or stripped from the multidestination bundle, as
discussed in section 2. If the method of PSH calculation that involves computing » different
hashes for the bundle, one per destination, is used, then a security policy router could choose
a destination and compute that destination’s hash on the bundle and thereby assure itself of
the identity of the source of the bundle and of the integrity of the single destination address
and associated keyID and CEK information for that destination that was used to calculate the
hash. The security policy router, however, would not be able to compute a single hash on the
bundle received and use this hash value to be assured of the integrity of all of the bundle
destination endpoints addresses and their associated keyIDs and CEKs. If the method of PSH
calculation that involves computing a single hash on the entire bundle, including all
destination endpoint addresses and associated keyID and CEK information is used, then a
security policy router would be able to compute a single hash on the bundle received and use
this hash value to be assured of the integrity of the source of the bundle as well as of all of
the destination endpoint addresses and their associated keyID and CEK information. From
the standpoint of enabling a security policy router to provide assurance of bundle integrity
for the entire bundle rather than for only a particular branch of the bundle’s multidestination
path, computing the PSH over all destination addresses is preferable. Computing a single
PSH for the bundle that is calculated over all destination endpoint addresses and leaving all
destination addresses in the bundle rather than deleting them as the bundle progresses on its
tree-like path enables a security policy router to provide more security than does the method
of computing one PSH per destination address.

3-8

3.4 Optional Replay Detection at Destination Hosts and Security Policy
Routers

Although there is no requirement for duplicate bundles to be detected at arbitrary nodes
within the DTN, there is a requirement for destination bundle agents to be able to optionally
detect and discard duplicate bundles received. The same optional ability is also required at
DTN security policy routers that may want to enforce their own access control policy before
forwarding a bundle on a certain link. The optional ability to detect and discard duplicates
could be crucial to the ability of the security policy node to protect the link from having its
resources wasted by transmitting replayed bundles. Because there is no way within the
Bundle Protocol for an arbitrary DTN node to distinguish an illegitimately replayed bundle
from a legitimate retransmission, it is expected that a security policy router will not be
configured to detect and discard replayed bundles unless the security policy router is itself
serving as a bundle custodian. As a bundle custodian, a security policy router would be in a
position to consider all duplicate bundles received as illegitimate replays. If a security policy
router were to be located between a custodian and some destination addresses, on the other
hand, then the security policy router would not have any way to distinguish legitimate
retransmissions originating from that custodian from illegitimate replays. ***Is this
correct???*** If not, how can a security policy router distinguish a replay from a legitimate
retransmission??

If multidestination delivery were to be incorporated into the Bundle Protocol, then, given
the same assumption that security policy routers configured to detect and discard replays are
also custodians, the actions performed by the security policy router and destination bundle
agents to detect and discard duplicates would not be affected in any way. The security policy
router and destination bundle agents would still use the (source, timestamp) pair value to
uniquely identify bundles received and thereby detect and discard replays.

3.5 A Modified Method of PSH Hash Calculation and Bundle Stripping

While calculating the PSH hash over all bundle destination addresses is required to
enable security policy routers to provide optimal security, keeping these destination
addresses in the bundle (marking), as opposed to stripping them out, is undesirable in terms
of bandwidth usage. Ideally, we would like to have the PSH be calculated only once, and
such that it can be used to authenticate all destination addresses, but we would also like to
save bandwidth by stripping destination addresses (which may be very large) from the
bundle at those junctures in the delivery path at which they are no longer needed. The
following innovation has been suggested as a means of calculating the PSH to achieve both
of these goals:

e Create a hash value of each of the destination addresses in the bundle.

3-9

e Add these hash values as new fields of the bundle in such a way that associates each
destination address with its corresponding hash value.

e Calculate the PSH hash over the entire bundle except for
— The BAH
— All mutable fields, such as the custodian and sender fields
— All destination endpoint addresses

When a bundle arrives at a router and the router has to forward the bundle on multiple
interfaces, the router should strip off all destination addresses (but not any destination hash
values) that will not be needed on that interface or beyond. This way, when a bundle arrives
at a security policy router or at a destination endpoint, the bundle will still contain all
information over which the PSH hash was calculated, so the PSH can be adequately verified.
Furthermore, this information includes hashed values for each destination, thus enabling the
authenticity of all destination addresses that remain in the bundle to be verified, and ensuring
that the source address, time stamp, destination addresses, payload, and other relevant
portions of the bundle have not been modified since the bundle was sent.

When a security policy router receives a multidestination bundle, it should validate the
content of that bundle by performing the following steps:

e Decrypt the hash value received in the bundle’s PSH.

e For each destination address in the bundle, calculate the hash value of that destination
address and verify that this calculated value is equivalent to the destination address’s
corresponding hashed value as found in the bundle.

e Calculate the hash over the entire received bundle, except for
— The BAH
— All mutable fields, such as the custodian and sender fields
— All destination endpoint addresses

e Verify that this calculated hash is equivalent to the PSH hash value received in the
bundle, as decrypted above.

This option combines the best of both the “marking” and the “stripping” options for
preventing delivery loops, and appears to be optimal. It enables a security policy router to
authenticate the integrity of all destination addresses in the received bundle with a single
hash calculation, rather than authenticating the integrity of only a single destination address
or having to calculate a separate hash for each destination. Yet it also enables destination
addresses that are not relevant to a particular instantiation of a multidestination bundle on a

3-10

given path of the delivery tree to be stripped from that instantiation of the bundle, thus
preventing bandwidth from being wasted by bundles carrying destination addresses that are
no longer relevant to them.

To implement this mechanism, a new, optional bundle field for indicating what hash
algorithm to use to compute the hash of each destination endpoint address would need to be
defined, as would the new fields for holding the hash values associated with each destination
address.

Section 4

Secure Multidestination Delivery: walking through an
example

In this section we walk through an example of the sending of a multi-destination bundle
from a single source to multiple destinations and focus on the security-related processing that
would need to occur. To fully explore the security ramifications of enabling DTN
multidestination delivery, in our example the application data unit that is sent in the
multidestination bundle will be encrypted, and the bundle itself will be protected with end-to-
end security as provided by the PSH and with hop-by-hop security as provided by the BAH.
We will also follow the steps that the bundle takes as it is processed at a security policy
router within the DTN, as it is received at its destination host bundle agent and checked for
replays, and as the application data unit is received by the destination application for
decryption.

The topology of the network over which the bundle will travel is shown in the following
figure. The source sends a bundle to destination hosts D1, D2, and D3 and the path on which
the bundle must travel to reach destinations D2 and D3 includes a security policy router.

— Y
Appliigtl;cr,?weNode () /&' \j 1 P v

R2 D2
’ D1 >

V)

< L]) <
w Security w q_)
-> R1 Policy i7\ R3 - s

Router

Here are the following steps that need to occur at various locations within the DTN
network:

4.1 Source Application Processing

In order to send encrypted application data to multiple destinations using a single bundle
and multiple destination fields, a source application would perform the following steps:

1.

The source application encrypts the data to be sent using a symmetric encryption
algorithm and symmetric key of its choosing. This encryption key is known as the
content encryption key (CEK).

The source application (or key signing library or tool) encrypts the CEK once for
each of the destinations to which the data is to be sent, using the public key
associated with each of those destinations.

The source application invokes the Send.Request Primitive, which includes the
following arguments that are specific to secure multidestination delivery:

— multiple destination communication endpoint IDs;
For confidentiality:
— encrypted application data unit;

— an indication of which symmetric encryption algorithm has been used to provide
confidentiality for the application data unit

— an indication of which asymmetric encryption algorithm has been used to provide
confidentiality for the symmetric CEKs (if the payload was encrypted), and

— associated with each destination endpoint ID supplied,

= the keyID corresponding to the public/private key pair used to encrypt the
CEK

= the result of encrypting the CEK with the public key associated with that
keyID.

For end-to-end integrity and authentication:

— an indication of which hash algorithm should be used to compute the hash in the
PSH security information field

— an indication of which encryption algorithm should be used to encrypt the PSH
hash

— an indication of which key should be used to encrypt the PSH hash

— an indication of which hash algorithm should be used to compute the hash of each
destination endpoint address

42

4.2 Source/Sending Bundle Agent Processing

Upon receipt of a Send.Request primitive from a DTN application requesting initiation of
the authenticated transfer of an encrypted application data unit to multiple destinations, the
source host bundle agent would first assemble the bundle, then add the Payload Security
Header, and then add a Bundle Authentication Header. Specifically, it would perform the
following steps to assemble the bundle and add the PSH:

1.

Perform permission checking and optionally enforce a local access control policy that
may restrict the injection of this data into the network, as discussed in Step 1 of
section 4.1 of the Bundle Protocol Specification.

Assemble the bundle except for the BAH. (If the bundle is to have a BAH, do not put
it in the bundle yet.) The bundle should include the following fields that are specific
to providing secure multicast delivery:

— An optional “symmetric encryption algorithm ID” field

— An optional “asymmetric encryption algorithm ID” field

— An optional “PSH hash encryption algorithm ID” field

— An optional “PSH hash algorithm ID” field

— An optional “PSH hash encryption key ID” field

— An optional “destination address hash algorithm ID” field

— An optional “key ID” field associated with each destination endpoint ID
— An “encrypted CEK” field associated with each destination endpoint ID
— Multiple destination addresses

— Hash values of each destination address

Populate all fields with appropriate values, except assign the Custodial field a zeroed-
out value, the security information field of the Payload Security Header a zeroed-out
value, and the sender endpoint ID field a zeroed-out value. (In short, all mutable
fields must be zeroed-out, and the BAH must not be present.)

If there is more than one destination endpoint address, and if the bundle includes an
optional “destination address hash algorithm ID” field, use the value of this field to
look up the appropriate hash algorithm to use. Compute the hash value of each
destination endpoint address and place these hash values into the bundle in such a
way that each hash value is associated with its corresponding destination address.

Use the PSH hash algorithm ID field parameter in the Send.Request primitive to
determine what hash algorithm to use.

4-3

6. Calculate the hash over the entire bundle as assembled above but omitting all
destination endpoint addresses (but including the hash values of each of these
destination endpoint addresses) and pass this value to an entity (the application, a
key-signing service, etc.) that is privy to the private key that will be used to sign this
hash for this bundle. Also, if the bundle includes an optional PSH key ID field, the
value of this field must also be passed to the key-signing entity.

7. Receive the signed hash back from the key-signing entity and insert it into the
security information field of the PSH.

8. Populate the Custodial field with the appropriate endpoint ID value and the sender
endpoint ID field with the correct value (if desired).

At this point the bundle is ready for forwarding. Because the bundle has multiple
destination addresses and therefore may need to be forwarded on multiple interfaces, the
bundle agent performs the following steps to ready each instantiation of the bundle that will
be forwarded:

9. For each destination address included in the bundle, the bundle agent consults its
routing service to determine on what interface the bundle should be forwarded in
order to reach that destination address.

10. For each interface on which a bundle needs to be forwarded, the bundle agent
performs the following on the instantiation of the bundle that will be forwarded on
that interface:

— Deletes all destination addresses in the bundle that are not intended to be reached
from this interface.

— Adds a BAH to the bundle.
— Zeros-out the value of the authentication information field of the BAH.

— Populates all other fields of the BAH with appropriate values. For example, if the
optional hash algorithm ID field is to be used in the BAH, insert the appropriate
algorithm ID value into this field. Similarly, if the optional key ID field is to be
used in the BAH, insert the appropriate key ID value into this field. Insert the
correct value into the BAH length field.

— Calculate the hash over the entire bundle except for the payload field of the
Bundle Payload Header.

— Sign the hash.

— Insert this signed hash into the authentication field of the Bundle Authentication
Header.

4-4

At this point the sending bundle agent has prepared a unique instantiation of the bundle
for each interface on which the bundle needs to be forwarded to reach its multiple destination
addresses. The PSHs on all instantiations of the bundle are identical, but the BAHs on each
instantiation of the bundle are unique to the interface, because their signed hash values
reflect which destination addresses are and are not relevant on each interface.

4.3 Receiving Bundle Agent Processing

Upon receipt of an authenticated, encrypted, multidestination bundle from a sending
bundle agent, a receiving bundle agent must authenticate the bundle, determine on which
interfaces the bundle should be forwarded, and (if necessary) prepare interface-specific
BAHs to replace the BAH on the received bundle before forwarding the bundle on each of
those interfaces. Specifically, the receiving bundle agent performs the following steps to
authenticate the received bundle:

1. If the bundle authenticity parameter of the Bundle.Indication Primitive that was used
to deliver this bundle to the bundle agent asserted the authenticity of the bundle, the
bundle is authenticated and no further steps are required.

2. If the bundle authenticity parameter of the Bundle.Indication Primitive that was used
to deliver this bundle to the bundle agent did not assert the authenticity of the bundle,
but the bundle does not include a BAH, the bundle must be discarded and processed
no further; in this case, a bundle status report indicating the authentication failure
may be generated, destined for the receiving bundle agent’s own administration
endpoint.

3. If the received bundle includes a key ID field in the BAH, use it to look up the
appropriate key to use; else if the received bundle includes a non-zero-valued sender
endpoint ID field, use it to look up the sending bundle agent’s public key; else use the
sending bundle agent’s endpoint ID, which was passed up as a parameter of the
Bundle.Indication Primitive, to look up the sending bundle agent’s public key.

4. Use the key derived in step 3 to decrypt the signed hash value received in the
authentication information field of the Bundle Authentication Header.

5. Determine which hash algorithm to use.
6. Zero out the authentication field of the BAH.

7. Calculate the hash over the entire bundle except for the payload field of the Bundle
Payload Header.

8. Verify that the decrypted signed hash value received is equivalent to the hash value
computed. If the values are not equal, the bundle has failed to authenticate and the
bundle must be discarded and processed no further; in this case, a bundle status report
indicating the authentication failure may be generated, destined for the receiving

4-5

bundle agent’s own administration endpoint. If the values are equal, the bundle
(excluding the payload) has been authenticated. The sender of the bundle has been
verified to have been the endpoint address claimed, and the bundle (excluding the
payload) has been verified not to have been modified since being sent from the
previous hop sender.

Next, the receiving bundle agent must consider each destination address remaining in the
bundle. These are the destination addresses to which the bundle must be forwarded by the
bundle agent.

For each of the destination addresses included in the bundle, the bundle agent consults its
routing service to determine on what interface the bundle should be forwarded in order to
reach that destination address. The bundle agent will then know which interface(s) on which
it must forward the bundle, as well as which destination addresses are intended to be reached
from each of these interfaces. The bundle agent must then prepare interface-specific BAHs
for the bundle to be forwarded on each interface. The steps that must be taken are very
similar to those that were already described in the Source/Sending Bundle Agent Processing
section, with variations to account for the fact that this bundle was received from a previous-
hop bundle agent rather than having just been assembled. Specifically, for each interface on
which a bundle needs to be forwarded, the bundle agent performs the following on the
instantiation of the bundle that will be forwarded on that interface:

1. Deletes all destination addresses in the bundle that are not intended to be reached
from this interface.

2. If the bundle will not be protected with a BAH on the next hop from this interface,
then no BAH hash has to be calculated for this instantiation of the bundle because it
will not have a BAH. Therefore, if the bundle that was received includes a BAH,
remove it. If the received bundle did not include a BAH, BAH-related processing is
finished for this interface.

3. [If the bundle will be protected with a BAH on the next hop from this interface, then a
BAH hash will have to be calculated (per the steps below) and the instantiation of the
bundle to be sent over this interface will need to have a BAH. If the bundle that was
received included a BAH, proceed to the next step. If the received bundle did not
include a BAH, then add one to the bundle.

4. 1If the received bundle is being transformed into a bundle fragment, this fragmentation
must be accomplished (by insertion of a fragment header with offset zero as well as
by changing the payload length field) before the rest of the steps for creating the new
BAH listed below.

5. Zero-out the value of the authentication information field of the BAH.

4-6

6. Populate all other fields of the BAH with appropriate values. For example, if the
optional hash algorithm ID field is to be used in the BAH, insert the appropriate
algorithm ID value into this field. Similarly, if the optional key ID field is to be used
in the BAH, insert the appropriate key ID value into this field. Insert the correct value
into the BAH length field.

7. Insert the bundle agent’s endpoint ID into the sender endpoint ID field, if this field is
to have a non-zero value on this link.

8. Calculate the hash over the entire bundle except for the payload field of the Bundle
Payload Header.

9. Insert this signed hash into the authentication field of the Bundle Authentication
Header.

At this point, the receiving bundle agent has authenticated the bundle it received and
prepared separate instantiations of it for forwarding on all appropriate interfaces, thereby
preparing itself to become a sending bundle agent. The PSHs on all instantiations of the
bundle are identical, but each instantiation of the bundle may or may not have a BAH and, if
present, the BAH on a given instantiation of a bundle is unique to the interface on which that
instantiation of the bundle is to be forwarded, because the signed hash value in the BAH of
each bundle instantiation reflects which destination addresses the bundle is intended to reach
from that particular interface.

4.4 Security Policy Router Processing

Upon receipt of a multidestination bundle from a sending bundle agent, a receiving
security policy router must have its bundle agent verify the bundle’s BAH hash value to
authenticate the bundle, as described in the previous section; reassemble the bundle, if
necessary; verify the value of the security information field of the PSH and optionally detect
and discard replays; and enforce the router’s local access control policy for this bundle that
may restrict the rate at which this bundle is allowed to be forwarded, or even whether it is
allowed to be forwarded on particular interfaces. If the bundle is to be forwarded on one or
more interfaces, the security policy router must, as described in the previous section,
determine on which interfaces the bundle should be forwarded, and (if necessary) prepare
interface-specific BAHs before forwarding the bundle on each of those interfaces.

In order to perform source endpoint authentication and ensure bundle integrity using the
PSH, the security policy node must be in possession of all parts of the original bundle
(header and all payload) over which the PSH hash was calculated. If the bundle was
fragmented, the fragments must now be reassembled into the original bundle and all
fragment headers discarded. If not all fragments are received at this node, making reassembly
impossible, then source authentication cannot be performed. After the entire bundle has been

4-7

received (and reassembled, if necessary), the bundle agent at the security policy node would
perform the following steps to authenticate the signed hash information in the PSH:

1.

10.

I11.

12.

If the PSH of the received bundle includes an optional “key ID” field, use it to look
up the appropriate key to use.

If the PSH of the received bundle does not include an optional “key ID” field, use the
value in the source field to look up the appropriate public key to use.

Apply the key to the signed hash in the security information field of the Payload
Security Header, thereby decrypting it into the original unsigned hash value.

If there is a destination address hash algorithm ID field in the bundle, use it to
determine what hash algorithm to use for the next step.

For each destination address remaining in the bundle, calculate the hash value of that
destination address and verify that this calculated value is equivalent to the
destination address’s corresponding hashed value as found in the bundle. If any of
these hash values is not correct, the bundle must be discarded and a bundle status
report indicating the failure may be generated, destined for the receiving bundle
agent’s own administration endpoint.

If there is a hash algorithm ID field in the PSH, use it to determine what hash
algorithm to use for the next step.

Assign the Custodial field, the security information field of the Payload Security
Header, and the sender endpoint ID field zeroed-out values. (All mutable fields
should be zeroed-out.)

If there is a BAH in the bundle, remove it.

Calculate the hash value of the entire bundle except for the destination addresses (and
the BAH, which has already been removed per the previous step).

Compare the calculated hash value with the (now unsigned) hash value received in
the PSH.

If the values are not equal, the bundle must be discarded and a bundle status report
indicating the failure may be generated, destined for the receiving bundle agent’s own
administration endpoint.

If the values are equal, the bundle agent may optionally compare the (source,
timestamp) pair values of the bundle with the local list of such values of already-
received bundles. If the pair value is a duplicate, the bundle must be discarded and a
bundle status report indicating the failure may be generated, destined for the
receiving bundle agent’s own administration endpoint. If the pair value is unique, the
pair must be added to the local list. At this point, the bundle has been authenticated:

4-8

the identity of its sender has been verified, and it has been determined not to have
been modified since being sent from the source.

13. The bundle agent would determine on which of possibly multiple interfaces the
bundle would need to be forwarded to reach its destinations.

14. The security policy router now imposes its own access control policy on the bundle
using the following steps: based on the source of the bundle in combination with local
access control policy unique to each interface, the bundle agent may enforce policy
that affects the rate at which this bundle is forwarded, the COS options that the
bundle is allowed to use, or even whether or not the bundle is forwarded on each
interface. If the bundle is not forwarded as a result of the enforcement of the access
control policy, a bundle status report indicating the failure may be generated, destined
for the receiving bundle agent’s own administration endpoint ID.

4.5 Destination Bundle Agent Processing

Upon receipt of a bundle at a destination bundle agent, the bundle agent would
authenticate the bundle using the bundle’s BAH, if one is present, as described previously in
the “Receiving Bundle Agent Processing” section; authenticate the signed hash information
in the PSH, if one is present, and check for replays if requested by one or more of the
registered destinations, as described above in the “Security Policy Router Processing”
section. However, the destination bundle agent would not, as described in that section,
enforce any sort of local access control policy. The destination bundle agent would invoke
the Data.Indication primitive at all DTN applications that had registered to receive this
bundle, thereby delivering the bundle’s application data unit to the destination application(s).
The following security-related parameters would have to be available for inclusion in the
Data.Indication primitive to support decryption of the application data unit by the receiving
application:

— encrypted application data unit;

— an indication of which symmetric encryption algorithm has been used to provide
confidentiality for the application data unit

— an indication of which asymmetric encryption algorithm has been used to provide
confidentiality for the symmetric CEKSs (if the payload was encrypted), and

— the keyID corresponding to the public/private key pair used to encrypt the CEK
for this particular destination

— the encrypted CEK associated with this particular destination.

4-9

4.6 Destination Application Processing

Upon receipt of a Data.Indication primitive from its local bundle agent indicating the

receipt of an encrypted application data unit, the destination application would have to
perform the following steps:

1. Use the encryption keyID (if present) and the asymmetric encryption algorithm ID (if
present) to decrypt the encrypted CEK received (if present).

2. Use the decrypted CEK and the symmetric encryption algorithm ID (if present) to
decrypt the application data unit received.

4-10

Section 5

Summary of Security Ramifications of Multidestination
Delivery in DTN

Security Service

How a multidestination delivery option would affect the security service

Perimeter Access
Control

If the access control policy at any source bundle agent takes destination
addresses into consideration, the access control policy would need to be
amended to account for the possibility that a single bundle may contain
two destination addresses that are intended to be treated differently from
each other.

Hop-by-hop Data
Integrity and

Routers at which a bundle’s path forks will need to calculate separate
BAH hash values for each interface on which the bundle will be

Endpoint forwarded.

Authentication

Lack of Replay | The risk posed by replays is multiplied with the use of multidestination
Detection at delivery, because a single replayed multidestination packet can affect
Arbitrary many more DTN links than can a single replayed unicast packet.

Routers

Application Data | If distribution of the content encryption key (CEK) to all destinations is
Confidentiality performed out of band, no modifications would be required to the Bundle

Protocol to support application data confidentiality.

Modifications would be required to distribute the CEK and the following
optional related information as part of the bundle:

e ID of the symmetric encryption algorithm used for confidentiality
(the algorithm with which the CEK is used)

e D of the asymmetric encryption algorithm used to encrypt the
CEK

e For each destination endpoint:
— ID of the public/private key pair used to encrypt the CEK
— The result of encrypting the CEK with the public key

End-to-End Data
Integrity and
Endpoint

The following new fields and new mechanisms must be defined to enable
a single PSH hash to provide end-to-end security for the bundle, yet
enable destination addresses to be stripped from the bundle as they are no

5-1

Authentication

longer needed on a certain path of the delivery tree:

e FEach destination address in the bundle must have an associated
field that contains a hash of that destination address.

e The PSH hash should be calculated over the entire bundle except
for

— The BAH
— All mutable fields, such as the custodian field and sender ficld
— All destination endpoint addresses

e To validate the hash, a receiving node would first ensure that each
destination address present in the bundle has a corresponding
hash value which is correct, and then compare the received (and
decrypted) PSH hash value with the PSH hash value as calculated
above. If the receiving node is a destination, it must also ensure
that its own address is present in the bundle.

Optional Replay | No change is required. The (source, time stamp) pair is still used to
Detection at uniquely identify bundles. If two bundles with the same (source, time
Destination stamp) pair are received at a destination host or security policy router at
Hosts and which optional replay detection has been enabled, then the second such
Security Policy bundle received should be discarded as a duplicate.
Routers
Security Policy Security policy routers would validate the PSH hash as described in the
Routers end-to-end integrity and endpoint authentication item above. Assuming
that the security policy router is not a destination, however, it would not
need to ensure that its own address is listed as a destination in the bundle.
Avoiding Unnecessary addresses will be stripped off at each branch in the bundle’s
delivery loops delivery tree.

5-2

Section 6

Comparing the security ramifications of DTN
multidestination delivery with those of “real” DTN
multicast

This paper has examined the security ramifications of enabling a single bundle to be
delivered to multiple destination endpoint addresses. In actuality, the DTN Bundle Protocol
does not currently have any such provisions for enabling bundles to be delivered to multiple
destinations. Ideally, it would be desirable to define a “real” DTN multicast capability that
would be analogous to the Internet’s multicast capability. Such a capability would involve
the use of special multicast addresses such that a single such multicast address could be used
to denote a group of destination endpoint addresses instead of requiring the source of each
bundle to individually specify each destination address in each bundle. Accompanying group
management protocols would need to be defined whereby destination endpoints could join
and leave groups, and associated security services would need to be defined to distribute
cryptographic keying information to group members, remove members from a multicast
group, and re-key the remaining group members, when necessary. In addition, a multicast
routing protocol would be required to enable DTN routers to determine on what interfaces a
received multicast DTN bundle should be forwarded.

Given the current absence of such a “real” multicast capability, this paper has explored
the possibility of using a modified version of multicast in which a source is presumed to
know each destination address to which it needs to transmit a bundle. While this capability is
not as robust as a “real” multicast capability would be, it could still provide important
bandwidth-saving benefits. In this section, we will examine how the security ramifications of
the DTN multidestination delivery mechanism that we have already explored compare with
such a “real” multicast capability.

6.1 Avoiding Delivery Loops

If “real” multicast is used, then to avoid multicast routing and delivery loops, either the
multicast routing protocols used must be inherently loop free or each multicast router must
have the capability to detect and discard duplicates. Without some such provision, a
multicast routing loop could have detrimental affects on a large portion of the DTN network.
The mechanisms of marking or stripping addresses that we have defined for use with
multidestination delivery are not applicable to “real” DTN multicast as a means of avoiding
the receipt of duplicate bundles because there is only a single multicast address in the “real”
multicast bundle.

6-1

6.2 Perimeter Access Control

DTN access control at the source host would be no different for multicast bundles as
compared to unicast bundles. If the treatment that a host should accord to a bundle is
dependent on the destination address of the bundle, then the fact that some addresses are
unicast addresses while others are multicast addresses may affect the access control policy
itself, but not the way that it is enforced.

6.3 Hop-by-Hop Bundle Integrity and Endpoint Authentication

Under “real” multicast, the provision of hop-by-hop bundle integrity and endpoint
authentication is simplified somewhat over its provision under multidestination delivery. At
each router at which a bundle’s path forks, the use of a single, uniform, multicast address in
each of the instantiations of that bundle that are forwarded on different interfaces enables the
forwarding router to calculate a single bundle BAH hash that is applicable to all of the
bundles on all of the outgoing interfaces, as opposed to the unique BAH hash that each router
must calculate on each outgoing interface in the case in which multidestination delivery is
used. If digital signatures are used to protect the BAH hash, then each BAH hash can be
encrypted with the same private key of the forwarding router, meaning that no matter how
many paths into which a given bundle’s path may fork at a particular router, that router will
only be required to calculate one signed BAH hash, which will be applicable to all bundles
going out all interfaces. If the BAH is instead protected using a message authentication code,
then the message authentication code, which involves use of a symmetric cryptographic
algorithm between the forwarding router and its next hop router, will require the forwarding
router to calculate a unique message authentication code for each outgoing interface,
assuming that a router shares a unique secret key with each of its neighbors rather than shares
the same secret key with all of its neighbors.

6.4 Confidentiality and Key Management and Distribution

Under “real” multicast, in which a multicast group with its own destination address
exists, key distribution and management can be performed in conjunction with the
procedures that are used to set up the group and add and remove members. Assuming that all
members of the group are made privy to a secret, symmetric key upon being joined to the
group, this group key can be used to encrypt the CEK that is used to protect the
confidentiality of the payload of any bundle. Using this mechanism, a source wanting to send
confidential application data to a multicast group would encrypt the data using whatever
algorithm and key desired, and then encrypt this CEK used with the multicast group’s key.
The bundle, therefore, would have as part of its content the encrypted application payload,
the ID of the encryption algorithm used to encrypt the payload, the ID of the encryption
algorithm used to encrypt the CEK, and the encrypted CEK itself. The multicast bundle,
however, would only have to include a single encrypted CEK that each of the recipients in
the multicast group would be able to decrypt using a secret key that is shared by all group

6-2

members, as opposed to having to include one encrypted CEK per destination, as is required
in the multidestination case.

Key revocation becomes a little trickier. In the case of multidestination delivery, a key
can be revoked from a particular destination simply by replacing that key with a new key and
dropping the particular destination from the list of recipients. In the real multicast case, some
entity must be controlling membership to the multicast group so that the destination can be
removed from the group and a new, replacement, key distributed to the remaining group
members.

The area of key management and distribution, however, is one in which the comparison
between “real” multicast and multidestination delivery breaks down. Real multicast implies
the existence of a mechanism for creating groups, joining and removing members from those
groups, and enabling a single destination address to denote all group members.
Multidestination delivery does not include any such mechanisms. Instead, it assumes that a
source will have knowledge of all of the destination addresses to which it needs to send a
particular bundle without specifying by what means the source is expected to obtain this
information. The process by which a source is to be expected to come into possession of the
addresses of each of the appropriate destinations to which to direct a bundle would need to be
defined, and the resulting mechanism would probably be very similar to the capabilities that
are needed to manage the membership of a “real” multicast group. In any case, these
mechanisms would not require changes to be made to the Bundle Protocol.

Using both “real” multicast and multidestination delivery, if the content encryption key
(CEK)) is distributed to all destinations outside of the Bundle Protocol, no modifications
would be required to the Bundle Protocol to support application layer confidentiality using
either method of delivery.

6.5 End-to-End Bundle Integrity and Endpoint Authentication

In contrast with multidestination delivery, if “real” multicast is performed, no
modifications are required to the Bundle Protocol to enable the signed hash in the PSH to
provide end-to-end data integrity and endpoint authentication. The PSH hash would be
calculated over the destination address as it is in the unicast case, and the fact that the address
happens to be a multicast one rather than a unicast one is not of any import. When received
by each destination in the multicast group, the value in the PSH hash would be authenticated
as it is for unicast, thereby authenticating the multicast group address as the intended
destination, assuming each member of a multicast group is aware of its membership in that
group and of that group’s address. Furthermore, because a single group address is used
instead of multiple individual destination addresses, there is no requirement that addresses be
stripped from the bundle to save bandwidth or to avoid multicast delivery loops as is required
when multidestination delivery is performed. There is a requirement, however, that whatever
algorithm is being used to perform multicast routing be inherently loop-free.

6-3

6.6 Optional Replay Detection at Destination Hosts and Security Policy
Routers

There would be no change required to the bundle protocol to enable a security policy
router or a destination host to optionally detect and discard duplicate bundles received. The
(source, time stamp) pair would still be used to uniquely identify bundles and if two bundles
with the same (source, time stamp) pair values were to be received and optional replay
detection has been enabled, the second such bundle would be discarded, whether the address
was that of a unicast destination, multiple destinations, or a single multicast group
destination.

6.7 Security Policy Router Processing

In contrast with multidestination delivery, no changes would be required to the way that
the security policy router validates the PSH hash in a multicast bundle to authenticate the
bundle before considering whether or not it should be forwarded.

6.8 Bandwidth Savings

We have already seen that the bandwidth savings benefit provided by multidestination
delivery depends on the payload being distributed being large, and that the bandwidth
savings benefit increases with the size of the payload. The same is true for “real” multicast.

We have also seen that multidestination delivery uses about the same amount of
bandwidth as unicast delivery to carry the endpoint addresses of all destinations in the bundle
header or headers. In the real multicast case, much less bandwidth would be used to carry the
destination address in the multicast bundle, because a single address would be used to denote
all destinations. So, whereas a multidestination bundle addressed to 100 destinations would
require that the region and endpoint IDs that uniquely identify each of those destinations be
present in the bundle upon its initiation, a real multicast bundle addressed to a group of the
same 100 destinations would require only a single destination address be present in the
bundle. This bandwidth savings is obviously significant. However, it is also misleading,
because additional bandwidth would be required by the group management protocols that
would be required to set up the multicast address and associate it with each of the group’s
members. In fact, the group management protocols required to join all destinations to the
group would probably require more bandwidth than the cumulative amount that would be
used by the presence of all of the destination addresses in the multidestination bundle. If
there are many transmissions to the group once it is set up, however, the bandwidth saved by
using a multicast address in the multicast bundle versus individual unicast addresses in the
multidestination bundle could be significant, and would obviously increase with each
additional bundle transmitted.

6-4

6.9 Custodianship and Bandwidth-Efficient Multidestination
Retransmission

When the multidestination delivery option is used in combination with custodial delivery,
for purposes of custodianship, a bundle is no longer uniquely identified by its (source,
timestamp) pair value. When a bundle is forwarded from a DTN router onto two different
interfaces, even though the (source, timestamp) values of the bundles that are forwarded are
identical, conceptually, two different bundles are instantiated. From the point at which the
bundle’s path diverges, the two bundle instantiations need to be accounted for separately for
custodial purposes. The relevant destination addresses for a given instantiation of a bundle,
along with the bundle’s (source, timestamp) pair, are what uniquely define each instantiation
of a multidestination bundle. (Assuming destination address stripping is used, the relevant
destination addresses are simply those that remain in the bundle instantiation.) Therefore, to
identify instantiations of a multidestination bundle that need to be accounted for individually
for custodial purposes, the (source, timestamp, destination addresses) triple values are
necessary. In order to be able to alert a custodian regarding which destination addresses
failed to received a bundle so that the custodian can take advantage of the ability to identify
individual instantiations of the bundle and re-forward it only to the required destinations, the
format of the Custodian Signal administrative payload would have to be augmented to
include fields for holding the destination endpoint addresses of the bundle about which the
custodial signal is reporting. Upon receipt of a “failed” custodial signal, the custodian bundle
agent would be able to use the destination address information in the custodial signal to
know which destination addresses to include in the bundle that it re-forwards. Because the
bundle’s path may have branched one or more times after having been forwarded from the
custodian, with destination addresses having been stripped off at each branch, the inclusion
of only the particular destination addresses to which delivery was not successful enables the
custodian to re-forward the bundle in a very bandwidth-efficient manner. Only the paths of
the original multidestination delivery tree that are required for the bundle to reach the
destination addresses listed in the custodial signal will be affected by the re-forwarding of the
bundle.

As a concrete example, consider the DTN network topology depicted in figure 6-1. A
multidestination bundle is sent from a source application to five destinations: D1, D2, D3,
D4, and D5 with a class of service requesting custody reporting and the current custodian
identified as the source bundle agent. When the bundle is transmitted from the source bundle
agent to the next-hop router, the bundle contains all five of these destination addresses. This
receiving router, which is labeled “Custodian A” elects to take custody of the bundle, so it
generates a “Succeeded” custodial signal for the bundle destined for the agent administration
endpoint of the source bundle agent and it modifies the current custodian ID of the bundle
contain the value of its own (Custodian A’s) administration endpoint ID.

When custodian A forwards the bundle, the bundle continues to contain all five of the
destination addresses. Router R1 receives the bundle and elects not to take custody of it. R1
determines that the bundle needs to be forwarded on two different interfaces in order to reach
all of its destinations. It forwards one instantiation of the bundle, which contains destination
addresses D1 and D2, to router R2, and a second instantiation of the bundle, which contains
destination addresses D3, D4, and D5 to router R5.

Upon receipt of the bundle, R2 elects not to take custody of it and forwards one
instantiation of it, which contains only destination address D1, to R3 and another
instantiation of it, which contains only destination address D2, to R4. Similarly, upon receipt
of the bundle, R5 elects not to take custody of it and forwards it on to R6, which also elects
not to take custody of it. R6 forwards one instantiation of the bundle, which contains
destination addresses D3 and D4 to R7, and another instantiation of the bundle, which
contains only address D5, to RS.

R3, which elects not to take custody of the bundle it receives, forwards it to D1 and the
bundle agent for D1 generates a “Suceeded” custodial signal for the bundle with destination
address D1 in the new custodial signal administrative payload destination address field. R4,
which elects not to take custody of the bundle it receives, forwards it to D2 and the bundle
agent for D2 generates a “Succeeded” custodial signal for the bundle with destination
address D2 in the new custodial signal administrative payload destination address field; R7,
which elects not to take custody of the bundle it receives, forwards one instantiation of it,
which contains only address D3, to D3, and another instantiation of it, which contains only
address D4, to D4; the bundle agent for D3 generates a “Suceeded” custodial signal for the
bundle with destination address D3 in the new custodial signal administrative payload
destination address field and the bundle agent for D4 generates a “Suceeded” custodial signal
for the bundle with destination address D4 in the new custodial signal administrative payload
destination address field. R8, which elects not to take custody of the bundle it receives,
forwards it to DS, and the bundle agent for D5 generates a “Suceeded” custodial signal for
the bundle with destination address D5 in the new custodial signal administrative payload
destination address field. Each of the “Succeded” custodial signals that were generated by
each of the five destination host bundle agents is received at the administrative endpoint for
Custodian A, alerting Custodian A to the fact that custody transfer for all instantiations of the
bundle has been completed. This describes what happens when the multidestination delivery
of a bundle from the source to the five destinations completes without mishap.

Now let’s consider what happens when the delivery does not occur as smoothly. Suppose
that the above delivery scenario occurs, except that router R6 elects to discard the bundle
altogether due to some sort of failure. In this case, R6 would generate a “Failed” custodial
signal for the bundle with destination addresses D3, D4, and D5 in the new custodial signal
administrative payload destination address field. Upon receipt of this “Failed” custodial

6-6

signal, Custodian A could re-forward the original bundle, except instead of including all of

X

>

X

A A A
(W]
b
R3
()]
A 3
Source
R2 ty
-
X R4
+44
—r 44 i)
I11 L7 ==
N/ =
-

.t Rt

Custodian A

7~
i
iy

i

X

S

D3

i< (X

RS R7

D4

R6 qg

R8

e X

D5

Figure 6-1. Custodianship and Bandwidth-Efficient Retransmission

its original destination addresses, it would only include the destination addresses, D3, D4,
and D35, that had appeared in the “Failed” custodial signal that it received. None of the other
branches on the original multidestination delivery tree would be affected by the re-forwarded

bundle.

When multicast is used, on the other hand, there is no easy available mechanism for
identifying individual instantiations of a multicast bundle that may need to be accounted for

6-7

individually for custodial purposes. A single multicast address is used to denote all
destinations, and the multicast bundle on one branch of a delivery tree is not distinguishable
from a different instantiation of that multicast bundle on a different branch. If multicast is
used, there is no point in augmenting the Custodial Signal administrative payload format to
include the destination (multicast) address, because this address does not help at all to
distinguish among the various instantiations of a given bundle on the multicast delivery tree.
The inability to uniquely identify individual instantiations of the multicast bundle, however,
can result in wasting a significant amount of bandwidth during custodial retransmission.

Upon receipt of a “failed” custodial signal, the custodian bundle agent for a multicast
bundle would simply include the same multicast destination address in the bundle that it re-
forwards. A simple retransmission of a multicast bundle on a given interface would result in
all downstream paths of the delivery tree receiving the retransmitted bundle. The bundle
would be re-forwarded on all the branches of the multicast delivery tree indiscriminately,
whether it had already been received successfully on some paths or not, because there is no
mechanism for distinguishing the branches along which the bundle may have already been
received successfully from those along which delivery has failed. There would be no way of
limiting the path of the retransmitted bundle to only that single branch of the delivery tree on
which the retransmission is required. In terms of the example discussed above, upon receipt
of the “Failed” custodial signal generated by R6’s bundle agent, if Custodian A wishes to re-
forward the bundle so that it can be received by R6 and then forwarded on to its intended
destinations, it must re-forward the bundle to the multicast destination address, which would
cause the bundle to travel along all paths of the multicast tree, to all destinations, rather than
simply targeting those destinations beyond R6.

This inability to forward with discrimination could potentially result in a significant
amount of wasted bandwidth on bundle retransmissions. In this respect of enabling bundle
instantiations to be identified uniquely, the multiple destination addresses found in a
multidestination bundle are advantageous over the single multicast destination address found
in a multicast bundle. If multicast delivery is ever fully developed and defined for use in
DTN, the ability to retransmit multicast bundles bandwidth-efficiently would require the
definition of some sort of mechanism for identifying unique instantiations of multicast
bundles so that these instantiations can be accounted for individually for custodial purposes.

6.10 Multidestination versus Multicast Table Summary

The following table summarizes the differences between the security ramifications of
using multidestination delivery versus using “real” multicast.

Table Summarizing the Ramifications of Securing a “real” multicast
bundle versus a bundle addressed to multiple destinations

Security
Service

How a multidestination delivery
option would affect the security
service

How a “real” multicast capability
would affect the security service

Access Control

If the access control policy at any
source bundle agent takes destination
addresses into consideration, the
access control policy would need to
be amended to account for the
possibility that a single bundle may
contain two destination addresses that
are intended to be treated differently
from each other.

No impact.

Hop-by-hop Routers at which a bundle’s path If digital signatures are used to
Data Integrity | branches will need to calculate protect the BAH hash, a router
and Endpoint separate BAH hash values for each need only calculate a single hash
Authentication | interface on which the bundle will be | per received bundle, regardless of
forwarded. the number of interfaces on which
the bundle will be forwarded. If
message authentication codes are
used to protect the hash, a router
must calculate one hash per
interface on which the bundle will
be forwarded, because it shares a
unique symmetric key with each
neighboring router.
Lack of Replay | The risk posed by replays increases As with multidestination delivery,
Detection at dramatically with the use of the risk posed by replays increases
Arbitrary multidestination delivery. dramatically with the use of
Routers multidestination delivery.
Application If distribution of the content If distribution of the content
Data encryption key (CEK) to all encryption key (CEK) to all
Confidentiality | destinations is performed out of band, | destinations is performed out of

no modifications would be required
to the Bundle Protocol to support
application data confidentiality.
However, such distribution is not
really feasible.

Modifications would be required to

band or as part of a separate group
key management and distribution
protocol, no modifications would
be required to the Bundle Protocol
to support application data
confidentiality.

6-9

distribute the CEK and the following
optional related information as part of
the multidestination delivery bundle:

e ID of the symmetric
encryption algorithm used for
confidentiality (the algorithm
with which the CEK is used)

e ID of the asymmetric
encryption algorithm used to
encrypt the CEK

e For each destination endpoint:

— ID of the key used to
encrypt the CEK

— The result of encrypting
the CEK with that key

The same modifications as are
required to support
multidestination delivery would
be required to support “real”
multicast delivery, except that the
ID of the key used to encrypt the
CEK and the result of encrypting
the CEK with that key need only
be included once in the bundle
and it would be applicable to all
multicast group member
destinations. There is no need to
include a separate key ID and
encrypted CEK for each multicast
destination. So, real multicast
requires two additional fields
whereas multidestination delivery
requires 2 additional fields per
destination.

End-to-End
Data Integrity
and Endpoint
Authentication

New fields and new mechanisms
must be defined to enable a single
PSH hash to provide end-to-end
security for the bundle, yet enable
destination addresses to be stripped
from the bundle as they are no longer
needed on a certain path of the
delivery tree.

e Fach destination address in
the bundle must have an
associated field that contains a
hash of that destination
address.

e The PSH hash should be
calculated over the entire
bundle except for

— The BAH

— All mutable fields, such as
the custodian field and the

No impact. The PSH hash value
would be calculated and checked
the same way that it is now.

6-10

sender field

— All destination endpoint
addresses

To validate the hash, a receiving node
would first ensure that every
destination address present in the
bundle has a corresponding hash
value which is correct, and then
compare the received PSH hash value
with the PSH hash value as above.

Optional No change is required. The (source, As with multidestination delivery,
Replay time stamp) pair value is still used to | no change is required.
Detection at uniquely identify bundles.
Destination
Hosts and
Security Policy
Routers
Security Policy | To validate the PSH hash, a security | No impact. The security policy
Routers policy router would first ensure that | router would calculate and check
each destination address present in the PSH hash value in the same
the bundle has a corresponding hash | way that it is now.
value which is correct, and then
compare the received PSH hash value
with the PSH hash value as calculated
to include hashed destination
addresses, but not real destination
addresses (as described in the end-to-
end integrity and endpoint
authentication item above).
Avoiding Addresses must be stripped off at No impact. However, the
delivery loops | each fork in the bundle’s delivery multicast routing protocol would
tree. need to be inherently loop-free.
Bandwidth Because a bundle contains every Because a bundle contains only a
Savings destination address to which it will be | single multicast address, with

delivered, with respect to the amount
of bandwidth required to carry
destination information,
multidestination delivery is about the

respect to the amount of
bandwidth required to carry
destination information, multicast
enjoys a huge savings over

6-11

same as unicast delivery, with some
savings being incurred in
multidestination delivery by using the
data dictionary for addresses that
share the same region IDs.

Slightly more bandwidth is required
to support optional application data
confidentiality in the multidestination
case as compared with the real
multicast case. This bandwidth
amounts to the bits in one encrypted
CEK field per destination address in
the bundle.

multidestination delivery.
However, multicast also requires
bandwidth to be used by a group
management protocol needed to
set up the group and join and
resign members from the group,
so the savings is not as large as it
initially might seem. This is a one-
time initial setup cost, plus some
cost to maintain the group
membership information. If the
group is used infrequently, this
cost is probably comparable to the
bandwidth cost of including the
destination addresses in the
bundle, as occurs in the
multidestination delivery case. If
the group is used frequently,
however, the savings can be
significant.

Custodianship

The (source, timestamp, relevant
destination addresses) triple values
can be used to uniquely identify
instantiations of a multidestination
bundle that need to be accounted for
individually for custodial purposes.
Amending the custodian signal
administrative payload format to
include the destination addresses
found in the bundle would enable the
custodian to re-forward the bundle
bandwidth-efficiently, so that only
the particular branch of the delivery
tree requiring the retransmission
would receive the retransmitted
bundle.

Individual instantiations of a
multicast bundle are not uniquely
identifiable. Without a
modification to the bundle
protocol to enable individual
multicast bundle instantiations to
be identified, retransmissions can
be potentially very wasteful of
bandwidth, because all
downstream branches of the
delivery tree will receive
retransmitted bundles, even those
that do not require them.

