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The threat of biological warfare and the emergence of new infectious agents spreading at a global 

scale have highlighted the need for major enhancements to the public health infrastructure. 

Effective confrontation of these urgent crises requires rapid and accurate detection of unusual 

epidemiologic trends, for which our current surveillance capabilities are not adequate. Critical for 

real time surveillance are two components: real-time data and real-time interpretation of data. 

Today, most existing surveillance systems are capable of monitoring and capturing real time data. 

However, the state of practice for detecting temporal and spatial abnormalities in surveillance 

data remains inadequate.   We introduce a locally stationary binomial model of early detection of 

epidemiologic events, applied to real historical data pertaining to the daily number of visits with 

respiratory syndromes to the emergency department (ED). We show that when simulated 

outbreaks are introduced into the respiratory data, our uniformly most powerful detection 

algorithm under a constant false alarm rate is capable of detecting such irregularities in the data 

with high sensitivity, specificity, and in a timely manner.  
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The threat of biological warfare and the emergence of new infectious agents spreading at 

a global scale have accelerated efforts to improve current public health surveillance 

capabilities. According to an estimate by the Centers for Disease Control and Prevention 

(CDC), “as of May 2003, health departments in the United States have initiated 

syndromic surveillance systems in approximately 100 sites throughout the country” (1). 

Today, most existing surveillance systems are capable of monitoring and capturing real-

time data. However, the state of practice for detecting abnormalities in surveillance data 

remains inadequate.   

In the early stages of an outbreak, case fluctuations are highly stochastic. 

Statistical sampling of the infected population by emergency departments leads to a 

different stochastic effect. Not all infected individuals will appear for measurement at a 

specific emergency department. Some will go to private practitioners or other hospitals; 

some will simply not be treated. Such statistical sampling can be shown to be a dominant 

source of the short-term variation, with sampling effects a dominant component of the 

variability over short periods. Both the stochastic nature of an epidemic at its early stages 

and sampling effects should be considered when developing detection techniques. While 

the daily rates may not be accurately predictable due to intrinsic random variation from 

day to day that is difficult to account for, it is conceivable that the underlying dynamics 

producing the daily variations are governed by transient properties that can be tracked to 

detect change within a short time period.  

Transients in biological processes are important for several reasons. First, in 

biological systems it is not always possible to wait for the eventual behavior to emerge. 

Long before the limiting behavior is reached, the system is perturbed by external impacts 
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so that all we observe are transient trajectories. Second, there are many processes that 

lead to the same eventual behavior, rendering the limiting behavior useless for diagnosis. 

Finally, early manifestations of many biological processes—such as those of illnesses 

from exposure to chemical or biological agents—are similar, often resulting in 

misdiagnosis of the disease. Therefore, new and innovative mathematical tools are 

needed to enhance our understanding of the underlying processes governing the transient 

dynamics of such phenomena (2, 3). 

In this paper, we introduce a nonstationary binomial model of transients for 

detecting unusual epidemiologic events, applied to historical data on daily number of 

visits with respiratory syndromes. We show that when simulated outbreaks are introduced 

into the respiratory data, our uniformly most powerful detection algorithm under a 

constant false alarm rate is capable of detecting such irregularities in the data with high 

sensitivity, specificity, and in a timely manner. Throughout this paper, we make the key 

assumptions that the underlying disease processes are highly infectious and manifested 

with non-specific (flu-like) symptoms in patients early in the development. 

 

MATERIALS AND METHODS 

This paper develops and tests a widely applicable technique for detection of temporal 

anomalies to improve surveillance. The technique is verified using data collected from 

the emergency department (ED) of a large, urban, academic pediatric hospital (CH ED) 

from 6/1/1992-5/31/2003. ED chief complaints were used to identify patients with 

infectious respiratory illness based on a triage process using a pre-defined list of 181 

choices. Using a previously validated subset of codes (4), historic time series were 
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developed describing the number of patients in this respiratory syndrome grouping per 

day. Institutional board approval was obtained. 

 

Signal plus noise model   

Our analysis begins with a straightforward model of the number of patients arriving at the 

emergency department each day meeting our syndrome grouping criteria. The number of 

daily visits  is the sum of two components: the number of patients  associated 

with a new outbreak, and the number of background or “noise” patients in the 

syndrome grouping not associated with the new outbreak in question. 

( )Y t ( )S t

( )N t

( ) ( ) ( )Y t S t N t= +  

During periods without new outbreaks, which spans our entire dataset, . 

Figure 1 is a snapshot of part of the time series for the CH ED dataset. Note the strong 

seasonal variation as well as the longer-term trend towards reduced ED visits. Strong 

day-of-the-week dependency is another source of variability in the dataset as illustrated 

by Figure 2. In our study dataset Sundays followed by Saturdays, on average, have the 

highest number of ED visits. 

( ) 0S t =
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Figure 1: Daily Visits to the CH ED, June 1, 1996-May 31, 2000 
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Figure 2: Day-of-the-week variability 

 

Our goal is to identify when a new outbreak has occurred, , in the presence 

of highly variable background noise . We do this through careful characterization 

and de-trending of the weekly and longer time scale variations in the background 

noise . The resulting constant false alarm rate detectors provide a uniformly most 

powerful test for the presence of an outbreak. 

( ) 0S t >

( )N t

( )N t

 

Binomial sampling models   

A straightforward binomial model is developed to describe the time dynamics of , 

the background noise. Consider a catchment of size 

( )N t

( )K t  that constitutes the sample 
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population from which the CH ED patient population is selected. The explicit 

dependence on time allows for a slowly evolving population size. On a particular day , a 

member of the catchment population has a certain probability  of acquiring a 

respiratory infection, and thus experiencing a respiratory syndrome. The infected 

individual will then appear at the CH ED with a probability . In this case, a simple 

model for the number of patients arriving at the CH ED on a particular day is binomial 

t

( )p t

( )q t

  . ( ) ( ( ), ( ) ( ))N t B K t p t q t�

A number of different timescales drive the evolving statistics of . Certainly 

over periods as long as the eleven years in this study the underlying population size

( )N t

( )K t  

may have changed. Demographic attributes, such as an aging population, may cause  

to vary, while time of the year and severity of the flu season will also affect . The 

parameter  may be influenced by changes in health care policies and insurance 

practices. Furthermore, the day of the week variability also impacts the probability of 

arriving at this specific ED given that a respiratory infection has occurred. These 

evolutions, however, are occurring on a slower scale, with a timescale on the order of 

weeks to years.  

( )p t

( )p t

( )q t

 The various model parameters are not separately measurable from the data 

without measurement of many other variables. Therefore, we follow a highly 

nonparametric approach, which provides a robust technique applicable to other datasets 

from different institutions. The actual form of the detectors described below follow from 

applying the central limit theorem (CLT) to the large sample binomial distribution 

for . In this context, the time series is represented as a locally stationary Gaussian 

process with 

( )N t
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( )2 2( ) ~ ( ) ( ) ( ), ( )( ( ) ( ) ( ) ( ) ) .N t Normal K t p t q t K t p t q t p t q t−  

Since , we have 2 2( ) ( ) ( ) ( ) 1p t q t p t q t� �

( ) ~ ( ( ) ( ) ( ), ( ) ( ) ( )).N t Normal K t p t q t K t p t q t      [1] 

We can thus estimate both the mean and variance from the time varying mean ( ) ( ) ( )K t p t q t . 

This application of the CLT greatly reduces the dependency of the final detector 

performance on accuracy of the binomial model. At the same time, the noise is 

characterized by a single parameter, namely the time varying mean, which can be readily 

estimated in real time from the data.  

Our robust algorithm is a three-step procedure applied to the observed 

signal+noise time series Y(t):  

1) adjust for day-of-the week variability  

2) estimate and remove the time-varying mean    

3) apply a matched filter detection algorithm. 

The day-of-the-week adjustment is location-specific but may be easily estimated 

using only several months of data on temporal patterns of the emergency department use. 

Estimating and removing the time-varying mean is motivated by the underlying 

phenomenology. This mean estimate and removal is a real-time process that is not 

location specific. Application of the normal approximation 1 then leads directly to a 

uniformly most powerful detector with a constant false alarm rate (see Hypothesis test for 

detection and Results). 

 Two critical assumptions are made in the detector development. First, the time-

varying mean approximates the time-varying variance, as in approximation [1]. Second, 
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the day-of-the-week adjustment and removal of the time-varying mean results in a white 

process. These are both verified below using the historic dataset.  

 

Day-of-the-week adjustments   

Day-of-the-week adjustments are made by estimating and removing day-of-the-week 

means. Using our historical time series , ( )Y t

 
11 52

1

1( ) ( 7( 1)) , 0,1,2,...6
11 52 t

d Y tτ τ τ
×

=

= + − =
× ∑  

where is the day of the week specific mean. Table 1 lists the resulting day-of-the-

week mean offsets. The resulting time series after removing daily variation is then 

( )d t

( ) ( ) ( )Y t Y t d t′ = − . 

Here  is the obvious periodic correction for day of the week. Next, we 

estimate the time-varying mean in the locally stationary approximation. 

( )d t

 

Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

2 -4 -6 -6 -4 6 13 

Table 1:  Mean Offsets for the Days of the Week 

 

Estimating the slowly varying mean   

The time-varying mean, after removal of daily variation, is estimated through a low-pass 

filter with coefficients  ( )f �

� [ ] [
1 1

0 0

( ) ( ) ( ) ( ) ( ) ( )
L L

N t f Y t f Y t d t
τ τ

]τ τ τ τ
− −

= =

′≈ − = − −∑ ∑ τ−     [2] 
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The most obvious choice is a simple block average, with 1( )f Lτ =  for a window 

of length L. Performance, however, is significantly degraded in this case due to the high 

side lobes associated with this block filter. Since spectral content is the main separating 

feature between rapid onset of outbreaks (with high frequency energy) and the slowly 

varying mean (with low frequency energy), low filter side lobes are important to overall 

performance. We address side lobe concerns, while maintaining the interpretation of a 

time-varying mean estimate, through use of a standard Hamming window for ( )f τ  (5), 

 ( 1) 0.54 0.46cos 2 , 0,1, ... 1
1

f L
L
ττ π τ⎛ ⎞+ = − = −⎜ ⎟−⎝ ⎠

. 

The resulting filter is comparatively long in duration as compared to other low-pass filter 

designs, but the additional averaging contributes to the robustness of the design. 

 Figure 3 shows the original time series  and the time-varying mean estimate ( )Y t

� ( )N t  from equation 3. The time series in Figure 3 is a portion of our CH ED from a 

period with no known outbreaks of concern. Note that the time-varying mean estimate 

captures a great deal of the variability of the original time series. After subtracting out the 

time-varying mean, 

[ ] [
1 1

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
L L

Y t Y t f Y t Y t d t f Y t d t
τ τ

]τ τ τ τ
− −

= =

′ ′= − − = − − − − −∑ ∑% τ . 

This may be rewritten as a high pass filter using the discrete impulse ( )tδ  

[ ][ ] [ ][
1 1

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
L L

Y t f Y t f Y t d t
τ τ

]δ τ τ τ δ τ τ τ τ
− −

= =

′= − − = − − − −∑ ∑% .  [3] 

( )Y t% is the statistic we use for early detection of outbreaks. Note that the filter blocks 

slowly varying components while primarily passing energy associated with the outbreak. 
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This filter detects changes only and therefore is appropriate only for detection of the 

onset of an outbreak. After the outbreak has spread through the population and settled 

closer to a stable point, the filter will remove the contribution from the outbreak in the 

statistic . ( )Y t%
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Figure 3: The Original Time series and the Estimated Non-stationary Mean 

 

Model validation: binomial patient arrivals  

We demonstrate our approach on our CH ED dataset, but the reader should note that our 

technique captures the population health seeking behavior and is generally applicable to 

different datasets from different institutions, which obviates the need to establish its 

validity every time a new dataset is analyzed. The binomial assumption itself is not 
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critical, due to the Central Limit Theorem, but the assumption that the time-varying mean 

approximates the time varying variance, as in approximation [1], is critical. After 

removing the time-varying mean via equation [3], the resulting locally stationary zero 

mean process has a time-varying variance. To develop a detector with constant rate of 

false alarm, we apply the approximation 

( ) �( ) ( )std Y t N t≈% . 

Testing this approximation is complicated because � ( )N t  changes too rapidly to 

allow enough averaging for a high quality estimate. Instead, we sort the values of � ( )N t  in 

ascending order resulting in � ( )  for 1..size(dataset)N i i = . Since the standard deviation 

provides the natural scale for error probabilities, we then estimate ( )( )std Y t% using the 

ensemble of time points with nearest values of � ( )N t . We test this approximation on our 

historic time series. Figure 4 shows the resulting � ( )N i  and estimated ( ( ))std Y t% , using the 

sorted values of � ( )N t . Note that � ( )N t  is a reasonable approximation of ( ( ))std Y t% . This 

approximation is not perfect and would certainly fail any statistical test of fit. However, 

the approximation is based on a simple underlying model, the binomial sampling of 

patients, and as such is highly robust and widely applicable. Use of this approximation 

allows the development of early surveillance approaches without the expensive, arduous, 

and often impossible, task of collecting many years of syndromic-specific data for each 

location. 
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Figure 4: A Comparison of Process Standard Deviation ( )( )std Y t%  and its Binomial 

Estimate � ( )N t  for the CH ED Dataset 

 

Model validation: prewhitening  

In the usual development of matched filter designs, we would derive a prewhitening filter 

to specifically match the spectrum of the data set. This approach requires large historic 

data sets, so we avoid it here. Instead, we demonstrate that our simple locally stationary 

binomial model acts as a prewhitening filter. 

Under a no-outbreak condition, we have developed an approximate distribution 

for the marginal distribution of . We now investigate time dependence. Using a 

centered Hamming window, the normalized autocorrelation in our historic time series is 

( )Y t%
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shown in Figure 5. Note that the time series for  de-correlates in a single day. 

Following the Central Limit Theorem, we model  as normally distributed and 

uncorrelated from time sample to time sample. 

( )Y t%

( )Y t%
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Figure 5: Normalized Autocorrelation of  ( )Y t%

 

Hypothesis test for detection   

We can now develop a uniformly most-powerful detection algorithm for a given class of 

outbreaks. Consider a class of outbreaks of the form 

( ) 0,1, ... ( 1),... 0
( )

0 0
s t t T

S t
t

β = − >⎧
= ⎨ <⎩

β      [4] 

where β  is the class scale factor, ( )s t is the epidemic trajectory, and T  is the detector 

analysis time period. Here the outbreak begins, for convenience, at time , Examples 0t =
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of important trajectories include linear, constant where ( ) 1s t = , for all t, corresponding to 

infections due to environmental toxin exposure or perhaps chemical attack (6), concave 

up exponential functions following classic contagious outbreaks, and concave down 

exponential functions (7). The issue of trajectory choice is discussed in more detail in the 

appendix. The hypothesis testing problem for using  measurements to detect an 

outbreak initiated at time  is then 

T

0t =

0

1

: ( ) ( )
: ( ) ( ) ( ), 0, 0,1, 2, ... ( 1),... .

H Y t N t
H Y t s t N t t Tβ β

=

= + > = −
 

This test is applied as a sliding window, as discussed below. The log-likelihood 

test is then, for a window of length T, using the distribution �( ) (0, ( ))Y t Normal N t% �  and 

independent in time, 

 
�

1
1

0

0

( ) ( )

( )

T

t

H

s t Y t a
N t

H

β
−

>
<

=
∑

%
. 

Note that, for a test of sizeα , the threshold a is a function of many parameters. 

However, we can use monotonicity to also write the decision in terms of another 

threshold  as 'a

 

�

�

1
1

1 2 0

00

1 ( ) ( ) '
( )( )

( )

T

T
t

t

H

s t Y t a
N ts t

HN t

−
>
<−

=

=

∑
∑

%
.       [5] 

The detector in inequality [5] is a matched filter between the de-trended patient 

visit count  and the function ( )Y% �
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0

( )

( )( )
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sN
Nτ

τ

τ

−
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∑
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�

. 

The matched filter provides the optimal detector in the additive white Gaussian 

noise case. We use this fact to motivate the choice of epidemic trajectory ( )s �  below. 

Inequality [5] may also be viewed as comparing the summation to a time varying 

threshold, resulting in the time-varying test shown in Figure 6. 
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Figure 6: A Time-varying Test Statistic 

The quantity on the left hand side of inequality 5 is now, under 0H and within our 

approximation, a standard normal. We choose  so that, for standard normal Z and test 

size 

'a

α , ( ')P Z a .α> =   
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Note that a¢ is independent of the scaling factor β , making the test uniformly 

most powerful over the class in equation 4. This is a critical observation, since this 

property leads to a constant false alarm rate (CFAR) detector (5) over the epidemic class 

in equation [4] (see RESULTS). 

The test statistic in inequality [5] is, under 1H  and within our approximation, also 

normally distributed  

 
�

1 2

0

( ) ,1
( )

T

t

s tNormal
N t

β
−

=

⎛ ⎞
⎜
⎜ ⎟
⎝ ⎠
∑ ⎟ .       [6] 

This allows calculation of an instantaneous probability of detection for an 

outbreak of size β . The reader should note, however, that both false alarm and detection 

events are heavily correlated over short time periods, due to the sliding window form of 

the detector. Note, in particular, that the probability of detection is determined by 

1 2
0

( )
T

t
s t

−

=∑ . Outbreaks with increasing profiles (such as occurs in contagious disease) are 

more difficult to detect rapidly than outbreaks with a more constant profile.  Actual 

performance of the test on experimental time series is analyzed below in the section on 

sensitivity and specificity. 

 Here, we confine our demonstration to linear epidemic trajectories ( )s �  (see 

Appendix for a mathematical justification of linear and exponential epidemic 

trajectories). Exponential or polynomial shapes may also be considered, as appropriate 

for longer windows. Constant or even declining trajectories hold special interest for 

detection of outbreaks due to a constant or one-time toxin exposure. Any targeted 

phenomena that can be captured in a shape class are candidates for a specialized detector. 

However, the highly stochastic nature of the measurements will tend to overwhelm small 
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differences in outbreak trajectory ( )s � . A linearly growing or constant shape will capture 

the generic contagious and non-contagious cases effectively.  

RESULTS 

Sensitivity and specificity  

To address sensitivity and specificity, we randomly embedded linearly growing and 

constant outbreaks of various scale β , with outbreak β *[1,2,3,…] or β *[5,5,5,…], at 

thousands of locations in the CH ED dataset. Probabilities of detection were determined 

using a seven-day window, so an outbreak was considered detected if and only if it was 

detected seven days into the outbreak. (The outbreak continued after the seven days, but 

the detector is causal so this growth had no impact on the detection statistics.) False 

alarms were determined using the historic data with no simulated outbreaks. The detector, 

with its seven-day window, was highly correlated on adjacent days. False alarms, when 

they occurred, tended to persist for more than one day. False alarm events (exceeding 

threshold) occurring within seven days of a false alarm local maximum were classified as 

a single false alarm event. The reader should note, however, that most false alarm rate 

events contained far fewer than seven days above threshold. Our goal was to have two or 

fewer false alarm events per year, which is well within the range adopted in the literature 

(6, 7).  Choosing many different values of in inequality [5] allows us to establish the 

performance of the resulting CFAR detectors as illustrated in Figure 7. 

'a
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(a) linear growth         (b) constant 

Figure 7: Probability of detection versus mean number of false alarm events per year for 

various epidemic sizes (a) β *[1,2,3,…] and (b) β *[5,5,5,…], using a one week window. 

 

As expected, high probabilities of detection ( ) can only be achieved for 

larger sized outbreaks or by accepting a higher number of false alarm events. For 

example, an epidemic with a mean profile of [  over seven days can 

be detected with about 95% probability with on average two false alarm events per year. 

On the other hand, accepting a lower probability of detection of allows detection 

of an epidemic with a mean profile of [ while still maintaining two 

false alarm events per year. A small outbreak with mean profile [  can only 

be detected within one week with  by tolerating 12 false alarm events per year or 

an average of one false alarm event per month.  Note from Figure 7b that outbreaks 

following a constant profile, 

0.95DP >

6,12,18,24,30,36,42,...]

0.7DP >

4,8,12,16,20,24,28,...]

1,2,3,4,5,6,7,...]

0.5DP >

β *[5,5,5,…], are easier to detect.  This is expected from the 

 distribution in [6], since, even though the peak value is smaller, the total signal power 

in the window 

1H

1 2
0

( )
T

t
s t

−

=∑ may be larger. 
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Timeliness of detection 

Figure 8 explores the timeliness of detection by examining different test lengths for (a) 

linear β *[1,2,3,…] and (b) constant β *[5,5,5,…] outbreaks with β =6.  Note that for 

detection window of length  the detector in [5] provides limited outbreak detection 

capability. By tolerating an average of two false alarm events per year over a five-day 

window the linear outbreak can be detected with probability of over 65% ( ), 

while the same linear outbreak can be detected with probability of about 95% if we 

increase the length of the detection window to seven.  Constant size outbreaks are much 

easier to detect very earlier in the outbreak.  Linear growth (with its small initial state) 

provides little accumulation of 

5T <

0.65DP >

1 2
0

( )
T

t
s t

−

=∑ for small T, so the  distribution in [6] shows 

that the detection probability will be small. 

1H
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    (a) linear growth         (b) constant 

 Figure 8: Probability of detection versus mean number of false alarm events per year for 

epidemic sizes (a) 6*[1,2,3,…] and (b) 6*[5,5,5,…] using different test lengths for 

detection window. 

 

DISCUSSION 
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We proposed a non-parametric model of transients in the ED time series pertaining to 

respiratory syndromes. The benefit of the uniformly most powerful approach developed 

here is that the detector with constant false alarm probability is not dependent on the 

epidemic scaling factor β . This is critical, since the parameter β  is dependent on many 

unknown and unobservable quantities.  

 The underlying technique is a simple locally stationary model of daily variations 

which makes the approach robust and widely applicable to different data types including 

non-respiratory or non-contagious disease processes. This is unlike the SEIR models of 

detection (7) that are specifically suited for capturing the underlying contagious 

transmission dynamics of the disease. Furthermore, unlike some time series surveillance 

techniques, including the ARMA and SEIR models (6, 7), that depend on model training 

and parameter estimations for detection, our proposed method does not require large 

historic records of patient visits in order to begin surveillance. Another advantage of the 

proposed method is that the detector is sensitive to the slow growth associated with the 

early stages of exponential shapes of epidemic trajectories that mostly resemble those of 

contagious infectious diseases. Constant epidemic shapes, which more closely model an 

environmental toxin exposure or a chemical attack, are easier to spot due to the early 

clustering effect that may be unavoidable under such circumstances. Constant epidemics 

were adopted by Reis, et al to test an ARMA model of the total ED visits (6).  

 Some of the limitations of the proposed method need to be addressed. One such 

limitation, shared by all surveillance techniques that are based on syndromic data, can be 

viewed as lack of adequate power to provide timely warning. This is evident in Figure 8 

where a longer choice for the detection window provides higher probability of detection. 
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However, this is mostly due to inherent non-specific properties of syndromic data. More 

symptom-specific data are needed to achiever more detection power. Another constraint 

in the model is due to the binomial approximation of the process variance with the locally 

stationary mean. As demonstrated in Figure 4, the approximation is less valid for larger 

values of mean. This can potentially reduce the power of the detector or limit its utility 

when the mean background noise is very large.  

 One critical issue for public health surveillance is the absence of a uniform 

approach for evaluating and comparing surveillance techniques. While additional work in 

developing effective surveillance techniques are needed, it is quite conceivable that 

different detection techniques may perform differently under various outbreak conditions 

or datasets. Some algorithms may be better suited for capturing the early transmission 

dynamics of contagious disease while others respond to aggregate levels of different 

disease processes. Finally, some techniques may be region-specific and sensitive to 

localized clustering of disease incidents in time and space while others detect elevated 

numbers across an entire area. Relative advantages and disadvantages of different 

surveillance techniques cannot be systematically addressed until a uniform evaluation 

approach is adopted.  
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APPENDIX 

Epidemic trajectories   The choice of trajectory ( )s � in equation (4) is a critical issue in 

the development of the detector. Consider a simple stochastic equation 

 . ( 1) ( ) ( ) ( )I n I n I n I nγ δ+ = + ∆ −∆

Here ( )I n represent the proportion of infected individuals at time n; ( )Iγ∆ � is the stochastic 

increments associated with new infections and ( )Iδ∆ � is the stochastic decrements 

associated with removal of the infected. Under almost all circumstances, early in the 

outbreak we would expect the conditional mean of the increments to be proportional to 

the number infected. This follows from the dynamics of individuals spreading the 

infection and recovering independently. In this case, for proportionality constants γ and 

δ , we have 

( ) ( )( ) | ( ) ( ) ( ) | ( ) ( )E I n I n I n E I n I n I nγ δγ δ∆ = ∆ =  

Thus the conditional expected value of the proportion infected at time t n  is m= +
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( ) ( )( ) | ( ) 1 (mE I n m I n I nγ δ+ = + − ) . 

Using the approximation (1 ) 1mx mx+ ≈ +  for , we can rewrite the above equation for 

short time periods as 

1x �

( ) ( )( ) | ( ) ( ) ( )E I n m I n I n mI n γ δ+ = + −  

Note that ( )I n is the proportion of the population who are infected, and thus we 

have 1γ δ− � . A linearization of the dynamics is, not surprisingly, a good approximation 

for short periods during early stages of an outbreak. Finally, application of the result 

lim
1

n
x xe

n n
⎛ ⎞= +⎜ ⎟→ ∞⎝ ⎠

suggests a linear or exponential model of the epidemic trajectory, but in 

this case it is the conditional mean that grows approximately linearly or exponentially. 

Deviations from the conditional mean ( ) ( ( ) | ( ))I n m E I n m I n+ − +  are then viewed as 

“noise” in the hypothesis testing problem. The mean of this distribution is again 

proportional to ( )I n  and the deviation from mean is also viewed as noise.  
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