
SimServer: Simulated Data Streams on Demand via the Web

Douglas Flournoy Robert Mikula David Seidel Dr. Richard Weatherly
The MITRE Corporation The MITRE Corporation

202 Burlington Road 7525 Colshire Drive

Bedford, MA 01730 McLean, VA 22102

781-271-2774 703-983-7168

The MITRE Corporation The MITRE Corporation
7525 Colshire Drive 7525 Colshire Drive
McLean, VA 22102 Mclean, VA 22102

703-983-6828 703-983-7203
rflourno@mitre.org rmikula@mitre.org dseidel@mitre.org weather@mitre.org

Keywords:

WWW-Based Simulation, Experimentation Support

ABSTRACT: Simulated data streams have long been employed to support prototyping and experimentation. These
data streams create the operational context within which systems and concepts are demonstrated, tested, integrated,
and exercised. Although this context is essential for success, resources are better spent on the focus of the project—not
on the simulation support. But that’s rarely how it works—applying traditional simulation is expensive. It takes
detailed planning, scenario generation, and interface development to provide the simulation capability. Then
simulation computers, networks, and knowledgeable operators must be coordinated to execute the simulations. Often,
similar work has already been done elsewhere, but there is no clear path to finding and leveraging related work. In this
paper we will describe SimServer: an initiative established at MITRE in 2004 to address this situation by offering a
means to quickly and cost-effectively meet basic simulation support needs across the company’s work programs. By
employing a select set of web-inspired computing techniques, SimServer is providing on-demand access to simulated
data streams. This means that projects don’t need to buy their own simulation support computers, manage the
additional network connections, or hire simulation operators. At the SimServer web site, consumers plan, configure,
execute, and monitor their data streams. Rather than developing capabilities from scratch, projects use the site to
browse available simulation services and reuse or modify them. This common repository of tailorable, on-demand
simulation services frees more project dollars to be devoted to prototyping and experimentation activities, facilitating
broader and deeper experimentation programs that deliver richer insights for shaping the future of fielded systems.

1.	 Introduction In FY04 we received MITRE internal technology
initiative funding to begin working on the simulation

SimServer is: 	 resource Web site that is now SimServer. In this paper
we begin by discussing the motivation behind MITRE’s
SimServer initiative. We then discuss the vision for the

•	 A Web site that provides a corporate service for project, and present a scope of activities for which we
planning, configuring, executing, and monitoring believe SimServer to be suitable. Then we provide a
simulated data streams. technical overview of the current SimServer web site

from two perspectives: how a user interacts with
As SimServer evolves in actual practice, we are finding SimServer, and the underlying technologies and software
that SimServer is also: structure that make this possible. We conclude with a

discussion of our progress on SimServer to date and our
•	 A library of data streaming tools that grows with proposed path forward.

its user base.

•	 A virtual meeting place where projects can share 2. Motivation behind SimServer

data streaming concepts and solutions

•	 A case study in the practical application of Simulated data streams have long been employed across

“composable simulation frameworks” and “web- MITRE’s work programs to support prototyping and
based simulation.” experimentation. These data streams create the

operational context within which systems and concepts
are demonstrated, tested, integrated, and exercised.

05S-SIW-138
 1

SABROWN
Text Box
Approved for Public Release; Distribution Unlimited
Case # 05-0279

Though the simulated context is essential for success,
resources are better spent on the focus of the project. But
that’s rarely how it works—applying traditional
simulation is expensive. It takes detailed planning,
scenario generation, and interface development to provide
the simulation capability. Then simulation computers,
networks, and knowledgeable operators must be
coordinated to execute the simulations.

In short, there is a company-wide shortfall in our ability
to quickly and cost-effectively meet the basic simulation
support needs of our projects. We saw an opportunity to
address this shortfall by pooling simulation knowledge,
scenarios, and tools in a common network location and
packaging these resources so that project engineers could
create and manage their own simulated data streams.

3.	 SimServer Vision

By employing a select set of web-inspired computing
techniques, SimServer provides on-demand access to
simulated data streams. This means that projects don’t
need to buy their own simulation support computers,
manage the additional network connections, or hire
simulation operators. At the SimServer web site,
consumers plan, configure, execute, and monitor their
data streams. Rather than developing capabilities from
scratch, projects can use the site to browse the available
simulation services and reuse or modify them.

The SimServer software features a component-based
design that allows different scenario offerings to be
combined with a variety of transformers, like
interpolators, geographic filters, and formatters. The
resulting data stream “configuration” can be emitted using
several different network protocols to any number of
receiving applications. This online approach to
generating data streams allows projects access to the data
streams they need at a fraction of the cost and time of
previous methods.

With the advent of Service-oriented Architectures (SoAs)
and the push toward net-centric enterprise services, a new
class of simulation consumer is emerging that requires
data that mimics the XML schemas and machine-to-
machine (M2M) Web Service mechanisms of net-centric
operations. By incorporating lessons learned from the
Java- and XML-based web publishing community,
SimServer is well positioned to meet the needs of these
emerging enterprise engineering projects.

4.	 SimServer Concept of Operations

SimServer is not intended as an alternative to the today’s
complex simulations. Rather, it is intended as a vehicle
for providing certain data stream products from these
simulations in a more accessible and tailorable, yet less
complicated fashion. Given this context, the following
questions are reasonable to ask:

• What might the SimServer data feed represent?
• For what purpose might SimServer be used?

4.1 Data Feed Representation

The data that flows through SimServer can be any type of
time-tagged information. The list below provides a
representative set of examples of what is possible:

•	 Simulation ground truth playback. A
simulation produces location, movement, and
status data during its execution, saving the data
to a file periodically. SimServer reads the file,
transforms it appropriately, and emits the data.

•	 Real world event playback. An exercise takes
place in a monitored environment (a live training
facility, for example). The monitoring equipment
saves information about the participants to a file
periodically. SimServer acts on that file.

•	 Sensor simulation output. During an exercise, a
sensor simulation reports on its detections and
tracks. That information is captured to a file
during the exercise. SimServer uses that file for
its execution.

•	 Real world sensor output. During an exercise, a
real world sensor reports on its detections and
tracks. That information is captured to a file.
SimServer uses that file for its execution.

•	 Message flow. C4I messages are exchanged by
participants in an exercise. The messages are
captured to a file and played back by SimServer.

4.2 SimServer Use Cases

As might be expected, all uses of SimServer entail
systems that receive events from external sources over
time. These uses can be divided into the following
categories: Testing, Demonstration and Experimentation,
and Training.

4.2.1 Testing

Testing a dynamic system requires test procedures, a
time-evolving scenario that supports the procedures, and a

05S-SIW-138
 2

means to the extract results of the test. If, as expected,
some of the tests fail, the procedures must be executed
again with the same scenario when the system is fixed.
The test scenario should be easy to construct, repeatable,
and easy to execute.

Regression Testing is the testing that must be performed
during system development and maintenance to make
sure that changes and enhancements haven't broken
previously correct functionality. If a portion of system
input is time-tagged data input, data streams are required
input to regression testing. The streams must be
configurable, reliable, and repeatable. The normal
operation of SimServer provides all of the characteristics
needed by regression testing. Once the user establishes
the sources, transformers, and emitters needed for a test,
they are saved; only that use may modify, delete, or
execute them.

Load tests typically begin with a light load on a system
and gradually increase it to determine the point at which
the system's performance or behavior becomes
unacceptable. Ideally, these loads are easy-to-construct,
easy-to-reproduce, and easy-to-document. When the load
consists of events arriving at the system, SimServer meets
all of these criteria; as an example, it could be used by
constructing a simple data file or use an existing simple
source, then on successive runs, increasing the frequency
in the configuration to produce more events per second.
Alternatively, multiple configurations could be executed
simultaneously with the same source but offset in
location, again producing more events per second.

Integration tests are designed to bring together
components that are intended to work in a common
system. The components are often developed in isolation
with little opportunity to test with the rest of the system.
As a result, integration events spend a lot of time dealing
with interface and minor coordination problems of
individual components, reducing the amount of time
available for true integration testing.

One solution to this situation is to provide components
with tools to perform basic interface testing in their
development facility, prior to integration testing.
SimServer provides a mechanism for all components to
deal with the events in their own facility. One way it
could be used is for the integrating authority to prepare
"authoritative" scenarios for the components to test
against. Passing this test could act as a ticket of admission
to the integration event.

4.2.2 Demonstration and Experimentation

A standalone demonstration of a C4I system, user
interface, or Common Operating Picture (COP) needs to
be stimulated by dynamic data that shows the benefits of
the system being demonstrated. That drives the need for
an easy-to-construct, reliable, consistent scenario that
always does what it's supposed to. Since demonstrations
are often interrupted by questions, control over the data
stream is important (pause, resume, repeat).

A synchronized demonstration is similar to a standalone
demonstration except that several (or lots of) systems are
participating, all of which should receive and act on the
same data stream. Its data requirements are similar to
those of standalone demonstrations with the added
complication of multiple receivers. Given the increased
likelihood of failure of one of the systems, it must also be
possible to restart the data stream very quickly after
restart.

Background Activity is what's going on in the
background while the star of the show is performing. For
example, if a C4I system is designed to identify and
designate a portable missile launcher on the ground, there
should be lots of cars and trucks moving around,
providing a realistic background for the missile launcher
and challenges for the C4I system. Since the demands for
precise detail aren't present, a simple, repeating data
source run through SimServer satisfies this need.

Experiments, at least those intended to evaluate human
responses to stimuli, are similar to demonstrations. They
require the execution of a known and repeatable scenario
to present to human scenario participants. Each set of
experiment subjects should get the same scenario. The
set-up time between experiments should be minimized.

4.2.3 Training

Some training systems could use SimServer as their
dynamic input. For example, consider a missile defense
system. The dynamic elements are the target missiles
which, after launch, fly in a well-behaved manner. So, the
variability in the training environment results from (1)
changing the launch location and time, and (2) which
threat missiles are destroyed and when. SimServer could
serve in this environment: all possible missile trajectories
are constructed as separate configurations; the training
staff executes configurations when appropriate for the
training situation; and the staff deletes a configuration
when they determine that the threat has been destroyed.

5. Using SimServer

05S-SIW-138 3

SimServer operations are based on the premise that data
streams can be produced by “configurations” of
composable software components (see Figure 1, below).
A configuration consists of a single data source (shown in
yellow), some transformers (blue triangles) to manipulate
the data, and one or more emitters (red lightning bolts) to
send the data to user systems. Transformers and emitters
typically require control parameters.

Figure 1. SimServer Data Stream “Configuration”
Concept

Built on this configuration concept, the process for using
SimServer to feed simulation data to a system involves
these steps, discussed in more detail below:

•	 Plan
•	 Configure
•	 Execute
•	 Monitor
•	 Map Display (if desired)

5.1 Plan

The first step in using SimServer to provide data feeds to
a user system is to understand what is needed for the
activity. This includes:

•	 The format of the data that the system expects
•	 The frequency with which the system expects the

data

•	 The types of objects that the system will deal
with

•	 The activities of the objects

Armed with that knowledge, a user can access SimServer
Web site and view the site documentation to determine
the degree to which existing SimServer capabilities (data
formats, sources, transformers, and emitters) meet his
needs. If all needed capabilities are available, the user
can proceed to the next step and begin to configure a data
stream. Otherwise, he can contact the SimServer team to
create and post any new components needed.

5.2 Configure

The next step is to create a SimServer configuration. At
this point, the user must log into the SimServer system
using his corporate username and password (password
access is required to create, edit, or run SimServer
configurations).

Using the Configure page of the SimServer Web Site, a
user builds his configuration by selecting from available
data sources, transformers, and emitters. He chooses the
data source, then adds and edits the parameters of the
transformers he needs to manipulate the data. Finally, he
adds one or more emitters that direct the transformed data
over the network to his receiving applications.

In the example illustrated below, a SimServer user creates
a configuration representing an attack on Kuwait by sea.
For a data source, he finds a SimServer Boston attack
scenario that fits his basic needs for vehicle types and
routing. By adding SimServer transformers to this
configuration, he relocates the scenario to the Kuwait
area, specifies that platform locations be updated every 20
seconds, synchronizes the activity to wall clock time and
transforms the data to the “Cursor on Target” XML
schema format. Finally, a SimServer emitter is added to
direct the data stream to the appropriate destination
computer.

05S-SIW-138
 4

Sources Transformers Emitters

Available Components

Sources Transformers Emitters

Available Components

SimServer Configuration Example

Attack Boston
by Sea

Offset Location
lat = -13.04
long = 119.03

Update Interval
interval = 20 sec

Cursor On
Target Schema

Emitter UDP/IP
host = cpu2
port = 9525

Pace
rate=1.0

SimServer Configuration Example

Attack Boston
by Sea

Offset Location
lat = -13.04
long = 119.03

Update Interval
interval = 20 sec

Cursor On
Target Schema

Emitter UDP/IP
host = cpu2
port = 9525

Sources Transformers Emitters

Available Components

Pace
rate=1.0

Figure 2. Example configuration: Kuwait Attack

Figure 3 shows this configuration as displayed on the for each component of the configuration were edited by
configuration editing page of the SimServer Web site. selecting the component and using the edit button to the
The source, transformers, and emitter were added to the right. The order of components in a configuration can
configuration by selecting them from the pull-down also be manipulated by using the Up and Down buttons to
windows across the top of the page. Then, the parameters the right.

Figure 3. Building the Kuwait Attack Configuration in SimServer

05S-SIW-138 5

5.3 Execute

From the “Run” page on the SimServer Web site, the user
can now select the Kuwait Attack configuration from the
list of available configurations, give it an execution name,
and trigger its execution. For example, an execution
name for the Kuwait Attack configuration might be
“Kuwait Wednesday.”

5.4 Monitor

After a configuration is executing, its progress can be
monitored and controlled from the Monitor screen as
shown in Figure 4. Each execution is represented by a
row in the monitor table. The monitor screen provides an
indication of the status of each execution (Launched,
Running, Paused, or Complete), start time, and the most
recent time of activity for each execution.

Figure 4. Monitoring the Kuwait Wednesday Execution

The Monitor screen also provides controls over an Often it is useful for a SimServer user to “see” his
execution. Executions may be paused, resumed, stopped configuration execute on a plan view display. For this
(terminated), run (started over once complete), or deleted purpose, SimServer provides a map applet, and
from the list. instructions for its use, based on the BBN Corporation’s

OpenMap™ open source mapping software. [1] Figure
5.5 Map Display 	 5 is an illustration of the results of the Kuwait Wednesday

sample execution shown on the OpenMap™ plan view
display.

05S-SIW-138
 6

Figure 5. Plan View Display portion of the OpenMap™-based map display

6.	 How SimServer Works: What’s Under
the Hood

Careful consideration was given in determining the
underlying software structure for SimServer. The
software underpinnings had to, among other things:

1.	 support many dynamic web page functions and
2.	 deploy easily within a Web Server environment,

and
3.	 provide a framework for software components to

be developed and employed in different user-
definable combinations.

This led us to consider the Cocoon Project from the
Apache Software Foundation [2]. In fact, our vision of a
SimServer configuration exhibits a remarkable similarity
to the component-based software execution offered by the
Apache Cocoon Project.

Apache Cocoon is often described as an XML publishing
framework, in which the flow of execution is described as
a pipeline, consisting of a generator step, one or more
transformers, and concluding with an emitter. This is
open source software freely available at
http://apache.cocoon.org.

As delivered, Cocoon provides a number of examples.
However, none of these were specific to simulation.
However the use of this open source infrastructure
intrigued us. We believed that the later versions of the
Cocoon framework could be extended to incorporate
components of specific benefit to simulation.

The latest versions of Cocoon use a SAX-based
processing model for XML data streams. This provides
the advantage of event-based processing, allowing each
element of a data stream to pass from one stage to the
next, rather than waiting for the entire data set to
complete one stage before moving on to the next.

05S-SIW-138
 7

With such a model, we were then able to write a series of
Java programs to begin processing source data, trigger
SAX-based transformations in a desired sequence, and
finally to emit the data to desired destination(s).

This framework for mixing and matching Java-based
software components turned out to be remarkably flexible
and robust, as can be seen from the following partial list
of supported SimServer components.

Example Sources can be:
• Static documents in XML or flat files
• RDBMS queries
• Queries from Native XML Databases
• Results of Web Service Calls

Transformers can fulfill the following functions:
• Modify temporal aspects of the data stream
• Modify XML tags or their attributes
• Filter or modify data
• Change languages or target schemas

Emitters can be:
• TCP sockets at any IP address
• UDP sockets at any IP address
• Log files
• Browser displays
• Alternative displays such as PDF, JPEG, etc.

Use of the Cocoon infrastructure allows each of the Java
components written for SimServer to be quite compact,
usually less than a page of Java code, almost always less
than two pages.

The ability to combine these features on demand leads to
a robust suite of potential configurations, which are
deployed as a Tomcat web application.

We then needed a way to allow users to view all the
available components, and to build, store, and execute
their own configurations. By defining these in XML, we
are able to reuse much of the XML processing logic
within Cocoon, including linking Cocoon to an open-
source native XML database, known as eXist
(http://exist.sourceforge.net), to store SimServer
resources. The XML Server Pages, known as XSPs, used
to display the data incorporate a security and management
structure governing the execution of configurations.

Using Java programs, we were then able to initiate
configuration execution without a browser. With Apache
Axis, we were then able to offer a web service to initiate
execution.

7. Status and Observations

SimServer is supporting a first round of MITRE project
consumers in 2005. Some of these first users of
SimServer are enterprise services-related projects that can
take advantage of SimServer’s emphasis on Web
technologies. But we are also seeing immediate benefits
to small projects like MITRE internal research efforts that
require relatively straightforward, repetitive data feed
support within tight budget constraints.

As more projects turn to SimServer for support, the
envisioned pattern of growth is emerging. That is, we are
finding that many of the features new users need are
already available in SimServer. However, each new
project brings a few new requirements that we meet by
adding a new source or transformer, or extending an
existing component. In this manner, the set of capabilities
that SimServer offers to new users is indeed growing
more comprehensive over time.

As we evolve SimServer capabilities to meet each new
requirement, the Cocoon-based component software
structure is proving to be a solid, straightforward base for
each modification. Because much of the software
“engine” behind SimServer is powered by the XML-
based capabilities of Cocoon and eXist, the SimServer­
specific software we need to develop and maintain is very
lightweight. In fact most of the configuration SimServer
configuration components are less than 100 lines of code
(on the order of 1-2 printed pages). We have found
Cocoon and the rest of the SimServer software to be a
ready framework in which users can compose and
reconfigure their own simulation streams without further
software development.

“Web-based simulation” is another ongoing simulation
community thrust area for which SimServer can
contribute lessons learned. SimServer’s mission pushed
us to focus on the benefits that web technologies can
provide the end users of simulation products—for
instance, 24/7 access to simulation support and the power
of XML for transforming data. Indeed, these features of
the Web can be harnessed and provided to simulation
users with positive results.

05S-SIW-138
 8

Feedback from early SimServer users indicates that we
have a solid structure on which to continue to build. The
availability of this common repository of tailorable, on-
demand services will free more project dollars to be
devoted directly to prototyping and experimentation
activities, facilitating broader and deeper experimentation
programs and resulting in richer insights for MITRE’s
sponsors.

8. References

[1] BBNT Solutions LLC. OpenMap Architecture,
http://openmap.bbn.com/doc/openmap-arch.html,
2001.

[2] Bill Brodgen, Conrad D'Cruz, Mark Gaither. Cocoon
2 Programming: Web Publishing with XML and
Java, Sybex Incorporated, 2003.

Author Biographies

DOUGLAS FLOURNOY is a Principal Simulation and
Modeling Engineer within the Center for Acquisition and
Systems Analysis at the MITRE Corporation in Bedford,
Massachusetts. In addition to SimServer, Doug is
engineering a Link-16 communications simulation and
investigating HLA federation performance prediction
methods. He also has experience in human behavior and
process modeling, simulation-to-C4I system interfacing,
and user interface prototyping. Doug holds a Bachelor of
Science Degree in Mechanical Engineering from the
Pennsylvania State University and a Master of Science
Degree in Operations Research from the George
Washington University.

ROBERT MIKULA is a Senior Software Systems
Engineer within the Center for Innovative Computing and
Informatics of the MITRE Corporation in McLean, VA.
He currently supports the Center for Enterprise
Modernization with the implementation of Service
Oriented Architectures within the federal government.
Rob has experience in web-based software development,
XML, human computer interfaces, databases, and object
request broker technologies. He holds a Project
Management Professional Certification and is currently
pursuing doctoral studies at George Mason University.

DAVID SEIDEL is a Senior Principal Simulation and
Modeling Engineer for the MITRE Corporation. He has
participated in the development of several distributed
simulation projects including Aggregate Level Simulation

Protocol, HLA prototypes and standards, DMSO outreach
federations, the Joint Simulation System (JSIMS) and the
Joint Distributed Engineering Plant (JDEP).

DR. RICHARD WEATHERLY is a Consulting
Engineer with The MITRE Corporation. He received a
Ph.D. in Electrical Engineering from Clemson University
in 1984. He led the technical development of the
Aggregate Level Simulation Protocol, DoD High Level
Architecture (HLA) for Modeling and Simulation, and the
HLA Runtime Infrastructure Verification Facility. He
served three years as Chief Engineer of the JSIMS
project. Currently he is Principal Investigator of an effort
to improve the performance of process-oriented, Java-
based simulations and the Software Architect of the
Meteor autonomous land vehicle project. He has
published over 25 papers and a text book on distributed
simulation.

05S-SIW-138
 9

