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1 Introduction 

While there has been some attention given recently to the issues of function ap
proximation using learning classifier systems (e.g. [13, 3]), few studies have looked 
at the quality of the value function approximation computed by a learning clas
sifier system when it solves a reinforcement learning problem [1, 8]. By contrast, 
considerable attention has been paid to this issue in the reinforcement learning 
literature [12]. One of the fundamental assumptions underlying algorithms for 
solving reinforcement learning problems is that states and state-action pairs have 
well-defined values that can be computed and used to help determine an optimal 
policy. The quality of those approximations is a critical factor in determining 
the success of many algorithms in solving reinforcement learning problems. 

In most classifier systems, the information about the value function is stored 
and computed by individual rules. Each rule maintains an independent estimate 
of the value of taking its designated action in the states that match its condition. 
From this standpoint, each rule is treated as a separate function approximator. 
The quality of the approximations that can be achieved by simple estimates like 
this is not very good. Even when those estimates are pooled together to compute 
a more reliable collective estimate, it is still questionable how good the overall 
approximation will be. It is also not clear what the best way is to improve the 
quality of those approximations. 

One approach to improving approximation quality is to increase the compu
tational abilities of individual rules so that they become more capable function 
approximators [13]. Another idea is to look back to the original concepts underly
ing the classifier system framework and seek to take advantage of the properties 
of distributed representations in classifier systems [2]. This paper follows the 
latter approach. We describe a new way to tap the distributed representational 
power present in a collection of rules to improve the quality of value function ap
proximations. The basic idea is to treat rules as features that collectively specify 
a linear gradient-descent function approximator. 

The paper begins with a brief overview of the role of value functions and 
approximations in reinforcement learning. Then we examine the corresponding 
issues in classifier systems and make an empirical comparison with a widely 
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used technique from the reinforcement learning community. This comparison 
points out some weaknesses in the typical classifier system methods. Finally, a 
new approach to value function approximation — called hyperplane coding — 
is introduced along with empirical results showing how effective it is. 

2	 Value Function Approximation and Reinforcement 
Learning 

We begin with a formal characterization of value functions in the context of 
reinforcement learning problems. Assume that the problem environment can be 
characterized as a discrete time, stochastic dynamic system with a finite set of 
states. This setting is well studied in the theory of reinforcement learning, as it 
provides the starting point for the analysis of finite Markov decision processes. 
A Markov decision process satisfies the Markov property and therefore can be 
characterized by the one-step dynamics of the environment. This means that 
in addition to specifying all possible states and actions, a problem definition 
includes two other things: transition probabilities pij(u), which give the proba
bility that the next state is j if action u is taken in the current state i; and, scalar 
rewards ri(u) which indicate the immediate feedback available after applying ac
tion u in state i. An agent trying to solve such a problem uses a decision policy π 
to specify which action is selected as a function of the current observed state. A 
decision policy is a function of states and actions that computes the probability 
of taking action u when in state i. Given a fixed policy π, the value function 
is a mapping that computes, for each state, the long term expected reward the 
agent will accrue by using the policy π to make decisions. If a discounted reward 
criterion is used to compute the long term reward, the formal recursive definition 
of the value function is given by 

Vπ(i) = 
�

π(i, u)
�

pij(u)[ri(u) + γVπ(j)] 
u j 

where γ ∈ [0, 1] is a discount factor that determines the influence of future 
rewards on current decisions. 

Most approaches to solving reinforcement learning problems explicitly com
pute and store some representation of Vπ. For very simple problems, a lookup 
table is an adequate way to represent the value function. In most cases of inter
est, however, the input space is too large to represent Vπ exhaustively in tabular 
form so the function must be represented more compactly. Efficient storage is 
not the only important issue though. In a large state space the learning agent 
will only directly experience a relatively small number of inputs. The agent nev
ertheless needs to leverage that experience to determine how to behave when it 
encounters inputs that have not been seen before. This implies that generaliza
tion is a key issue for reinforcement learning problems with large state spaces. 
The most common approach to addressing these issues is to use function approx
imation techniques to compute a compact representation of Vπ that generalizes 
well. 



The approach to approximating Vπ used in learning classifier systems belongs 
to a class of techniques known as soft state aggregation [10]. In the simplest forms 
of state aggregation, the states are partitioned into a set of disjoint groups or 
clusters. A reinforcement learning problem can be solved at the cluster level 
to compute a value function for the clusters. The value of a cluster is then 
used as the value for each of the states in that cluster. Soft state aggregation 
techniques allow a single state to belong to more than one cluster, providing 
for cluster overlap. This is accomplished by defining cluster probabilities P (x i)|
that specify the degree to which state i is associated with cluster x. The value 
for a state is given by a weighted average of the values of the clusters the state 
is associated with; that is, 

Vπ(i) = 
�

P (x|i)Vπ(x) 
x 

Rule input conditions designate the clusters of states used by learning classifier 
systems. Each condition represents a set of states whose value is summarized in 
various ways by the rule’s utility measure. In XCS, for example, a cluster’s value 
is represented by the prediction parameter of the corresponding rule. The cluster 
probabilities are given by the rule’s fitness divided by the sum of the fitnesses of 
all the rules matching state i. 

While state aggregation approaches to function approximation can be useful 
in some settings, they are known to have serious shortcomings [12]. First, they 
tend to scale poorly as the number of dimensions of the state space increases. 
Second, large numbers of clusters may be needed to represent smooth functions 
accurately1. The most widely used approaches to function approximation for 
reinforcement learning avoid these problems by relying on linear gradient-descent 
methods. 

The remainder of this paper takes a brief look at linear gradient-descent 
methods and one important special case that uses binary features. We then 
propose a new approach to using linear gradient descent in a classifier system 
setting and present empirical results showing that the idea has merit. 

3 Linear Approximations and Coarse Coded Features 

Linear gradient-descent methods for value function approximation begin with a 
linearly parameterized representation of the value function given by 

V (xt) = 
�

wi(t)φi(xt) 
i 

where the φi are features defined on the state space and the wi are real-valued 
adjustable weight parameters. The weights are adjusted to try to reduce the error 

1 This limitation will become more important to the classifier system community as 
classifier systems are applied to function approximation problems [13]. 



on the observed sample points x, and to generalize from that data to provide 
good approximations for other points that have not yet been seen. 

Gradient-descent methods try to minimize error by adjusting the weights on 
each step in the direction that reduces error the most. In the linear case, the 
gradient descent update for adjusting the weights is given by 

wi(t + 1) = wi(t) + α[v(t)− V (xt)]�wiV (xt) 

where �wiV (xt) = φi(xt) is the gradient of the linear function with respect to 
weight parameter wi and v(t) is the true function value for xt. 

Linear gradient-descent methods are simple and they are particularly well-
suited to reinforcement learning [12]. A key aspect determining how well these 
methods work in practice, though, is the quality of the features they use. The 
features must represent whatever task-relevant qualities of the state may be 
needed to discriminate one state from another, as well as any associated feature 
interactions that may be important. 

3.1 Tile coding 

Coarse coding [7] is a general approach to defining a set of adequate features. 
In this form of representation, each feature corresponds to some subset of the 
state space (the feature’s “receptive field”). For a given state, a feature is said 
to be activated if the state belongs to that receptive field. The representation of 
state is coarse coded in the sense that the receptive fields overlap to produce a 
distributed representation whose acuity is proportional to the number of features 
activated in a given state. One general purpose way to define receptive fields 
suitable for efficient on-line learning is called tile coding [12]. 

Tile coding is a particular form of coarse coding in which the receptive fields 
for all features are organized into exhaustive partitions of the input space. The 
features are assumed to be binary, the receptive fields are called tiles, and each 
partition is called a tiling. The tilings are offset from each other in order to 
achieve the overlap needed for local generalizations. For a single input dimension, 
the offsets typically used in tile coding are given by i(w/n) where i is the index 
of the tiling, w is the tile width, and n is the number of tilings (0 ≤ i < n). There 
are several advantages to organizing the receptive fields in this way. Every point 
in the input space activates the same number of tiles, so there is strict control 
over the density of tiles and the resulting precision of the approximation. It is also 
easy to set the learning rate for a linear gradient-descent function approximator 
based on tile coding. Since the number of features active for each point is equal 
to the number of tilings m, the learning rate can be expressed intuitively as a 
fraction of the rate 1/m which gives exact one-trial learning. The weight update 
for activated features is given by 

α 
wi(t + 1) = wi(t) + [v(t)− V (xt)] 

m 

where α is the desired fraction. 



Tile coding has been been used extensively for reinforcement learning, and 
the overall coarse coding approach is known to be capable of computing high 
quality approximations [9]. It is not clear how well classifier system methods 
compare to these approaches from the standpoint of function approximation. 
We try to answer that question with an empirical comparison of tile coding with 
the widely used classifier system mechanisms in XCS [4] for predicting expected 
payoff. 

3.2 Comparing tile coding with XCS predictions 

The effectiveness of classifier system methods for function approximation can be 
assessed by using function values as rewards [13] and allowing the system to gen
erate outputs in the usual way. In order to test the XCS prediction mechanism, a 
skeletal classifier system was implemented. This skeletal system has traditional 
ternary rules with no actions and no rule discovery mechanisms. On every step 
the system is presented with a data point x, and the reward received is the 
function value f(x). The system forms a match set and proceeds to update the 
basic XCS parameters: experience, prediction, prediction error, and fitness. The 
system prediction is calculated in the usual way and that prediction becomes 
the system’s estimate for the value of x. The parameter settings were consistent 
with those used for XCS in the literature [13]: learning rate 0.2, error threshold 
0.2, fitness power 5.0, and fitness scale (i.e., α) 0.1. See Butz and Wilson [4] for 
details about these parameters and computations. 

The test function suite was taken from a set of functions proposed by Donoho 
and Johnstone [5] that has been widely used in the literature on statistical 
estimation and reconstruction of signals from data. We use four one-dimensional 
functions — Blocks, Bumps, Doppler, and HeaviSine — that provide a good 
variety of spatial variability and smoothness (see definitions in the Appendix). 
The training data for each function was drawn from a set of 2048 equally spaced 
sample points. A separate distinct set of 2000 equally spaced sample points was 
set aside to use as a test set. The quality of an approximation is measured in 
terms of the average squared error at those sample points. More specifically, the 
performance measure is 

n−1

R = n−1 
�

(f̂(xi)− f(xi))2 

i=0 

where f̂ is the approximation and f is the true function. In all of the experiments 
reported here, learning proceeded over 100 trials with 10,000 steps per trial, and 
with a random data point selected from the training set on each step. This 
gave the function approximators ample time to converge to their most accurate 
output. Results were averaged over 10 replications, and statistical significance 
was assessed using a Student’s t-test with significance level 0.05. 

The goal of this comparison is to assess how well each approach makes use of 
a fixed allocation of approximation resources. For tile coding this means that the 
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(a) Tile coding of Blocks (b) XCS prediction of Blocks 

(c) Tile coding of Bumps (d) XCS prediction of Bumps 

(e) Tile coding of Doppler (f) XCS prediction of Doppler 

(g) Tile coding of HeaviSine (h) XCS prediction of HeaviSine 

Fig. 1. Reconstructions computed by tile coding and XCS prediction 



Algorithm 
Approximation Error 

Blocks Bumps Doppler HeaviSine 
Train Test Train Test Train Test Train Test 

Tile coding 0.06988 1.7535 0.16809 0.93068 0.03579 0.08922 0.02327 0.06458 

XCS prediction 3.4697 3.2368 25.111 25.977 2.1472 2.1360 0.08345 0.08865 

Table 1. Average square errors for tile coding and XCS prediction 

number of tiles and the way they are organized is fixed. On these test functions, 
we use 2048 grid-like tiles each having width 1/256. The tiles are organized into 
8 tilings that are offset as described previously. The learning rate is specified by 
the assignment α = 0.2. For the XCS prediction mechanism, the population of 
classifiers is fixed at 2048 rules generated randomly using a probability of 1/3 
for placing the # symbol at any given position in a rule condition. Each classifier 
condition is 8 bits, giving every classifier the same input resolution as one of the 
grid-like tiles. 

The results on the suite of test functions are summarized in Table 1. All of the 
differences in performance between the tile coding approximation and the XCS 
prediction are statistically significant. Tile coding is substantially more effective 
than the XCS prediction on these functions. Tile coding shows an impressive 
ability to reconstruct functions with respect to the training data. Its performance 
on the four test functions compares favorably with results on the same data 
achieved by more sophisticated approximation techniques like a discrete wavelet 
transform [5]. The reconstructions shown in Figure 1 show that the tile coding 
representation has enough precision to pinpoint the location of abrupt changes 
in function values. Moreover, tile coding also has sufficient local generalization 
properties that the approximations are fairly smooth. 

The XCS prediction, on the other hand, does poorly from the standpoint of 
both precision and smoothness. There is a sense in which this is not surprising, 
since the mechanisms were intended to be used in combination with rule discov
ery to compute a good approximation of the value function. There is a dilemma 
with that arrangement, however. Rule discovery depends on guidance from the 
prediction computations in order to know what type of rules to generate. If 
that guidance is poor, then rule discovery will have to thrash around somewhat 
randomly until it discovers something that improves the approximation. 

It should be possible to take the information in a population of classifiers, 
even if that population is random, and reliably compute good approximations 
that provide useful guidance for rule discovery. What aspects of the tile coding 
approach can be leveraged to improve the value function approximations com
puted in classifier systems? One straightforward approach would be to restrict 
our attention somehow to hyperplane features that define an exhaustive par
tition. This would allow the tile coding computational mechanisms to be used 
directly, but would be overly restrictive from the standpoint of typical classifier 
system operating principles. For many reasons, the heterogeneity of the classifier 
population is a feature not a bug. An alternative approach is to use that hetero



geneity to our advantage by devising a variation of tile coding that relies more 
on the strengths of distributed representations. The next section introduces a 
new alternative based on this idea called hyperplane coding. 

3.3 Hyperplane coding 

Hyperplane coding is a closely related variation of tile coding in which classifier 
rule conditions fill the role of tiles, and there are few restrictions on the way those 
“tiles” are organized. The hypothesis behind this idea is that classifier rules can 
be more effective as function approximators if they collectively implement a 
distributed representation of the value function. The distributed representation 
is realized by treating individual rules as features rather than as independent 
function approximators whose estimates are pooled to compute an overall result. 

In a random population, the classifier conditions serving as tiles do not cover 
the space like an exhaustive partition. Nevertheless, a population of classifiers 
does richly cover the space with a collection of overlapping coordinate hyper
planes. Each point in the input space is covered by an expected number of tiles 
(or matching conditions) k given by 

�
p# + 1 

�l 
k = N 

2 

where N is the population size, p# is the probability of the # symbol appearing 
at any position in the condition, and l is the length of the condition. For the 
population sizes typically used in classifier system applications, this expected 
value is much larger than the fixed number of tilings most often used for tile 
coding. This bodes well for the resolution of approximations based on hyperplane 
coding, since greater tile density usually means higher precision. 

The coarse coding idea requires the ability to represent patterns of contiguous 
inputs (the tiles arranged in a tiling) that can be offset from each other by 
arbitrary amounts. This requirement is trivial to fulfill in tile coding. The tiles 
are fixed sized intervals in each dimension, and the interval endpoints can be 
adjusted as needed. The standard syntax for the input condition of a classifier 
rule does not provide this kind of flexibility. It is not clear how to adjust that 
syntax to represent hyperplanes offset by arbitrary amounts in input space, 
while preserving the simple matching operations between rules and messages. For 
example, it is easy to represent the lower half of the input range [0, 1] with the 
condition 0#...#, which corresponds to the interval [0, 0.5] using the standard 
binary encoding. How do we represent the hyperplane corresponding to the offset 
interval [0 + �, 0.5 + �]? 

One obvious way to manage this issue is to apply the offset to the input space, 
then define hyperplanes on that transformed space in the usual way. Looking at 
the offset interval [0 + �, 0.5 + �] again, we can determine if some input value x 
belongs to that interval by checking if a message encoding the translated value 
x− � matches the condition 0#...#. This leads to the following ideas for the way 
a population of classifiers is organized to implement coarse coding. Each classifier 



is assigned to a specific tiling2, just like each tile belongs to a specific tiling under 
tile coding. In this case, though, there is no specific organization imposed on the 
tiling. Continuing with the analogy, we do associate a fixed offset with each 
tiling. The classifier system operating principles are also adjusted somewhat. 
Instead of having a single message matched against all rules on each cycle, we 
generate a separate message for each tiling. Each message is computed from the 
raw input by applying the offset associated with the tiling in question. 

The only remaining details needing attention have to do with tile width and 
offsets. Since hyperplanes in general do not correspond to simple contiguous re
gions of the input space, some thought must be given to the issue of how to 
define tile width. There are several possibilities and we choose one of the sim
plest. The smallest possible contiguous region defined by a hyperplane is one 
that corresponds to a single binary value. The width of this region is simply the 
resolution size used to discretize the raw input. The width of every contiguous 
region matched completely by some hyperplane is a multiple of this resolution 
size. Consequently, the resolution size can be used as the tile width for all hy
perplanes3 . 

As noted previously, the offsets typically used in tile coding are given by 
i(w/n) where i is the index of the tiling, w is the tile width, and n is the number 
of tilings (0 ≤ i < n). Under this arrangement, every point has at least one tile 
in common with all points that are within a tile width away in each direction. 
This translation scheme uses only positive offsets that translate tiles to the right. 
A point gets grouped with its neighboring points on the left when the adjacent 
tile on the left (that does not originally contain all the points) gets translated 
to cover those points. This scheme does not work well in the classifier system 
setting, however. An unmodified input message matches classifiers representing 
the base tiles (i.e., tiling i = 0) covering a point x. If we adhere to the usual 
concept of a match set, the only way that x will be grouped into a tile with any 
other point is if the match set contains a classifier that matches both points. 
Offsets can change the groupings by excluding some points, but there is no 
way to include points that are not covered by the base match set. This makes it 
important to group the matched points in as many ways as possible. Accordingly, 
we use a more symmetric set of offsets given by i(w/n) with −n/2 ≤ i < n/2 so 
that points get grouped in both directions. 

2 We will call each major grouping of classifiers a tiling, even though the set does not 
partition the input space (i.e., the elements are not disjoint, and they may not span 
the entire space). 

3 Each hyperplane has its own smallest width determined by the position of the lowest 
order specific bit in the classifier condition. Giving each condition its own tile width 
and offset would lead to a potentially unmanageable number of messages on each 
cycle, though, so that option is not considered here. 



Algorithm Approximation Error 
Variant Train Test 

Baseline 0.24656 0.34647 

Gray code 0.22560 0.32736 

Salience 0.19654 0.30969 

Better offsets 0.13746 0.30148 

Table 2. Average square errors for variations of hyperplane coding on the Blocks 
function 

4 Experiments With Hyperplane Coding 

In order to evaluate this idea, the skeletal classifier system described previously 
for the experiment with XCS prediction mechanisms was modified to implement 
the hyperplane coding algorithm described above. This section briefly describes 
that implementation, empirically evaluates its performance, then describes a 
series of modifications that improve performance. 

4.1 Baseline implementation 

The initial implementation of linear function approximation based on hyperplane 
coding starts with the algorithm described above and uses parameters taken 
from the previous experiments with tile coding. We use a population of 2048 
random classifiers organized into 8 tilings of 256 classifiers each. The classifier 
conditions were 8 bits long to provide the same resolution for discretizing the 
input as the tile coding approach. Each classifier has a weight parameter w that 
is adjusted by gradient descent just as in tile coding. The learning parameter 
α for gradient decent was set to 0.2, again in agreement with the tile coding 
experiments. These choices give the linear approximator based on hyperplane 
coding roughly the same amount of approximation resources to work with as the 
tile coding version had. 

We begin by focusing our attention on how the algorithm performs on the 
Blocks function. Performance on Blocks is summarized in Table 2. The average 
square error on the training data was 0.24656, which is a statistically significant 
drop in performance from the error of 0.06988 for tile coding in Table 1. Inter
estingly, the roles were reversed on the testing data. The average square error 
for hyperplane coding was 0.34647, a statistically significant improvement over 
tile coding’s value of 1.7535. The relatively large number of hyperplanes covering 
each point apparently gives the hyperplane coding scheme a huge advantage in 
generalization. Note that the performance advantage of hyperplane coding over 
the XCS prediction is statistically significant on both the test and the training 
data. 



4.2 Gray coded inputs 

One of the important properties of approximation techniques like tile coding is 
that the generalizations they compute are localized. Points that are sufficiently 
close in input space will produce output values that are close. Moreover, values 
in widely spaced regions can be learned with relatively little interference. This 
property is compromised somewhat with hyperplane coding since hyperplanes 
are not restricted to contain localized collections of points. Some of the approx
imation error we observe in the results so far can probably be attributed to this 
effect. 

If this is true, then a representation that provides more localized collections 
of points should boost performance. The Gray code is known to be such a repre
sentation for bit strings [6]. In order to see why, consider the classifier condition 
##10. The bit strings matching that condition are 0010, 0110, 1010, and 1110. 
None of these points are contiguous under a binary coding. A binary reflected 
Gray code, however, groups these points into two clusters of consecutive points: 
(0010, 0110) and (1110, 1010). This example is illustrative of a more general 
phenomenon. A Gray code will never group bit strings matching some condition 
into more clusters of consecutive points than a binary code does. Furthermore, 
for some conditions, the Gray code will organize the points into fifty percent 
fewer clusters than the binary code (as in our simple example). See Faloutsos [6] 
for more details. 

This analysis suggests that significant improvements should be obtained by 
using a binary reflected Gray code to encode the inputs for our function approxi
mator. Table 2 shows that those improvements do indeed occur. The performance 
improvement is statistically significant for both the test data and the training 
data. 

4.3 Feature salience 

Under tile coding, every point belongs to exactly one tile in every tiling. As 
noted previously, a point belongs to many tiles in each tiling under hyperplane 
coding. Because the hyperplanes in a tiling are so diverse, they may not all be 
equally useful for approximating the function. It might matter that some are 
more specific than others, some may correspond more closely to key regularities 
in the function, and so on. This presents the approximation algorithm with a 
feature selection problem that does not occur with tile coding. The problem is 
important because irrelevant features are a source of noise that can slow down 
learning of relevant features. 

One way to address this feature selection problem is to use dynamically 
adjusted learning rates to identify which features are most relevant to the task 
at hand. The idea is to give small learning rates to weights for irrelevant features 
and large learning rates to weights for relevant features. The individual learning 
rates thereby become a source of bias that make learning and generalization more 
efficient. Sutton [11] describes an algorithm — called the Incremental Delte-Bar-
Delta (IDBD) method — that uses experience to incrementally adjust learning 



rates in a linear learning system. That algorithm is well suited to this setting 
and was incorporated into our hyperplane-based function approximator. 

The intuition behind the IDBD algorithm is to adjust rates based on the 
correlation between successive weight changes: if the weight changes have all 
been in the same direction, the rate was too small; if the weight changes have 
been in opposite directions, the rate was too large. The algorithm has one free 
parameter, the meta learning rate θ. It also uses two parameters for each feature 
ξ: a learning rate parameter βξ and a memory parameter hξ that stores a trace 
of the cumulative sum of recent errors. Each hξ is initialized to zero. Given a 
match set with binary features ξ, weights wξ, and approximation error δ(t), the 
version of IDBD used here performs the following updates in the order indicated: 

1. βξ(t + 1) = βξ(t) + θδ(t)hξ(t) 
βξ(t+1)2. αξ(t + 1) = e

3. wξ(t + 1) = wξ(t) + αξ(t + 1)δ(t) 
+4. hξ(t + 1) = hξ(t)[1 − αξ(t + 1)]+ + αξ(t + 1)δ(t) where the notation [x]

indicates a quantity equal to x if x > 0 and 0 otherwise. 

See Sutton [11] for more details about this algorithm and the reasons why it 
works. 

The linear function approximator based on hyperplane coding was augmented 
with the IDBD algorithm using meta parameter θ = 0.01. Following Sutton’s 
advice about implementation details, bounds were enforced on each βξ to prevent 
arithmetic underflow. The lower bound was ln(α) so that the adjusted rates never 
fell below the global rate α specified for the function approximator. We also 
enforced an upper bound of 1.0 and limited the change in βξ on any one step to 
±1 to help ensure that the weight adjustments remain stable. The results in Table 
2 show that these changes had the anticipated effect. Statistically significant 
performance improvements were seen on both the test data and the training 
data. 

4.4 Improved feature offsets 

The large number of overlapping hyperplanes in a match set help to provide a 
strong generalization capability for linear function approximation based on hy
perplane coding. Since the performance on the training data still lags far behind 
the levels achieved by tile coding, there appears to be room for improvement 
in the acuity of this approximation. Some performance improvements might be 
achieved if the available features could be reorganized to cut through the input 
space in a larger variety of ways. Two changes were implemented to test this 
hypothesis. First, we change the number of tilings. The number of tilings was 
set to 8 in the baseline implementation simply to be consistent with the param
eters used in tile coding. On closer examination, though, this setting does not 
achieve the desired effect. In the tile coding implementation, every point has at 
least one tile in common with all points that are within a tile width away in each 
direction. The hyperplane coding using the symmetric offsets in the match set is 



Algorithm 
Approximation Error 

Blocks Bumps Doppler HeaviSine 
Train Test Train Test Train Test Train Test 

Tiles 0.06988 1.7535 0.16809 0.93068 0.03579 0.08922 0.02327 0.06458 

Hyperplanes 0.13746 0.30148 0.35245 0.98615 0.04709 0.08056 0.01444 0.02288 

Table 3. Average square errors for tile coding and hyperplane coding 

more limited. Every point can potentially be grouped only with points that are 
within half a tile width away in each direction. This deficiency is easily remedied 
by doubling the number of tilings to 16. The size of the population of classifiers 
remains the same, so the algorithm still has the same amount of approximation 
resources to work with. 

Second, while the choice of the resolution size as the tile width for all tilings 
was convenient, it does not take full advantage of the possibilities for tile offsets. 
The resolution size is the simplest tile width that makes sense for classifier con
ditions with a specific bit at the lowest order bit position, and those classifiers 
occupy a large fraction of a random population. Larger tile widths are possible 
for the remaining classifiers, however, and the increased overlap could improve 
the acuity of the overall approximation. This possibility can be easily tested by 
organizing the classifiers into two types of features, coarse and fine, stored in two 
separate groups of tilings. The fine features are those classifiers with a specific 
bit at the lowest order bit position. These classifiers use the resolution size as the 
tile width. The remaining classifiers are all treated as coarse features, which use 
a tile width equal to twice the resolution size. As a consequence of these changes, 
on each cycle the system generates up to 4n potentially distinct messages where 
n is the number of tilings used in a comparable tile coding scheme. 

The results in Table 2 show that these changes had the desired effect. There 
was a statistically significant and large improvement on the training data, with 
no significant change in performance on the test data. The overall performance 
of this version of hyperplane coding is summarized in Table 3. Tile coding still 
has a statistically significant performance advantage on the training data for all 
of the test functions except HeaviSine, where hyperplane coding is far superior. 
Hyperplane coding has a statistically significant performance advantage on the 
test data for all of the test functions except Bumps, where tile coding has a 
small but significant advantage. The reconstructions computed by each type of 
coding for all of the test functions are shown in Figure 2. The precision and 
smoothness properties of the two representations are remarkably similar. It ap
pears that hyperplane coding offers an alternative for linear approximations that 
is comparable in performance to what can be achieved with a more conventional 
approach like tile coding. 
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(a) Tile coding of Blocks (b) Hyperplane coding of Blocks 

(c) Tile coding of Bumps (d) Hyperplane coding of Bumps 

(e) Tile coding of Doppler (f) Hyperplane coding of Doppler 

(g) Tile coding of HeaviSine (h) Hyperplane coding of HeaviSine 

Fig. 2. Reconstructions computed by tile coding and hyperplane coding 



5 Conclusions 

This paper has shown that by carefully using the resources available in a random 
population of classifiers, continuous value functions can be approximated with 
a high degree of accuracy. The results demonstrate that hyperplane coding can 
achieve levels of performance comparable to those achieved by more well-known 
approaches such as tile coding. Hyperplane coding treats classifier system rules 
as features that contribute to a distributed representation of the value function. 
This approach computes much better approximations than more conventional 
classifier system methods in which individual rules compute approximations in
dependently. High quality value function approximations that provide both data 
recovery and generalization are a critically important component of most ap
proaches to solving reinforcement learning problems. Because these results sub
stantially improve the quality of the approximations that can be computed by a 
classifier system using relative small populations of classifiers, this work provides 
the foundation for significant improvements in classifier system performance. 

Conventional approaches such as linear gradient-descent function approxima
tion based on tile coding are faster, but the hyperplane coding approach seems to 
offer more opportunities for increasing precision without incurring significantly 
greater computational costs. The density of tiles in hyperplane coding is natu
rally higher than the density in tile coding. This contributes to more resolution 
in the final approximation. The precision of the approximation can also be in
creased by increasing the length of the classifier input conditions instead of by 
adding more tiles. Moreover, the hyperplane coding scheme makes it possible to 
adapt the collection of tiles to achieve more precision. The obvious next step in 
this research is to use the approximation resources available in a random pop
ulation as a starting point for a more refined approach to approximation that 
reallocates resources adaptively to gain greater precision in those regions of the 
input space where it is needed. 

Finally, we note that in hyperplane coding the classifier conditions serve the 
role of value-based generalizations [14] in the way they organize inputs according 
to similar function values. While this clearly allows for the specification of deci
sion policies for solving reinforcement learning problems, it ignores the attribute-
based generalizations that have been a key feature of the rule-based policies pro
duced by learning classifier systems. Future work will show how attribute-based 
rule conditions can be learned along with value-based generalizations in a tightly 
coupled fashion. 
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Appendix Test Functions 

(a) The Blocks function (b) The Bumps function 

(c) The Doppler function (d) The HeaviSine function 

Fig. 3. The Four Donoho Test Functions 

Blocks. 

f(t) = 3.65948 ∗ 
�

hjK(t − tj) where K(t) = (1 + sgn(t))/2 

(tj) = (0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81) 
(hj) = (4, −5, 3, −4, 5, −4.2, 2.1, 4.3, −3.1, 2.1, −4.2) 

Bumps. 

f(t) = 10.5174 ∗ 
�

hjK((t − tj)/wj) ,where K(t) = (1 + t )−4 | |
(tj) = (0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81)

(hj) = (4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2)

(wj) = (0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008, 0.005)


Doppler. 

f(t) = 24.2158 ∗ sin(2π(1 + �)/(t + �))
�
t(1 − t) , where � = 0.05 

HeaviSine. 

f(t) = 2.3564 ∗ [4 sin(4πt)− sgn(t − 0.3) − sgn(0.72 − t)] 




