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Abstract 
Research on the United States (U.S.) National 
Airspace System (NAS) has sought answers to 
the following questions: Is there measurable 
excess flying time in the NAS?  If so, where 
does it occur?  Using aircraft track and flight 
information for multiple years, we have 
discovered a significant level of excess flying 
time when using a “best observed” flying time as 
a standard. In the en route regime, 4 to 5 
minutes per flight, in good weather, can be 
detected.  Drilling down to a fine-grained 
geographic mesh on a map of the U.S. enables 
detection of specific locations of significant 
delay. These locations can be associated with 
operational sectors. This information has 
allowed an examination of changes over time, 
and should aid in focusing the scarce Federal 
Aviation Administration (FAA) funding for 
congestion management. 

Introduction 
On 21 December 2004, 24 flights departed New 
York John F. Kennedy International airport and 
arrived at Los Angeles International airport (data 
obtained from [1]).  Ten of these flights were 
operated by the same airline using an identical 
aircraft type.  The average airborne time for 
these 10 flights was 338.8 minutes and ranged 
from a minimum of 333 minutes to a maximum 
of 349 minutes.  Although the fastest and slowest 
flights had planned on essentially the same 
amount of airborne time (330 and 331 minutes, 
respectively) their actual performance was quite 
different.  Why such different flying times? 
How much of the difference can be explained by 
factors such as differences in experienced winds, 
and how much by other factors such as airway 
congestion, traffic flow strategies (e.g., miles-in-
trail and vectoring), differences in styles of 
piloting, or aircraft routings?  Is it possible that 

improvements to the NAS could alleviate some 
of the excess amount of flying time? 

Over the years the FAA, along with the aviation 
community as a whole, has strived to increase 
the number of flights the NAS can accommodate 
as well as to increase the efficiency of those 
flights.  On a yearly basis the FAA releases its 
NAS Operational Evolution Plan (OEP) [2] that 
details specific capacity improvements planned 
over a rolling 10-year period.  This plan contains 
much detail about improvements in the en route 
airspace that will take place to reduce flight 
delays as well as increase the efficiency of 
individual flights.  How much improvement is 
possible in today’s NAS?  Do planned 
improvements address much of the current-day 
inefficiencies, or do they only scratch the 
surface?  This study attempts to begin answering 
these questions. 

Background 
The MITRE Corporation’s Center for Advanced 
Aviation System Development (CAASD) has 
been working with the FAA’s Air Traffic 
Organization – Operational Planning (ATO-P) to 
evaluate the amount of potential benefits 
available from future enhancements.  Every day 
across the United States many thousands of 
aircraft fly within the NAS.  The amount of time 
they spend in the air varies from flight to flight. 
Some long-haul flights may be airborne for 
many hours, while short-haul flights may be in 
the air only for tens of minutes.  As discussed 
above, individual flying times may vary widely 
even for identical aircraft types between the 
same airports.  Having a better understanding of 
where inefficiencies may be taking place, and to 
what extent, is important for many reasons.  In 
today’s budget-constrained world it is necessary 
to make sure the right decisions are made 
regarding airspace, technological, and procedural 
enhancements. Knowing how much 
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improvement is possible and how well a 
particular enhancement addresses this need is 
essential for setting expectations.  Plans such as 
the OEP can then focus on areas of greatest need. 
This knowledge helps program evaluators 
understand if expected benefits by various 
programs are reasonable and achievable. 
Deciding the best time to implement 
improvements, and the locations to do so helps 
ensure the most benefit is gained at the right 
times.   

This study attempts to understand the amount of 
excess flying time that may exist in today’s NAS, 
while accounting for some of the causes of flying 
time variation, such as wind effects.  Its focus is 
strictly on the amount of time spent in the air 
compared to some minimal flying time.  It was 
important in the performance of this analysis to 
measure the amount of excess flying time 
experienced in today’s system compared to a 
realistically achievable flying time.  To that end, 
a decision was made to use actual recorded data 
as opposed to simulated or modeled flight times 
in this study.  The use of actual data allowed the 
selection of a minimal flying time to be based 
upon times actually experienced in today’s 
system, as opposed to a theoretical optimal time 
that may not be achievable.  Results are 
presented as absolute minutes of excess flying 
time as well as an excess percentage of flying 
time (to normalize for long versus short flights).   

The authors are not aware of other studies that 
use flying time to measure inefficiency. Some 
other studies use flying time for other purposes. 
Bolczak et al. [3] used estimated time of arrival 
data to analyze a trend in flying time, and report 
some year-to-year changes.  An early simulation 
of “Free Flight” (a set of industry and 
government programs that provide greater 
freedom for pilots and airlines to select planned 
and actual routes and take-off times) [4] 
analyzed flying times for flights, absent the 
constraints of route structure.  Willemain [5] 
examined sources of variability in flying times 
for certain city pairs. The Bureau of 
Transportation Statistics [6] has collected flying 
time statistics and hosts a website that allows the 
public to access city pair flying time information. 

The first part of this study, the flight-based 
method, analyzes flying time between city pairs, 
for similar aircraft types. Adjustments are made 
to actual flying times in order to account for 

wind effects upon the flights.  This part of the 
study discusses the segments of flights analyzed, 
the methodology used for adjusting flying times 
for winds, how minimal flying times were 
selected, the time-period studied, and the overall 
findings of this analysis.  The second part of this 
study focuses on understanding where the excess 
flying time is actually taking place.  It shifts 
from a flight based approach to a geographic 
cell-based approach.  The Cell-Based Approach 
measures excess flying time over small areas 
while accounting for differences in equipment 
type, wind effects, and flight altitude.  Follow-on 
work is also discussed at the end of this report. 

Flight-Based Method 
The flight-based method estimates excess flying 
time in the NAS on a per-flight basis.  This 
excess flying time is the amount by which flights 
exceed minimum flying times. In order to 
compare flying times on different days, wind 
effects on flying times are estimated.  Then, 
excess flying times are computed after 
adjustments for wind effects.  The ideas and 
methods were first described in [7]. 

The following sections present the methodology 
and results for the flight-based method. 

Methodology 
We selected 15 good-weather days from 2001 
and from 2002, which we studied as a population 
of 30 days. Days were selected using a scoring 
scheme, called the misery index. The misery 
index is the sum of percent of flight 
cancellations, twice the percent of flight 
diversions (landing at an airport different from 
the one seen in the original flight plan), and 
percent of flights with more than 30 minutes of 
departure delay.  These three percentage 
measures are based on Airline Service Quality 
Performance (ASQP) data [8].  Previous studies 
such as [9] showed a good correlation between 
this scoring scheme and general weather 
conditions in the NAS.  Based on their scores, 
the days in each year were ranked from best to 
worst. Then, the 15 best days in each year were 
selected for the study. 
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As illustrated in Figure 1, this analysis examined • Forty nmi from origin airport to forty 
flying time for three segments of flight: nmi from destination airport 

•	 Ten nautical miles (nmi) from origin

airport to ten nmi from destination 

airport 


•	 One hundred nmi from origin airport to 
one hundred nmi from destination 
airport 

10 nmi 10 nmi 

40 nmi 40 nmi 

100 to 100 nmi 

10 nmi 10 nmi

40 nmi 40 nmi

100 to 100 nmi

Origin	Origin DestinationDestination

Figure 1. The Three Segments of Flight Analyzed 

The three data sets corresponding to these three 
segments of flight, respectively, provide a rough 
representation of flying times between airports, 
between terminal radar approach control 
airspaces (TRACONs), and within en route 
airspace. The datasets for these segments of 
flight are referred to as the 10/10, 40/40, and 
100/100 datasets, respectively. 

Using Enhanced Traffic Management System 
(ETMS) data, flying times were calculated for 
each flight in the three datasets. (See [10] for an 
overview of ETMS.) The datasets were filtered 
to include only flights whose origin and 
destination airports are both in the Conterminous 
U.S. (CONUS). 

Adjusting for Winds 
Winds, especially winds aloft—which are high 
velocity winds that impact flights at cruise 
altitude—have a major impact on flying times. 
Faced with strong headwinds, to adjust their 
arrival times, pilots may “throttle forward”; 
faced with strong tailwinds, they may “throttle 
back.” Because pilots compensate for winds, it 
is inappropriate to simply apply vector algebra to 
adjust flying times for wind speed and direction. 

We computed wind effects using an opposing 
traffic calculation. Although winds do vary 
during the day, aircraft traveling in opposite 

directions on the same day tend to experience 
opposite wind effects. For each aircraft 
equipment type (as specified in ETMS), we 
calculated average speed (ground flight track 
distance divided by time) for flights from airport 
A to airport B, and also for flights from airport B 
to airport A. We assume that, if winds were not 
a factor, traffic in each direction (for a given 
aircraft equipment type) would want to travel at 
about the same speed. Therefore, we computed 
the wind effect as half the difference between the 
speeds of aircraft flying in opposing directions. 
For example, if the average speed from A to B 
were 400 knots, and the average speed from B to 
A were 600 knots, then the wind effect would be 
a 100 knot headwind from A to B, and a 100 
knot tailwind from B to A.  This opposing traffic 
method is affected by flow control impedance, 
which is the increase in flying time due to Air 
Traffic Management (ATM) requirements in 
response to congestion. However, we found this 
effect to be minor—on the order of about 4 
knots. 

This computed wind effect was applied to each 
flight to obtain an adjusted mean flight speed, 
called the adjusted speed. For each flight, using 
actual ground track distance flown, adjusted 
speed was converted to an adjusted flying time. 
For each of the study days, each 
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origin/destination group (defined in the next 
section), and each equipment type, a wind effect 
adjustment was computed and used to determine 
adjusted flying times.  For example, on a given 
day, assume an individual flight from A to B had 
a speed of 410 knots, a flight (of the same 
aircraft equipment type) from B to A had a speed 
of 588 knots, and the wind effect (between A and 
B for that aircraft equipment type) was 100 
knots.  The A-to-B flight would get an adjusted 
speed of 510 knots, and the B-to-A flight would 
get an adjusted speed of 488 knots.  Then, 
adjusted flying time is calculated as 

adjusted flying time = track distance flown / 
adjusted speed 

Grouping Airports 
Because winds differ from day to day, wind 
effect adjustments must be computed and applied 
on a daily basis.  In order to apply the opposing 
traffic method described here, enough flights for 
each origin/destination pair and aircraft 
equipment type are needed to compute 
reasonably accurate daily wind effect 
adjustments. 

In calculating each daily wind adjustment value 
for a given day, we required at least three flights 
in each direction for each aircraft equipment 
type.  (There are approximately 200 equipment 
type designators in this data.) We discarded any 
flight that had no available wind adjustment 
value.  This minimum sample size requirement 
for wind adjustment calculations forces airports 
with few flights to be ignored in the 
computations, biasing our overall result towards 
larger, busier airports.  To reduce this bias, we 
grouped airports by proximity using a clustering 
algorithm known as K-means clustering [11].  

Wind adjustment values were computed between 
groups of airports, called clusters instead of 
between pairs of individual airports.  Based on a 
tradeoff analysis of fineness of wind adjustment 
versus number of flights available for wind 
adjustment, we computed wind adjustments 
using 25 clusters of airports.  In ancillary studies, 
we found that cluster-based wind adjustments 
yield consistent flying time distributions of 
opposing traffic between cluster pairs, and the 

number of clusters has little effect on flying time 
metrics. 

Computing Excess Flying Time 
We calculated a minimum flying time for each 
origin/destination airport and aircraft equipment 
type combination. We analyzed 30 good-
weather days from 2001 and 2002.  For a subset 
of days considered, a single minimum (wind­
adjusted) flying time was computed for each 
origin/destination/aircraft equipment type 
combination.  Since the minimum flying times, 
and thence the excess flying times, can vary with 
the number and specific choices of days, we 
analyzed the dependence of excess flying times 
on the subsets of days used for analysis. We 
examined 30 samples of 1 day, 15 samples of 2 
days (randomly ordered), 10 samples of 3 days, 
…, and 1 sample of 30 days. 

Analysis Results 
Figure 2 shows for the 40/40 dataset the average 
amount of excess flying time (in minutes) for 
samples of 1 day, 2 days, …, 30 days, both with 
and without wind adjustment.  The body of the 
figure contains box and whisker plots, which 
feature key points of a distribution of values: a 
horizontal median line across the box, box upper 
and lower edges at approximately the third and 
first quartiles, “whiskers” (i.e., extended vertical 
lines with short horizontal head and foot) at 
about 1.5 times the interquartile range beyond 
the ends of the box, and finally, individual 
outlier observations beyond the whiskers.  (See 
[12] for precise definitions.) Because wind 
adjustments are necessary only for comparison 
across days, starting with 2-day samples, we see 
a large divergence in the level and variability of 
the distributions of wind-adjusted and non-wind-
adjusted excess flying times.  The results for the 
10/10 and 100/100 datasets are similar in form, 
with 10/10 having greater excess time, and 
100/100 having less excess time than the 
displayed 40/40 dataset.  The wind-adjusted 
results show about 5 minutes excess flying time; 
the curve flattens at about 15 pooled days in a 
sample.  (For 16 through 30-day samples, we 
have only a single observation, and hence a box 
flattened to a single horizontal line segment.) 
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1* 

* Samples of one day separated to show differences 

Figure 2.  Excess Flying Time Versus Number of Sampled Days, for Dataset 40/40, With and Without 
Wind-Adjustment 

Figure 3 shows the same information as Figure 2 
except that excess flying time is expressed as a 
percentage.  Percentages are not sensitive to 
distance flown.  The wind-adjusted results show 
a flattening at about 10 percent savings at the 15­
day sample point. 

Figure 4 shows excess flying time for all three 
datasets analyzed in this study—10/10, 40/40, 
and 100/100.  Each curve in Figure 4 appears to 
flatten at an x-axis value between 14 and 18 
pooled days (the shaded yellow rectangle on the 
figure).  This is the region where increasing the 
“Number of Pooled Days in Sample” ceases to 

have much effect on “Excess Flying Time per 
Flight (Minutes).” 

Therefore, in Table 1 we summarize the study 
results using the means of two 15-day pools for 
each of the datasets.  Average minutes of excess 
flying time for the 10/10 dataset is larger than 
those for the 40/40 and 100/100 datasets, while 
those for the 40/40 and 100/100 datasets are 
about the same.  Average percent excess flying 
time is largest for the 40/40 dataset and smallest 
for the 100/100 dataset.  The results indicate that 
beyond the terminal areas there is a potential 
pool of benefits of about 4.9 minutes reduced 
flying time, amounting to a potential reduction in 
flying time of 8 to 10 percent. 

Figure 3.  Excess Flying Time (Percent) Versus Number of Sampled days, Dataset 40/40, With and 
Without Wind Adjustment 
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Figure 4.  Excess Flying Time (Minutes) Versus Number of Sampled days, All Datasets 

Table 1.  Average Excess Flying Times for 15-Day Pools With Wind Adjustment 

Dataset 
Average Minutes 

Excess 

Average 
Percent 
Excess 

10/10 6.4 9.5 
40/40 4.9 10.0 

100/100 4.7 8.1 

An extension of the analysis (not shown here in 
tables or figures) examined excess flying time 
for the 100/100 dataset for all of the days of 
2003 (i.e., all available days, a total of 355). 
This sample included all the good and bad kinds 
of weather one would see in an entire year.  A 
plot of overall average excess flying time per 
flight vs. pooled days, 1 to 355, showed a 
monotonic increase – steep at first, then rather 
gradual.  Even beyond 300 pooled days, there 
was a slight increase in average excess flying 
time as each single day was added: 301, 302, …, 
355.  This indicates that each additional day 
added to a sample pool supplies either new 
minimum flying time flights to reset a baseline, 
or new high-delay flights.  The average excess 
flying time for 355 days of 2003, for the 100/100 
dataset, was about 8.5 minutes. 

Cell-Based Approach 
Given the results of the flight-based method, a 
question immediately arises: Where are the 
excess flying times taking place?  Knowledge 
about geographic location would allow informed 
decision-making on deployment of procedures 
and automation to ameliorate the condition, if 
that is possible.  The data used for this analysis 
were the same as that used with the flight-based 
method, ETMS data for the CONUS. 

The method relies on the overlay of an imaginary 
grid, a collection of equi-spaced horizontal and 
vertical lines which define cells, on the CONUS. 
Excess flying time is assessed for each 
individual grid cell, with color displays of the 
results.  A first consideration was the cell size. 
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After some analysis, we decided on cells with 50 
nmi on a side.  However, flights with less than 
25 nmi flight distance through a cell were 
discarded, since we wanted to avoid the possible 
increased variance associated with transient 
flights such as “corner cutters.”  In addition, if 
very short traversals were allowed, then 
interpolation error would become a larger 
percentage of the estimated traversal time. 

The steps of the methodology were as follows: 

Step 1.  Compute wind-adjustment value for 
each combination of: cell, altitude, aircraft 
type, and direction of flight (referred 
hereafter as “combination”). Just as with the 
flight-based method, we employed the 
“opposing flight” logic to discern wind 
effects, and enforced a minimum sample 
size rule.  Altitude data was stratified to 3 
levels: 0-18K’ MSL, 18K’MSL-FL290, 
above FL290, (where MSL=Mean Sea Level 
and FL=Flight Level). Direction of flight 
was divided into 8 points of the compass.   

Step 2.  Create a look-up table of wind-
adjustment values for each day of interest. 

Step 3. Analyze entire data set to find the 
best speed (after wind adjustment) for each 
cell/combination.  Cell traversal speed is the 
arbiter of excess flying time, since flights 
have differing cell traversal distances.  The 
set of best speeds per cell/combination 
establishes a benchmark against which 
computed excess flying times will 
necessarily be positive (or zero). 

Step 4.  Select one or more days for 
analysis. For each cell, for its set of flight 
traversals, compare flight speeds (after wind 
adjustment) to the best speeds of Step 3. 
Flights with speeds slower than the 
benchmark are considered to have deficit 
speed, from which can be computed an 
excess flying time.  Combinations are 
aggregated as appropriate for analysis. 

An Application of the Cell-
Based Approach 
Recently, some questions have arisen at the FAA 
regarding the en route airspace: Are current 
traffic patterns different from those seen in 

2000? Is there more traffic, with more delay? 
(Following the traffic decrease after the 
September 11, 2001 (9/11) tragedy, traffic levels 
in 2004 approached, and in some quarters 
exceeded, the very busy traffic year 2000.)  We 
selected 21 days in 2000 and 23 days in 2004 
with generally good weather, and with similar 
misery index values for comparison.  A 
benchmark best-speeds matrix was computed by 
examining all of the available data for 2000 and 
2004, guaranteeing that excess flying times in 
each cell/combination would be non-negative. 

Figures 5 and 6 show the results, averaged by 
year. Units are in total excess flight minutes, 
i.e., the summation of excess flight minutes for 
all the flights through a cell.  The year 2004 has 
several areas of higher excess flying time: near 
Atlanta, and west of Chicago.  A further analysis 
(not displayed here) indicates that these high-
delay regions are experiencing higher traffic 
levels.  Obviously, these new high delay regions 
are good targets for instigation of procedures and 
tools which would ameliorate the situations.  

Although preliminary, this example 
demonstrates the ability of the cell-based method 
to identify geographic areas of interest with 
respect to delay and congestion. 

Conclusion and Next Steps 
An examination of excess flying time in the U.S. 
has been described in this paper, using two 
different but compatible methods.  The flight-
based method computes flight-specific excess 
flying time, and finds 4 to 5 minutes average per 
flight in the en route regime, with an additional 
1.5 minutes if the terminal area is also 
considered.  The cell-based method computes 
excess flying time using an imaginary grid 
overlaying  the U.S., resulting in cell-specific 
results. Both approaches rely on a minimum-
observed flying time as the basis of computation. 
The second technique allows a focus on 
geographic region of interest, and should help 
decision makers focus scarce resources. 

This analysis is proceeding by further 
examination of differences between traffic levels 
and traffic delay in 2000 (i.e., pre-9/11) and 2004 
(when traffic levels approach or exceed pre-9/11 
levels.)  
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Figure 5: Excess Flying Time (Total Flight Minutes), Averaged over Sample Days of 2000 

Figure 6: Excess Flying Time (Total Flight Minutes), Averaged over Sample Days of 2004
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