
  1 

Models, Prediction, and Estimation of Outbreaks of Infectious Disease 
Peter J. Costa 

James P. Dunyak 
Mojdeh Mohtashemi 

{pjcosta@mitre.org, jdunyak@mitre.org, mojdeh@mitre.org} 
The MITRE Corporation 

202 Burlington Road 
Bedford, MA  01730–1420 

 
Abstract 

 
Conventional SEIR (Susceptible–Exposed–

Infectious–Recovered) models have been utilized 
by numerous researchers to study and predict 
disease outbreak.  By combining the predictive 
nature of such mathematical models along with 
the measured occurrences of disease, a more 
robust estimate of disease progression can be 
made.  The Kalman filter is the method designed 
to incorporate model prediction and 
measurement correction.  Consequently, we 
produce an SEIR model which governs the short 
term behaviour of an epidemic outbreak.  The 
mathematical structure for an associated 
Kalman filter is developed and estimates of a 
simulated outbreak are provided 
 
1. Introduction 
 
 Mathematical models have been used to study 
the outbreak of a number of infectious diseases 
[1, 2, 6].  In particular, difference and differential 
equations are the methodologies in which such 
models are written [4, 5, 6].  Many research 
hospitals and/or public health departments are 
maintaining a database of emergency room visits 
by patients with categorized complaints.  The 
combination of a mathematical model of an 
outbreak with daily measurements beckons the 
application of a Kalman filter to provide an 
optimal estimate of the number of infections.  
This paper will provide the mathematical 
infrastructure required to implement a Kalman 
filter on simulated emergency room data. 
 
 The program of this discussion will be to 
provide a general model, discuss model 
simplification, and demonstrate the efficacy of 
the filter on simulated data.  In this first section, 
we establish common notation and a general 
model for the outbreak of a specific (but 
unknown) infectious disease through a general 
population.  

 
1.1 Notation 
 
S = S(t) = number of people in the population 
susceptible to the disease at time t 
E = E(t) = number of people in the population 
exposed/infected by the disease at time t 
I = I(t) = number of people in the population who 
are infectious at time t 
R = R(t) = number of people in the population 
who have recovered from the disease at time t 
There are a number of parameters which will 
need to be either modeled or estimated from the 
data.  It is assumed that these parameters are 
time invariant though more sophisticated efforts 
and information could produce time–varying 
models.  A description of these parameters is 
listed below. 
 
1.2 Parameters 
 
β = probability of disease transmission 
v = rate of seroconversion (i.e., from exposed to 
infectious) 
µI = death rate of infectious due to the disease 
α = recovery delay rate 
ρ(I) = βI(t) = conversion rate from susceptible to 
exposed/infected (also called the force of 
infection) 
 

In figure 1 below, a schematic diagram 
expresses the graphical representation of the 
spread of an infectious disease through a 
population.  Implicit in this figure is the 
assumption that everyone in the population is 
susceptible to the disease.  The first boxes 
illustrate the migration of the population of 
susceptibles S(t) to those exposed and infected 
E(t).  The rate at which the susceptibles are 
infected is proportional to the number of contacts 
c with the infectious population I(t) times the 
probability of disease transmission per contact β 
times the proportion of the population which is 
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infectious:  ρ(I) = βI(t).  Since the infected leave 
the population of susceptibles a negative sign is 
attached to this quantity.  Consequently, dS(t)/dt 

= 0 – ρ(I)S(t) ≡  βI(t)S(t).  In a similar manner, 
the disease dynamics of equation (1.1) are 
formed. 

 

 
Figure 1.1. Disease dynamics 
 
1.3 Disease Dynamics 
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This “full” model expressed in (1.1) operates 
under the simplifying assumption of a 
sufficiently short time–scale such that no 
significant population enters the susceptible 
population and that the parameters β, ν, µI, and α 
do not vary with respect to time.  The efforts 
behind this work are to present a model for a 
short time–scale within the epidemic cycle (i.e., 
on the order of 2–3 weeks).  Consequently, a 
series of simplifying assumptions can be made 
which are listed below. 
 
 
 
 

Assumptions 
 

(i) Short time–scale:  t ∈ [to, to + ∆t] 
where the change in time ∆t is less 
than three weeks. 

(ii) No immigration to or emigration 
from the subpopulations 

(iii) Insufficient time for R (recovereds) 
to return to the population of 
susceptibles 

(iv) For t ∈ [to, to + ∆t], S(t) = S(to) = So. 
 

From (iv), 0dS
dt

=  and  (constant).  Set 

ρ(I) = βS

( ) oS t S=

oI(t) ≡  ρoI(t), where ρo  βS≡ o, so that 
the second and third equations of the disease 
dynamics become 
 

( ) ( )

( ) (1 ) ( )

o
dE I t vE t
dt
dI vE t I t
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ρ

α

= −

= − −
 (1.2) 
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Observe that the fourth equation of the disease 
dynamics is completely decoupled from the 
middle two equations.  Consequently, the 
population of recovereds can be computed as 
 

( ) ( ) (1 ) ( )
o

t

o I
t

R t R t I dµ α τ= + − − ∫ τ . (1.3) 

 
By setting X = [E,I]T , the reduced set of disease 
dynamics can be written in the vector–matrix 
form 
 
d A
dt

=
X X  (1.4) 

 

where
1

oA
ν ρ
ν α
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
. 

 
The measurements of this system are a portion of 
the number of infectious which report to 
emergency rooms on a day–to–day basis.  More 
precisely, let T be the probability that a member 
of the infectious population appears in a 
reporting emergency room.  Then, the 
measurements are 
 
m(t) = TI(t). (1.5) 
 
The measured quantity, TI(t), rather than the 
modeled population of infectious people I(t), is 
what emergency departments reported.  Thus, 
make the following change of variables (1.6) to 
transform the problem to a “non–dimensional” 
framework. 
 

�

( ) ( ) ( )

( ) ( ) ( )

I t TI t I t

E t TE t E t

≡

≡

$a

a
 (1.6) 

 

Since, 
�d E dET

dt dt
= and d I dIT

dt dt
=

$
, then 

multiplying (1.2) by T and simplifying yields the 
“dimensionless” disease dynamics 
 
�

�

�

( ) ( )

( ) (1 ) ( )

o
d E I t vE t
dt
d I vE t I t
dt

ρ

α

= −

= − −

$

$
$

 (1.7) 

 
and the associated measurements 
 

( ) ( )m t I t= $ . (1.8) 
 

Now with � � ,
T

E I⎡ ⎤= ⎣ ⎦X $ and A as above, the 

disease dynamics can be written as 
 
�

�d A
dt

=
X X  (1.9) 

where �X  is the state vector.  As equation (1.9) 
illustrations, the disease dynamics are linear.  
Moreover, there are regular time measurements 
(1.8).  Modern control theory was developed 
around this very scenario:  The need to solve 
linear differential equations in association with 
regularly sampled (in time) measurements.  An 
optimal estimate of the model predicted/ 
measurement corrected state of a disease 
outbreak can be obtained via the Kalman filter.  
The discussion is hereafter, framed in the 
Kalman filter context. 
 
2. The Kalman Filter 
 

Since the mathematical models of the 
disease dynamics (1.9) and measurements (1.8) 
are inherently imperfect, “noise” in the form of 
zero–mean Gaussian random processes are added 
to enhance these modelling deficiencies.  Thus, 
to the state dynamics, add a vector w(t) ~ 
N(0,Q(t)) called the state or system error.  The 
matrix Q(t) is called the state or system noise 
covariance.  Similarly, to compensate for the 
variability in the measurements, a vector v(t) ~ 
N(0,V(t)) called the measurement error is added 
(1.8).  The matrix V(t) is called the measurement 
noise covariance.  The definitions below help to 
develop the Kalman filter (see, e.g., Costa [3]). 
 

State Vector:  �
�E

I

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

X
$

 

State Dynamics:  
�

�d A
dt

=
X X  

System Model:  
�

�( ) ( ) ( )d t A t t
dt

= +
X X w  

System Noise Covariance:  [ ]( ) ( )Cov t Q t≡w  

Measurement:   �( ) ( ) ( )m t I t H t= ≡ X$

Measurement model:  ,  �( ) ( ) ( )m t H t t= +X v
Measurement Jacobian:  H = [0,1] 
Measurement Noise Covariance:   
 [ ]( ) ( )Cov t V t≡v  
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Transition matrix:   ( )( , ) exp [ ]o ot t A t tΦ = −

where
1

oA
ν ρ
ν α
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

Measurement Ensemble to time tn:  

  
{ }1 2( ), ( ), , ( )
{} the empty set

n n

o

M m t m t m t
M

=

= =

L
 

State Prediction:  
� �

� �
1 1 1 1

1 1 1

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) (

p pk k k k k k

p po o o o o

t M t t t M

t M t t t M t t t
− − − −= Φ

= Φ ≡ Φ

X X

X X � )oX
 

State Jacobian:  F = A 
Covariance dynamics (Ricatti Equation):   

 ( ) ( ) ( ) ( )TdP t P t F FP t Q t
dt

= + +  

Covariance prediction: 

   

1

1 1 1( ) ( , ) ( ) ( , )

( , ) ( ) ( , )
n

n

T
n n n n n n

t
T

n n
t

P t t t P t t t

t s Q s t s ds
−

− − −= Φ Φ +

Φ Φ∫
Kalman gains matrix:  
  ( ) ( ) ( )T

n n nK t P t H t= ℑ  
Information matrix:   
 1( ) [ ( ) ( )]T

n n nt HP t H V t −ℑ = +  
State correction:   
  � ( , ) ( )[ ( ) ( )]c n n n n p nt M K t m t m t= −X
Predicted measurement:   
 1( ) ( , )pp n n nm t I t M −= $  
State estimate:   
  � �

1
ˆ ( , ) ( , ) ( , )p cn n n n n nt M t M t M−= +X X X

Covariance update (Joseph form):  
 

( ) [ ( ) ] ( )[ ( ) ]

( ) ( ) ( )

T
n nxn n n nxn n

T
n n n

P t I K t H P t I K t H

K t V t K t

= − − +
 

 
3. Simulation 
 

A mathematical model that simulates 
the underlying dynamics of the hospital daily 
visits that are influenza related was developed in 
the form of equation (3.1) 
 

( ) 2cos(2 / 365) 8 tD t t wπ= + + . (3.1) 
 
Here t = 0, 1, 2, … , 5x365 is measured in single 
days over five years, and is 
normally distributed noise.  We assumed the 
following set of initial conditions and 
parameters:  

(0,2)tw N�

� �1000, 10, 1, 2,o o o oS E I R= = = =
0.4, 0.5, 0.3,  and 0.1Iν β α µ= = = = . 

The system noise covariance Q was selected as a 
10% variation of the initial state covariance 

and � � � �( ) ( ( ) )( ( ) )T
o o oo oP t X t X tµ µ= − −

� � �( )1
2 o oo E Iµ = + .  Finally, the measurement 

noise covariance V was selected as the variance 
in the data. 
 

The filter was run over the simulated data 
(3.1) to establish a baseline estimate of the 
number of exposed/infected and infectious 
reporting to an emergency department.  The 
results are depicted in Figure 3.1 below.  A one–
standard deviation neighborhood, based on the 
estimated covariance matrices P(t) was 
computed for the infectious class; see top portion 
of Figure 3.2.  Then a simulated one–week (i.e., 
seven day) outbreak was introduced into the 
population at a random seed time to in the form 
of (3.2). 
 

 
Figure 3.1. Baseline Kalman filter estimates 
from simulated data 
 

 
Figure 3.2. One standard deviation neighborhood 
of the infectious class 
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0  for  
( , ) 2( )  for  6

0  for  6

o

outbreak o o o o

o

t t
f t t t t t t t

t t

<⎧
⎪= − ≤ ≤ +⎨
⎪ > +⎩

 (3.2) 

 
That is, was added to the simulated 
data D(t) in (3.1).  If the Kalman filter estimate 
of the infectious class 

( , )outbreak of t t

( , )k kI t M$ , reflecting the 
influence of the measurements 

through time t( ) ( , )outbreak oD t f t t+ k, exceeded 
the one–standard deviation neighborhood 
established for the baseline case within ten days 
of the start of the outbreak (i.e., for 

), then a true positive for 
outbreak detection was recorded.  Otherwise, a 
false negative was recorded.  To insure a 
sufficient number of measurements were 
processed by the Kalman filter, the range of the 
random outbreak time was restricted:  

days.  One thousand random 
outbreaks were tested and the number of true 
positives (T

[ , 10]k o ot t t∈ +

[50,1800]ot ∈

p) and false negatives (Fn) were 
recorded.  For this test, 100% of the outbreaks 
were discovered within the requisite time period 
(10 days).  In particular, 2.9% of the outbreaks 
were detected on day 2, 17.3% were detected on 
day 3, 59.8% were detected on day 4, 19.9% 
were detected on day 5, and 0.1% were detected 
on day 6 of the outbreak. 
 
Summary 
 
 A set of mathematical models 
governing the outbreak of an infectious disease 
have been detailed.  Simulated data have been 
generated.  The associated Kalman filter has 
been developed and tested against the simulated 
data with positive results.  Analysis concerning 
the variation of the model parameters and their 
effect upon the Kalman filter estimates and the 
application of this method to real recorded 
emergency department data will be the focus of 
future work 
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