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ABSTRACT

In this study we investigate acquisition (code offset and chan-
nel state estimation) of multiple direct sequence spread spec-
trum DSSS signals in a multi-antenna ad hoc network. We
derive the form of the optimal acquisition algorithm and
show that it is NP-complete. We then derive a tractable
suboptimal approach where we use a successive multistage
cancellation approach in estimating the initial code offsets
and channel matrix. Finally, we show probability of error
curves for the optimal and suboptimal delay estimators.

1. INTRODUCTION

Mobile ad hoc networks (MANET) employing packet ra-
dio communications are rapidly becoming a target platform
for a number of mobile communications applications. Con-
ventional ad hoc networks employ single antenna nodes for
both transmission and reception and suffer from the inabil-
ity to resolve colliding packets. Medium access control
(MAC) layer protocols have been designed to help avoid
collisions. However, as the number of users and data pack-
ets increase, collisions become inevitable and requests for
retransmission quickly limit the overall system capacity. Sin-
gle antenna receivers employing direct sequence spread spec-
trum (DSSS) signaling can take advantage of the spread sig-
nal and use the different delays (code offsets, lags) to help
discriminate packets arriving in the same time window. In
packet radio communications, all users in the network use
the same spreading sequence and therefore can only be dis-
criminated based on their delays. Estimation of these differ-
ent delays is the job of the acquisition stage. For the single
antenna case, near simultaneous packet arrivals will prevent
successful demodulation. Other problems such as overload-
ing (number of signals greater than spreading length) and
the near-far condition (one transmitter very close to receiver
and drowns out signals further away) will cause the single
antenna receiver to fail.

Multiple antenna receivers (adaptive arrays) are able to
exploit the spatial domain to overcome many of these time
domain problems. Adaptive arrays for MANET were shown
to improve throughput performance of a slotted-ALOHA
based network [1, 2] and a carrier sense multiple access

(CSMA) based network [3, 4]. These authors used adap-
tive beam and null steering methods which assume a known
fixed and calibrated antenna array.

The goal of this work is to derive estimators of the time
delays and channel matrices for the acquisition stage of a
multi-antenna system receiving multiple DSSS signals. To
this end we build on the work of Dlugos et al. [5] who
derived the maximum likelihood estimator and computed
the acquisition performance for a single DSSS signal im-
pinging on an adaptive array in a frequency flat fading en-
vironment. We consider the case of multiple transmitted
signals and show that the maximum likelihood acquisition
algorithm is NP-complete. We propose an efficient subop-
timal procedure for esimating the time delays and channel
matrix assuming the number of sources is known.

The rest of this paper is organized as follows. We de-
scribe the signal model in Section 2. We derive optimal
and suboptimal algorithms for acquistion in Section 3. We
demonstrate the performance of the proposed acquisition al-
gorithm in Section 4.

2. SIGNAL MODEL

For analysis and simulation purposes, we work with sig-
nals that have already been downconverted and digitized.
The digital baseband DSSS signal emitted from transmitter�

sampled at ��� samples per chip at ��� chips per bit for an��� -bit block is written �	��
����� � � ����������������� as:����� �	��
 � ��� �	�"! ���$# ��������&% � (1)

where ')(�*�
,+	-/.0.2143"(	5 , � ��� �	� is the filtered and sampled
spreading code sequence for transmitter

�
and ! ��� '768�9:8�; *�� is

the data bit sequence ( ! ��<>= �?�@���&A ) for BPSK modulation.
In keeping with the standard practice in ad hoc network

systems, we assume all packets have the same spreading se-
quence. Different packets arrive with different delays. We
assume that the delay of a given packet is constant across
all the receiving antenna elements. This assumption breaks
down if the antenna spacing is large and the signal band-
width is sufficiently high. The mobile radio channel is mod-
eled as a wide sense stationary uncorrelated scattering (WS-
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SUS) frequency flat slow fading channel. The received sig-
nal at sensor � is then written as:

(�� � �	��
 6������	 � 
�� ����� � �� � ��� � ��������� ������� � �	� (2)

where ����� � �� � � is the
�
th source signal delayed by  � and��� is the number of transmitted (source) signals. The vari-

ables � � � and  � � are the amplitude and phase with respect
to transmitter

�
and receiver � . Rewriting (2) in matrix-

vector form yields �	��
�����@��� � � ����� ������� ���! � �	��
#"%$ � � �'& �(��) � �	� (3)

where ! � �	� <+* 6�,.-/� is the zero-mean observation vector
collected across all �.0 sensors at time sample � , $ � �	� <1 6��.-/� are the hidden zero-mean source signals contain-
ing the waveforms at time � from each of �.� transmitters," <2* 6�,.-46�� is the complex-valued mixing matrix model-
ing random amplitude and phase values for each transmitter-
receiver pair, ) � �	� <3* 6�,.-/� is the zero-mean complex
Gaussian thermal receiver noise at sample � , and & is the
vector of circular shift time delays written as& 
 �  � �' � �545454��' 6��6��� � � (4)

where  � is an integer taking values in �879 � 7�������� .
We collect the first � samples (snapshots) across all re-

ceivers in (3) and stack the snapshots into the matrix :,
� ! � �0� � ! � � � �545454�� ! � �<; ��� � � . Doing likewise for $ � � �=& � and) � �	� , we can write the received signal model as: 
#"?> 3@& 5.��A � (5)

As a preprocessing step for the algorithms to be de-
scribed later, we whiten the observation data by applying
a linear transformation B to yieldC 
9BD: 
#EF> 3@& 5.�HGA (6)

where E 
9BI" 
 � J.� � J � �545454 � J 6������ � <LK 6�,M-46�� (7)

is the whitened mixing matrix,
C

is the whitened observa-
tion matrix, and NA 
9B%A is the new observation noise
matrix. The whitening transformation matrix is formed asB 
PORQ ���TSVU ORW (8)

where O and Q are computed from the eigen decomposi-
tion of the observation covariance matrix as X � :%: W � 
ORQDO W . Whitening causes the observed data matrix to be-
come uncorrelated and have unit power in each dimension.
We also assume that our source signals are uncorrelated and
have unit power. Thus, we can writeX � CYC W ��
PZ 6�,M-46�, X � >[> W ��
#Z 6��[-46�� � (9)

The source signals, in actual fact, will almost never all be
equal to unit power. The different signal amplitudes will be
contained within the E matrix in (7) and therefore unattain-
able without explicit knowledge of the " matrix values in
(5).

3. MULTIPLE SIGNAL ACQUISITION

As mentioned previously, the objective in the acquisition
stage is to estimate the time delays (or code offsets) for ev-
ery source signal as well as the channel matrix (or channel
state information). We can estimate the channel matrix E
with respect to the whitened observation as in (6), or we can
estimate the array manifold matrix " with respect to the
original observation. We opt for the former to simplify the
analysis.

Fortunately, both data and control packets in a MANET
contain initial known bit patterns called preambles to aid in
the acquisition process. These known bit patterns for the
different sources causes the > 3@& 5 matrix in (5) to take the
form

> 3@& 5 

\]]]
^

$ ��$ � �...$ �6������
_ ```
a 


\]]]
^

b � 3@ � 5b � 3@ � 5...b � 3@ 6������ 5
_ ```
a 
Pc 3@& 5 (10)

where c 3@& 5 <+d 6��.- 8�e , �<; is the number of samples in
the preamble, b is the known spreading sequence covering
the length of the preamble, andb � 3@�f&5 
 � � � 3�3"� ���f&5�5 8�e � �/� � 3�3"� ���fg� �25�5 8�e � ��� � � �� � 3�3"� ���fg� �<; ���25�5 8�e � �

(11)
where 3�3"(	5�5 8 means ( modulo � . The whitened observa-
tion model for the acquisition stage is therefore writtenC 
#ELc 3@& 5.��h (12)

where now
C <D* 6�,.- 8�e and is a complex Gaussian matrix

with pdf
Cji *(k 3lELc 3@& 5$�Vm�5 . Note that the covariance

matrix equals the �.0�n ��0 identity matrix for the whitened
data case.

3.1. Optimal Acquisition

The optimal estimator for acquiring the time delays of the
source signals and the mixing matrix which contains all the
channel state information is obtained through the maximum
likelihood estimator (MLE) given as:o�p& pEDq 
srutVv&Yw xzy r|{�� 3 CI} & �VE 5 � (13)



The MLE is optimal in the sense that, under the signal
model given in (3), it is the minimum variance unbiased es-
timator (MVUE). It achieves the Cramer-Rao lower bound
and contains the minimum variance among the class of all
unbiased estimators. To derive the MLE, we first write out
the pdf for the whitened data matrix

C
calculated from (6)

and modeled as a zero-mean complex Gaussian random ma-
trix in (12)� 3 CI} & �VE 5��#� � 143 � 3 C � ELc 3@& 5�5 3 C � ELc 3@& 5�5 W?5 (14)

where � � 143 4 5 
���{�� 3 � 1 � 4 �"5 . The approach here is analogous
to the derivation of the single transmitter case in [5]. If we
add and subtract the term

C c � 3@& 5 3lc 3@& 5 c � 3@& 5�5 ��� c 3@& 5�5 C W
within the trace operator we can manipulate the expression
to be� 1 � CYC W ���
	 = C c � 3@& 5 E W A � ELc 3@& 5 c � 3@& 5 E W �
 � 1 � C 3lm � c � 3@& 5 3lc 3@& 5 c � 3@& 5�5 ��� c 3@& 5�5 C W �3lE � C c � 3@& 5 3lc 3@& 5 c � 3@& 5�5 ��� 5 c 3@& 5 c � 3@& 5|n3lE � C c � 3@& 5 3lc 3@& 5 c � 3@& 5�5 ��� 5 W �

(15)
Since both terms within the trace are semidefinite, the trace
is minimized when the second term is set to zero. This al-
lows us to solve for the channel matrix MLE (which is a
function of the yet unknown time delay vector) aspE����� 
 C c � 3@& 5 3lc 3@& 5 c � 3@& 5�5 ��� � (16)

The time delays estimate can be computed independent of
the channel matrix estimate and then plugged into (16) to
solve for the channel parameters. The MLE from (13) then
becomes o�p& pEDq 
#rutVv y r|{x

�
y r|{& � 3 CI} & �VE 5�� � (17)

From the first term in the trace, we can solve for the time
delays estimate as:p& 
#rutVv& y r|{ � 1 � c 3@& 5 C W C c � 3@& 5 3lc 3@& 5 c � 3@& 5�5 ��� �

(18)
The time delays estimation problem is a combinatorial opti-
mization problem since the time delays are positive integers�879 � 7 �������>� � 
 �����@��� � � ����� ��� .
3.2. Suboptimal Acquisition

The estimate for the channel matrix in (16) is easily com-
putable once the time delays estimate is found. However,
the optimal solution to the time delays estimate involves dis-
crete optimization methods. Since (18) is an NP-complete
problem, and therefore too computationally complex for real-
time acquisition, we are interested in suboptimal approaches

to this problem. One method for approximating
p& that is

robust to close delay spacings is to use successive multi-
stage cancellation (SMC). In this approach we estimate one
source (or equivalently one time delay) at a time, estimate
the channel vector corresponding to that source, reconstruct
the individual received signal, and then subtract that recon-
structed signal from the received mixture.

We start by assigning
C�� ��� 
 C

and B � ��� 
 B . We
then proceed to show the steps within a given stage of the
SMC acquisition approach.

3.2.1. Estimating Time Delays

We first note that when (18) is reduced to the �[� 
 � case
that c 3@& 5 
 b � 3@ � 5 and

3lc 3@& 5 c � 3@& 5�5 ��� 
 3 b � 3@ � 5 b 3@ � 5�5 ��� 
 �� b � U (19)

This allows us to write the time delay estimate for the
�����

source from (18) as� � 
#rutVv� � y r|{ ��! "��# b � 3@ � 5 � C$� � � � W C$� � � b 3@ � 5
PrutVv� � y r|{�%% C$� � � b 3@ � 5&%% U (20)

where
� 4 � denotes the ' U norm. The parameter estimate� � in (20) can be efficiently computed using circular con-

volution via discrete Fourier transforms. The vector
p& up

through stage
�

is formed asp& � � � 
 �  � �' � ��� � � �' � � (21)

3.2.2. Estimating the Channel Matrix

Once the
�����

time delay estimate is computed, we solve (16)
for the ��� 
 � case which givespJ � 
 �� b � U C b 3@ � 5 � (22)

We collect the channel vectors in (22) into the partial chan-
nel matrix estimate aspE � � � 
 o pJ.� � pJ � ��� � � � pJ � q � (23)

Given the
� ���

partial channel matrix estimate in (23), we can
reconstruct the signal subspacep: � � � 
 � B � � � � ��� pE � � � p> � � � (24)

where p> � � � 
(	 = � pE � � � � ��� C � � � A � (25)

Subtracting (24) from the original observation matrix : in
(5) gives the stage

�
residual observation matrix: � � �) 
#: � p: � � � � (26)



We then reassign the new whitened observation matrix to beC � � � � � 
PB � � � � � : � � �) (27)

where B � � � � � 
#O ) Q ���TSVU) ORW) (28)

is the new transformation matrix formed from X � : � � �) � : � � �) � W ��
O ) Q ) O W) . We then increment the stage counter
� 
 � � �

and go to (20). Once all the source signals have been found,
we have

p& and we can plug this into (16) to obtain a more
accurate estimate of the overall channel matrix. We summa-
rize the complete algorithm here.

Suboptimal Acquisition Algorithm

1. Select the first �=; samples from (2) across all re-
ceivers.

2. Whiten the data according to (6) and (8).
3. Initialize

� 
 � , set
C�� ��� 
 C

, B � ��� 
 B , and store
known preamble spreading sequence parameterized
by circular delay shift  � as b 3@ � 5

4. Estimate time delay (code offset) of strongest avail-
able signal using (20)

5. Estimate channel vector corresponding to that time
delay estimate using (22) and stack channel vector
estimate into the partial channel matrix estimate as
in (23).

6. Compute residual observation matrix (26) using (25),
(23), and (28).

7. Update the whitened observation matrix according to
(27) and the whitening transformation matrix accord-
ing to (28).

8. Increment stage counter
� 
 � � � and go to step 4 if��� ��� .

9. Assign
p& 
 p& ���6�� � . Plug

p& into (16) to obtain channel
matrix estimate.

4. SIMULATION RESULTS

We used four transmitters and six receive elements to create
a channel matrix with magnitude one in each element but
with a different random phase each trial. We randomize the
bits, channel matrix, and receiver noise at each trial. The
signal delay spacing between the four transmitters was held
fixed at 30 samples. Our spreading code is an upsampled
and filtered Barker code with 11 chips per bit and we sample
at 10 samples per chip.

Fig. 1 shows the average probability of error for the op-
timal delays estimator from (18) and suboptimal delays es-
timator from (20)-(28) estimating using 200 Monte Carlo
trials. We plot the average probability of error � � as a
function of the post-despread SNR per bit ���8	� (assuming
a uniform distribution of received powers). The successive
multistage cancellation approach for estimating the delays
vector in (4) is computationally efficient and performs com-
parably well to the intractable optimal estimator.
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Fig. 1. Performance comparison of the proposed suboptimal acquisition
algorithm to the optimal NP-complete delays estimator.
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