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Abstract— This paper presents a brief overview of space-
time algorithms for communication systems operating
in quasi-static Rayleigh flat fading environments. The
space-time algorithms exploit a multi-input multi-output
(MIMO) channel and are designed to meet criteria
for optimality under three different channel state
information (CSI) conditions: 1) CSI at receiver and
transmitter, 2) CSI at receiver but not transmitter, and
3) CSI at neither receiver or transmitter. We analyze
the theoretical capacities of the MIMO channels and
give the design criteria for space-time codes (STC)
under each condition. We briefly describe Grassmannian
beamforming (quantized beamforming), space-time block
coding (STBC), space-time trellis coding (STTC), and
unitary space-time modulation (USTM) for a

�����
MIMO

system operating at a spectral efficiency of 2 bps/Hz. We
show through simulation the comparative performance of
each of the space-time transmission schemes presented.

Index Terms— space-time coding, performance com-
parison, space-time block codes, space-time trellis codes,
unitary space-time modulation

I. INTRODUCTION

Increasing demand for greater use of the radio fre-
quency spectrum and the complexity of multipath fading
channels has prompted the use of multiple antenna com-
munications systems to overcome the deficiencies inher-
ent in single antenna communications. With proper usage
of multiple antennas we can achieve higher data rates
and better quality of service (QoS). In fact, multiple-
input multiple-output (MIMO) antenna systems have
been shown theoretically and experimentally to break
Shannon’s bound established for single-input single-
output (SISO) by a factor proportional to the minimum
of the number of transmit elements and receive elements.

Given an arbitrary wireless communication system, we
consider a link for which the transmitting end as well
as the receiving end is equipped with multiple antenna
elements as in Fig. 1. In MIMO communications the sig-
nals on the transmit and receive antennas are combined
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Fig. 1. High level diagram of a multi-input multi-output (MIMO)
system employing space–time coding.

in such a way that the quality (bit-error rate or BER)
and/or the data rate (bits/sec) of the communication for
each MIMO user will be improved. A core idea in MIMO
systems is space–time signal processing in which time
is complemented with the spatial dimension inherent
in the use of multiple spatially distributed antennas. A
key feature of MIMO systems is the ability to turn
multipath propagation, traditionally a pitfall of wireless
transmission, into a benefit for the user. MIMO systems
take advantage of random fading and multipath delay
spread to create parallel information channels. Multiple
antennas at both the transmitter and the receiver create a
matrix channel (of size the number of receive antennas
times the number of transmit antennas). The advantage
lies in the possibility of transmitting over several spatial
modes of the matrix channel within the same time-
frequency slot at no additional power expenditure [6].
A MIMO system differs from conventional coherent
antenna arrays in that the antennas expect to see decor-
related fading.

This paper gives an overview of the theoretical ca-
pacities and the simulated performance of space–time
coding (STC) schemes developed to exploit the MIMO
channel. Specifically, we look at STC algorithms that are
optimal under differing assumptions on the availability
of channel state knowledge. If a transmitter or receiver
possesses channel state information (CSI), it is said to
be informed borrowing from the terminology of [2]. We
consider the following three cases:
� Case A: CSI at Receiver and Transmitter (Informed

Receiver, Informed Transmitter)
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CSI Informed Informed Space–Time Coding
case Transmitter Receiver Algorithm

A Yes Yes Grassmannian Beamformer
B No Yes Space-time block/trellis code
C No No Unitary space–time modulation

TABLE I

CHANNEL STATE INFORMATION CONDITIONS FOR MIMO

CHANNELS AND ASSOCIATED SPACE–TIME CODING SCHEMES

� Case B: CSI at Receiver but not Transmitter (In-
formed Receiver, Uninformed Transmitter)

� Case C: CSI not at Receiver or Transmitter (Unin-
formed Receiver, Uninformed Transmitter)

The fourth case, which is impossible, would be an
informed transmitter and uninformed receiver. Table I
summarizes the three types of channel state information
and shows the associated space–time coding algorithms
to be discussed.

The remainder of the paper is organized as follows.
Section II gives an overview of the expressions for the
MIMO system capacity as a function of CSI knowl-
edge. Performance bounds and criteria for optimality in
designing STC are given in Section III. Here we also
describe transmitter precoding for Case A. We briefly
describe space–time block coding (STBC) in Section
V and space–time trellis coding (STTC) in Section VI
which are designed for Case B. Case C is handled
by unitary space–time modulation (USTM) described in
Section VII. We compare simulation results of a �����
space–time block code to a single-input single-output
(SIS0) system in Section VIII.

II. CAPACITY OF THE MIMO CHANNEL

Before we introduce space–time coding in Section III,
it is important to understand what the theoretical limits
are on the capacity of a MIMO channel that a space–
time code would be designed for. The capacity is the
maximum mutual information between the transmitted
codeword and the received signal maximized over all
possible pdfs of the space–time codeword. A space–
time codeword for ��� transmit antennas and ��� symbols
(sampling rate is symbol rate here) is an ���	�
��� matrix
of complex signals written as:�
��� ������������� � ��������������� ��� ����� �� "!�# �����$����� !�# � ��� �...

...!&%(' �����)����� !&%(' � ��� �
* +,
(1)

where each row of
�

is a space–time symbol and the
received signal model over that single time epoch is- �/. 021���43 ��576 (2)

where
- �8� 9:�������������;�<9:� ��� ���>=@? %(A�B�%�C is the received

signal matrix, 3 =D? %(A�B�%(' is the channel matrix
(or channel state information, CSI), 0>1 is the aver-
age transmit symbol energy per antenna, and

6 �� EF�������������;�<EF� ��� ���G=H? %(A&B�%�C is the zero-mean additive
white complex Gaussian noise with covariance matrix0 � EF� � �IEF� � �KJL�M�ONQPSR %(A . We will define the covari-
ance of the transmitted symbol matrix

�
as T 1U1 ���� 0 � ��� � �V��� � �KJW� such that XUY � T 1U1 �7� ��� . The MIMO

capacity is then: Z �@[
\;]^(_�`�a	bdc �e� -�f (3)

where b denotes mutual information.

A. Case I: Informed Receiver and Transmitter

An informed transmitter is created by feeding back the
CSI at the receiver. The capacity of the MIMO channel
for the case of perfect CSI knowledge at both transmitter
and receiver was shown in [1] to be:Z � [
\;]��gSh ikjKjml n %('po�q�r�s�tvu�w c R %(A 5 021��� NQP 3 T 1U1 3 J f (4)

where
R %(A is the ��g
�x��g identity matrix representing

noise uncorrelated across the receiver antennas. We see
from (4) that we must compute T 1U1 in order to solve for
the final capacity expression. To this end we singular
value decompose the channel matrix as 3 �Hy{z}|FJ

.
Premultiplying both sides of the received signal model
(2) by the unitary matrix

y
J
gives:yGJ - �/~ � j%(' z}|
J���5�yGJW6�- �/~ � j%(' z ���5 �6 (5)

where
�- �@yGJ -

,
��{��|
J>�

, and
�6���yGJL6

. From
(5) we can explicitly decompose the received signal
vector into Y ����\��v� c 3 f parallel SISO channels as:���� � � ���/. 021����� � � �! � � � �45 ��L� � � �������/�(� � ��������� Y (6)

where � � are the eigenvalues of 3
3 J . Defining � � �0 �I� ! � � s �m� ����� �����(��������� Y , the capacity in (4) can be
rewritten asZ � [
\;]� A� �(��  � n %(' g¡� n # o�q�r�s>¢ �:5 021 �

� � ���� NQP�£ �
(7)



The optimal energy allocation policy ���� that maximizes
(7) is found through the waterfilling algorithm [17] and
yields � �� � ¢ ��� ��� NQP021 � � £�� (8)

where � is a constant and c�� f � denotes the non-negative
portion of � . Once the optimal power allocation is
determined in (8), we can compute the optimal transmit
signal covariance matrix T��1U1 in (4) usingT �1U1 ��| t 	 \ r 
 � �# � � �s �������p� � �g�� | J �

(9)

B. Case II: Informed Receiver, Uninformed Transmitter

In this case, the T 1U1 from (4) is completely non-
preferential and can be assigned T 1U1 �@R %(' yielding the
capacity expressionZ � o�q�r s tvu�w ¢ R %(A 5 021��� NQP 3
3 J £ (10)

When we describe the channel matrix 3 stochastically it
assumes a zero-mean complex Gaussian matrix form in
the case of quasi-static Rayleigh flat fading. The capacity
in (10) is then a function of a Wishart random matrix3
3 J and is thus a random variable itself. In Fig. 2
(borrowed from [6]) we show cumulative distribution
plots for the capacity expression in (10) using 
F��

and

��� � ��� MIMO channel matrices at
� j%(' ��� � �

.
For comparison, two different single-input multi-output
(SIMO) channels and two different multi-input single-
output (MISO) channels are also shown.

C. Case III: Uninformed Receiver, Uninformed Trans-
mitter

The capacity for the uninformed transmitter/receiver
pair in quasi-static Rayleigh fading remains an open
research issue. However, Marzetta and Hochwald [3]
and Hughes [9] showed that the form of the transmitted
codeword must be �{�����

(11)

where
�

is a member of a group code whose members
are unitary matrices and

� =x? %(' B�%�C is a transmission
matrix. Marzetta and Hochwald further provided a lower
bound on the capacity for block sizes of �	� symbols.
Defining � � � � # � � s ��������� � %(A � where � � is the

� ���
eigenvalue of 3
3 J and assuming that ����� ��g they
show:Z � � ���U��g o�q�r s ��� ��g���� o�q�r�s c �:5/� j %�C� � %(' f��!#" c � f%$ c � f�& o�q�r�s $ c � f � c o�q�r s � f %(A�� n # � ��')( � (12)

Fig. 2. Cumulative distribution function of capacity for varying
channel matrix dimensions. Single-input multi-output (SIM0), multi-
input single-output (MISO), and single-input single-output (SIS0)
curves are shown for comparison. Figure adapted from [6].

where$ c � f �+*p�:5�� j %�C� � %(' ,.- %�Cm%(' ! " c � f �u ]�/10 %(A�� n # %('�2 n # � � * � j %�C� � %(' � � j %�C , � 3 � 2 � s 4 ( � (13)

and " c -�f � u�w � c � - - J f5 %�Cm%(A $ c � f (14)

III. DESIGN CRITERIA FOR DIVERSITY

MAXIMIZATION

Space–time coding (or STC), which is often more
accurately described as space–time modulation, refers to
the design of “symbol-to-multiantenna” assignments at
the transmit side and symbol recovery from multiple an-
tennas at the receiver side. A spatial multiplexer simply
does a serial-to-parallel conversion of the input bit stream
and sends the parallel bit streams out separate antennas.
However, a space–time encoder keeps the information
rate constant (or lower in case of non-full-rate) and
“assigns” symbols and functions of the symbols to the
different transmit elements according to the channel con-
ditions. The receiver then exploits the knowledge of how
the transmitted ST codewords were formed to optimally
detect the symbols and consequently the bits. The first
usage of the phrase space–time code in 1998 [13] was
really an extension of trellis coded modulation (TCM) to
the case of multiple antennas to create what was referred
to as space–time trellis codes (STTC). Since then space–
time block codes (STBC), space–time turbo trellis codes



(ST turbo TC), and unitary (or differential) space–time
modulation (USTM) have been developed among others.
Quantized beamforming for diversity maximization was
introduced in 2003 [7], [8] as an alternative to space-
time coding for systems that employed feedback.

Up until now we have considered only a single code-
word

�
in our analysis. We now expand upon the nota-

tion by defining
���

to be the codeword at block
�

, such
that a string of � codewords transmitted in succession
would be

� � # � s ���������
� . Similarly, the observation
matrix and channel matrix at block

�
are

- �
and 3 �respectively. In keeping with the pattern of analysis for

varying conditions of CSI, we first consider the design
of MIMO algorithms for an informed transmitter and
receiver in Section III-A. In Section III-B we state two
criteria for design of space-time coding algorithms that
assume an informed receiver only. Finally, Section III-C
describes two different design criteria for an uninformed
transmitter and receiver.

A. Case I: Informed Receiver and Transmitter

Channel knowledge at the transmitter may be ex-
ploited to improve data link reliability since the capacity
expression (4) admits a capacity higher than the cases of
the uninformed transmitter. An encoded signal � to be
transmitted can be prefiltered by pre-multiplication with
a beamformer matrix � to make the codeword matrix
(1) have the form

�
� ��� . The covariance matrix T 1U1
of the transmitted signal then has the form (assuming0 � ��� JL���@R %(' ): T 1U1 � ��� J �

(15)

The beamformer matrix � must satisfy the power con-
straint 	 � 	 s
 � ��� (16)

since XUY � T 1U1 �2� ��� . Recall that the optimum T��1U1 was
found in (9) in Section II-A through the waterfilling algo-
rithm. It follows from (15) that the optimal beamforming
matrix �1� is: � � ��|�� # � s (17)

where
|��
|
J

is the eigendecomposition of T �1U1 .
The optimal beamforming matrix is impossible to

implement in practice. The constraint of a low-rate
feedback channel and a dynamic environment means that
only a few bits can be sent back to the transmitter during
a coherent time interval. The best we can do is feedback
the label of the best beamformer from a predefined
codebook. If we employ maximum ratio combining at
the receiver, then the design of a quantized maximum
ratio transmission codebook involves packing lines in a

complex Grassmannian manifold. This is described in
more detail in Section IV and the reference therein.

B. Case II: Informed Receiver, Uninformed Transmitter

The Chernoff bound for the pairwise error probability
(PEP) was shown in [13] to have the final form:

� c ��
�� � 2 f�� ��
� #� '�� �(� � # ��� j�� ���� � � '  

!#"
$ %(A

� ¢ %('�� n # � � £ - %(A * � j% � � %(' , %(A %(' �'&�(�*)
(18)

where � � are the eigenvalues of 3
3 J . The PEP bound
derived in (18) suggests the following commonly ac-
cepted design criteria for space–time codes possessing
CSI at the receiver.
� The Rank Criterion: To achieve maximum diversity

gain the kernel matrix + 
-, 2 � c ��
 � � 2 f c ��
 � � 2 f J
has to have full rank �'& �.) .

� The Determinant Criterion: The minimum product%('�� n # � � � ( � X c + 
-, 2 f �'& �.) needs to be maximized

to give maximum coding gain.

The space–time block codes described in Section V
and space–time trellis codes described in Section VI
implicitly make use of these design criteria.

C. Case III: Uninformed Receiver, Uninformed Trans-
mitter

Here we consider a class of space–time coding meth-
ods called unitary space–time modulation (USTM) that
do not require CSI at either end of the system. They
can be thought of as an extension of differential phase-
shift keying (DPSK) to the case of multiple antennas.
A differential receiver operates non-coherently in that it
does not require estimates of the channel state to recover
the symbols. We show in Section VII that this non-
coherent USTM receiver is quadratic and requires no
channel estimates. This is an extremely powerful feature
of USTM since accurate channel estimates may not be
easy to obtain. For example, if we’re restricted in how
much training data we can use, or if the channel is highly
nonstationary, channel estimation is problematic.

The Chernoff bound for the PEP in this case was
shown in [9] to be:� c ��
�� � 2 f�� �/// Rk5 ��0j % 0 C% � 0� % 0' � � j � � %('V%�C � R � c #% 0 C f ��
m� J2 ��
m� J2 � /// %(A(19)



Hochwald and Marzetta [10] observed that the maximum
diversity is obtained when the value “1” is not a singular
value of #%�C ��
m��J
 . The coding advantage is given by the
angular distance [9]:� c ��
 �S� 2 f � /// ��� R � c �p� ��� f � 2 ��J
 ��
m��J2 /// # � %('� c �p� ��� f / //// � ��
� 2�� � ��J
 ��J2 � ///// # � %(' (20)

This leads to the following design criteria:
� Independence Criteria: The rows of

� 

and

� 2 must
be linearly independent � & �.) .

� The Determinant Criterion: For

+ 
-, 2 � � ��
� 2�� � � J
 � J2 � (21)

( � X c + f �'& �.) needs to be maximized to give max-
imum coding gain. The USTM algorithm described
in Section VII implicitly makes use of this design
criterion.

IV. MIMO GRASSMANNIAN BEAMFORMING

This section briefly describes Grassmannian beam-
forming for MIMO systems as taken from Love et al.[7].
The focus is on transmission of a single bit stream out
multiple transmitters employing quantized maximum ra-
tio transmission (QMRT) beamforming. Maximum ratio
combining (MRC) is assumed at the receiver. Fig. IV
shows the high-level components of a feedback commu-
nication system utilizing quantized beamforming at the
transmitter.

Rewriting the signal model from (2) for a single time
instance gives the vector form:9:� � ���/. 021���43 ��� � �v5xEF� � �G� (22)

We define the vectors � and � to be the beamforming and
combining vectors respectively. Letting

��� � � � � � � � � ,
where � � � � is a single channel bandlimited symbol
sequence, we can write (22) after MRC as� J 9:� � ���/. 021��� � J 3 � � � � �45 ��� EF� � �G� (23)

.8393-j.2939 -.1677+j.4256
-.3427*j.9161 .0498+j.2019
-.2065+j.3371 .9166+j.0600
.3478-j.3351 .2584+j.8366
.1049+j.6820 .6537+j.3106
.0347-j.2716 .0935-j.9572

-.7457+j.1181 -.4533-j.4719
-.7983+j.3232 .5000+j.0906

TABLE II

CODEBOOK (TAKEN FROM [7]) FOR QUANTIZED BEAMFORMING

FOR �
	���
 TRANSMITTERS AND �
����� FEEDBACK BITS

The product � J 3 � is the quantity of interest. For the
beamforming/combining system under consideration we
will design � and � to maximize SNR–which will in turn
minimize average probability of error. The MRC vector
can be shown to be � � 3 �	 3 � 	 s (24)

and, thus, we are left with the design of a unit vector� . Since we are assuming the existence of a low-
rate, error-free, zero-delay, ��� -bit feedback link, � must
correspond to a quantized beamforming vector chosen
from a codebook of

N�� � %�� beamforming vectors and
can be written as:�� �@\(� r [
\;]� 	 3 � 	 s (25)

The question remaining is how to create the optimal
beamformer codebook. For the case of a Rayleigh-fading
channel matrix, Love et al. [7] and Mukkavilli et al. [8]
independently showed that the problem is equivalent to
real Grassmannian subspace packing (or line packing for
complex Grassmannian). The interested reader is referred
to the above citations for details concerning bounds on
codebook size for full diversity and distance metrics
among other issues. Here, we simply state the results
in Table II given in [7] for the ���F� MIMO quantized
beamformer codebook using ��� � 
 bits of feedback.
This is the codebook used in Section VIII where we
simulate the QMRT system.

V. SPACE–TIME BLOCK CODING

We focus attention here on the class of STBC that
make use of orthogonal designs–namely space–time or-
thogonal block (STOB) codes. In this regime, the

�
th

transmitted ST codeword is such that��� � J� � %�C¡� n # � ! � , �4� s R %(' (26)



Fig. 3. Alamouti [11] space–time block encoder for a 
�� 
 system

A. Space–Time Block Encoding

The Alamouti scheme [11] is the simplest of this type.
The ����� code word for complex symbols is the only
full-rate orthogonal complex block code. It is given as:���>� � ! # , � � ! �s , �! s , � ! � # , � � (27)

Real code matrices and non-full-rate complex codes for
STOB are discussed in [12]. A branch of number theory
known as Radon-Hurwitz theory dictates that real full-
rate orthogonal blocks exist only for the �:� � , � � � , and� � �

cases. As an example, the
� � �

real orthogonal
code matrix is:���>� ���� ! # , � ! s , � ! � , � ! % , �� ! s , � ! # , � � ! % , � ! � , �� ! � , � ! % , � ! # , � � ! s , �� ! % , � � ! � , � ! s , � ! # , �

* +++, (28)

In Fig. 3 we show the block diagram for the Alamouti
[11] space–time block encoder for a � �
� system.

B. Space–Time Block Decoding

From (2) and noting that the receiver has knowledge
of the channel matrix, we can write the conditional pdf
of the received signal conditioned on the channel matrix
and space–time codeword as:

" c - �v� 3 � �S��� f � u�w � c � #s � ��� � � J� f5 %(AU%�C (29)

where, for notational compactness, we have defined
� �8� - � � ~ � j%(' 3 ����� and u�w � c�� f � u ]�/ c XUY � � � f .The maximum-likelihood receiver obtained from (29)
requires an informed receiver and leads to the following
form for the space–time block decoder:����>��\(� r [
\;]`�� " c - �v� 3 � �S��� f��\(� r [ 	 �`�� XUY � c - � � ~ � j%(' 3 � ��� f c - � � ~ � j%(' 3 ����� f JL���\(� r [ 	 �`�� XUY �m� j%(' 3 � ��� ��J� 3 J� � � ��� 
 XUY ��~ � j%(' 3 � ��� - J� � ���\(� r [ 	 �`�� � 
 XUY � 3 ����� - J� � �

(30)

Fig. 4. Space–time block decoder (31) corresponding to an encoder
of the form of Fig. 3.

Using the identity XUY � 	 � �}� XUY � � 	
� , the last line of
(30) reduces to����>�@\(� r [ 	 �`�� � 
 XUY � - J� 3 � ���&� � (31)

which admits the receiver design shown in Fig. 4.

VI. SPACE–TIME TRELLIS CODING

Space-time trellis codes (STTC), like space-time
block codes, achieve maximum diversity gain. However,
STTCs have the additional advantage of providing cod-
ing gain as well as diversity gain. This coding gain
comes at the expense of a more computationally complex
receiver usually implemented with Viterbi decoding. In
this section we restrict our attention to 4-state � -PSK
signaling.

A. Space–Time Trellis Encoding

The space-time trellis encoder maps binary data
streams into modulation symbols for which the mapping
is described by a trellis diagram. For an � -PSK mod-
ulation we assign

)�� o�q�r s � and the memory order
of the shift register is defined to be 
 . For a given bit
at time X denoted ��� , we group

)
bits at a time into the

data structure �

� � �'& � �(���������.)

. The convolutionally
encoded output at time X for transmit antenna

�
, denoted

by ! � , � , is computed as:

! � , � � 2¡ 
 n #
�¡

 n P�� 

 , � � 
� - 
 [ q4t � �M�e�/�(� � ��������� ��� (32)

For 
 � � we can cast our bit stream as coefficients of
a polynomial as:� # c�� - # f � � #P 5 � ## � - #� s c�� - # f � � sP 5 � s # � - # �

(33)

This allows us to rewrite the convolutional encoder of
(32) as a polynomial matrix multiplied by a polynomial
vector:�{� ��� ## c�� - # f � s # c�� - # f� #s c�� - # f � ss c�� - # f �

� � # c�� - # f� s c�� - # f � (34)



Fig. 5. Space–time trellis diagram for the generator polynomials
given in (35) from [14].

Fig. 6. Space–time trellis encoder for a QPSK constellation with
memory order 2 and 2 transmitters.

These outputs are from the � -PSK signal constellation
and form the elements of the transmitted ST codeword�
� 
 ! � , � � .We consider here the space–time trellis codes devel-
oped by Baro, Bauch, and Hansmann [14] since they are
optimal in the sense of meeting the rank and determinant
criteria established previously in this section. They are an
improvement over the original space–time trellis codes
proposed in [13]. The generator polynomials from [14]
are given as:

� ## c�� - # f � � #P , # 5 � ## , # � - # � � 5 �
- #� #s c�� - # f � � #P , s 5 � ## , s � - # � �� s # c�� - # f � � sP , # 5 � s# , # � - # � 
 � - #� ss c�� - # f � � sP , s 5 � s# , s � - # � � 5 �
- # (35)

Fig. 5 shows the trellis for these generator polynomials
following the format similar to Tarokh et al. [13]. For
the generator polynomials given in (35) and for a � % �order shift register, QPSK modulation, and 2 transmit
elements, 
 � � , � � �

,
) � � , and ��� � � in (32).

The STTC encoder for this case is shown in Fig. 6.

B. Space–Time Trellis Decoding

Decoding follows the trellis using a sequence metric
calculator. The Viterbi algorithm provides the maximum
likelihood decoder for space–time trellis codes. Assum-
ing perfect CSI available at the receiver, one useful
branch metric

) c X f used by the Viterbi algorithm is the
squared Euclidean distance between the received signal
and the hypothesis:) c X f � 	 9 c X f � 3 � c X f 	 s �

(36)

The Viterbi algorithm chooses the path with minimum
path metric as the decoded sequence.

VII. UNITARY SPACE–TIME MODULATION

Unitary space–time modulation methods send orthog-
onal signals over the ��� transmit antennas. Orthogonal
designs can be decoded non-coherently (without CSI). In
USTM the current transmitted orthogonal signal matrix
is constructed from the previous transmitted codeword
through multiplication by a unitary matrix. It was shown
in [3] that, for the block-wise constant channel (quasi-
static assumption), USTM can achieve the capacity for
non-coherent detection.

For the uninformed transmitter/receiver pair we write
the conditional pdf of the received signal as a function
of the code matrix only:

" c - �4� ��� f � u�w � c � - ��� - # - J� f� 5 � � %g (37)

where
�/� RL5 � j� � %(' ��J� ��� . Through use of the matrix

inversion lemma, we can show that

� - # �@R � 021��� 021 5�NQP ��� � J� ��� (38)

Using (37) and (38) we can write the maximum likeli-
hood estimator for the general non-coherent space–time
detector as: ����>�@\(� r [
\;]`�� " c - �v� ��� f�@\(� r [
\;]`�� XUY � - ����J� ��� - J� �
� (39)

The codeword in (39) applies to the general form for
a codeword

���
of arbitrary temporal size ��� . However,

to reduce computational complexity, we wish to restrict
attention to a detector form that uses a ST codeword with
a small ��� so that the search space is manageable. We
can do this by using two consecutive “small” space–
time codewords and grouping them into a composite
codeword.



Fig. 7. Block diagram of unitary space-time modulator.

A. Unitary Space–Time Encoding

We will need the current and previous codewords to
be able to perform the differential demodulation. To this
end we construct a composite STC codeword matrix
consisting of two unitary STC words �������� ���	��
����
�
which produce the pair of observation matrices �� ���� � �	��
 � �
�

. In Fig. 7 we show the differential encoder
for USTM that creates the composite codeword. The � ��

in the figure represents a delay of an entire codeword.
Here

���
and

���	��

are temporally consecutive ���������

complex matrices that are formed according to the rule:���������	��
��������� !�#"
(40)

where
���%$'&

is the unitary matrix at time slot (
described in Section II-C in (11) and

&
is the set of

unitary matrices composing the multichannel group code
[9]. Consequently, the composite ST codeword is:������)� ���	��
*���	��
����
�,+

(41)

As an example, for a QPSK signal constellation-/. �102�43 . �435076
and a ��� �98 system the set

&
is given

as:

&:��� ;<<<<= <<<<> ?A@
.CBBD.FE � ?A@ 0 BB 350 E �?A@ B .3 .GBHE � ?A@ B 00 BHE

I <<<<J<<<<K (42)

and "L� @ . 3 .. .�E (43)

B. Unitary Space–Time Decoding

In keeping with the ML detector form in (39) the
detector for the 2-block code �� ���)� � �	��
 � �
� selectsM�����#N2OQPSRTNVUWYX#Z1[ � �� � ���\� ���� �� \� � (44)

Since,
���]�^���	��
����

, knowledge of
���

is captured
by
���

allowing us to carry out the derivation for the

Fig. 8. Block diagram of unitary space–time demodulator for the
modulator of Fig. 7.

detector as:M�����#N2OQP_RTNVU`5X�a2b Z1[ � � �	��
 � �4� @ ���dc ��� ������ � \� ���dc E \ �� � �	��
 � � � \�#N2OQP_RTNVU`5Xea2bgfih Z1[_j � �	��
���� � \�lk7m
(45)

Again, using Z1[ � npoq��� Z1[ � o_nT� , this receiver reduces toM�����#N2OQP_RTNVU`5Xea2bgfih Z1[_j ��� ��\� � �	��
 krm (46)

which is shown in Fig. 8.
As Hughes [9] states, the receiver has an estimator-

correlator interpretation. If s � and
���

were known at
the receiver, then the optimal detector would be the
minimum Euclidean distance rule as in (30). Hughes [9]
shows that for unitary codes, this reduces to a correlation
receiver: M����� fih Z1[ � s �Y���	��
���� � \� � m (47)

which we note is the same as (30) in which
���

is
replaced by

���	��
����
.

VIII. SIMULATION RESULTS

In this section we compare the simulated performance
of the Grassmannian beamformer (GB) from Section
IV, the Alamouti [11] space–time block code (STBC)
from Section V, the 4-state space-time trellis code
(STTC) from Section VI, and the unitary space-time
modulator (USTM) from Section VII to the single-input
single-output (SISO) baseline modem. All the MIMO
algorithms operate with a

8 � 8 antenna array system
in a quasi-static Rayleigh fading channel. The channels is simulated by taking samples from the complex
normal distribution. All modems operate with a spectral
efficiency of 2 bps/Hz with the exception of the USTM
algorithm which is designed here to operate at 1.5
bps/Hz. The USTM is the only algorithm to not require
training data and, hence, we lower its required spectral
efficiency with an implicit assumption that the other
MIMO algorithms require a factor of t u training over-
head. In all cases, we estimate the channel matrix and
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Fig. 9. Performance comparison of the 
 � 
 MIMO space-time
algorithms discussed in this paper.

insert the estimated channel into the space-time decoding
modules. In Fig. 9 we show performance in terms of
bit error rate (BER) as a function of the received bit
energy per noise ratio 0 � ��NQP . The Grassmannian beam-
former significantly outperforms the space-time coding
algorithms for the same spectral efficiency. The space-
time trellis code performs slightly worse than the space-
time block code most likely because the number of states
is only 4. If we were to go to a more typical 16-, 32-,
or 64-state trellis we would see the curve significantly
improve (see e.g. [13]). All the algorithms achieve full
diversity of ���m��g � �

.
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