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ABSTRACT

We consider the problem of estimating and localizing a set
of unknown real-valued signals simultaneously arriving at
a sensor array composed of elements spaced far enough
apart to induce measurable baseband time difference of ar-
rivals. The delayed and mixed line-of-sight signals form a
convolutive mixture model. We recover the source signals
through multichannel blind deconvolution (MBD) in which
the channel impulse response estimate provides the direc-
tion of arrival (DOA) information. We consider the two
cases in which either the source signal probability density
is known or the attractor space for which the source den-
sity resides is known. The new MBD algorithm we present
works with known source densities to minimize the sym-
metric Kullback-Liebler distance to the standardized equal-
ized output. Simulation results show successful performance
on acoustic data.

1. INTRODUCTION

We pose a solution to the problem of blindly estimating and
localizing real-valued multiple simultaneous signals imping-
ing on a sensor array for a line-of-sight (LOS) environment.
We consider the case where the sensors are spaced far enough
apart (or the signal bandwidth is wide enough) such that
all elements in the array observe time delayed versions of
all source signals–thereby creating a convolutive mixture
model. We derive a new multichannel blind deconvolution
(MBD) algorithm to simultaneously estimate the channel
impulse response (from which we can localize the signals)
and recover the sources up to an unknown amplitude, delay,
and permutation.

Research in MBD has shown that the channel impulse
response and source signals can be estimated using only
knowledge (or partial knowledge) of the probability den-
sities of the source signals (see e.g. [2]). If the source
densities lie in the domain of attraction of a stable limit dis-�

Work supported under MITRE internal research and develop-
ment. Authors can be reached at

�
rtaylor,gjacyna � @mitre.org and�

lmili,amirz � @vt.edu

tribution (e.g. Gaussian, Cauchy, Levy) but not on the at-
tractor density itself, the source realizations can generally
be recovered. Mixture models cause the observed signal
densities to “move” towards the attractor while the separa-
tion model moves the equalized and unmixed signals away
from the attractor and towards the source densities. Most
MBD [2] and independent component analysis (ICA) [1]
algorithms are designed only to move the unmixed signals
away from the attractor (Type-I objective) and do not at-
tempt to minimize the distance to a known source density
(Type-II objective). It turns out that the Type-I objective
often yields a statistically inconsistent estimator for many
cases (of which we show one case by simulation) whereas
the Type-II estimator is always consistent by virtue of the
distance metric attaining zero only when densities are iden-
tical.

The main contributions of this paper are: 1) We form
multi-source localization as a MBD problem, 2) We de-
rive ambiguous form of maximum likelihood estimator for
source signal realizations, and 3) We derive a consistent
DOA vector estimator based on minimum distance between
source and equalized signal probability densities. The re-
mainder of the paper is organized as follows. We give the
signal model in Section 2. In Sections 3 and 4 we describe
source estimation and localization respectively. We show
simulation results in Section 5 and conclude in Section 6.

2. SIGNAL MODEL

Consider a number of observable signals arriving in planar
wavefronts upon an arbitrary collection of sensors at known
positions �����
	����� ���
����������������� � as in Fig. 1. We have!#" real-valued baseband transmitted signals �%$'&(� ! �)�*�,+(� ! �
sampled every - seconds coming from direction ./& at speed0 impinging on a sensor array composed of !1324!#" re-
ceivers. We observe the vector process 56�7�
89�:� ! �)�*����� ! �
where sensor � captures the sequence

8(�:� ! �#�
;=<>
& ?@
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!KJ G��MLENO� � ! �)�P������Q(�'R R R � !S1 R
(1)
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Fig. 1. We illustrate a sensor array with source signals ����� ��� impinging
at angles of arrival ��� to create a received signal 	�
�� ��� at sensor position� ��I�������:��� � .

The thermal additive white gaussian noise (AWGN) sequence
is given by NO� � ! � and D � &F�

! � are the coefficients of the ma-
trix channel impulse response.

Proposition 1 For a line-of-sight (LOS) channel model, the
channel impulse response is given by:

D � &F�
! �#���� &���� ��� � ! J�� � &- J! &

-#" (2)

where  & is the propagation delay of the + -th source signal
to the sensor array origin and

� � & � J Q0 � ���
�$�&%'��(H.'&*) L �����$��� �+(H.'&*))� (3)

is the relative time delay of the + -th source signal between
the origin of the sensor array and receiver � .
Proof: Ignoring the additive noise term, the continuous-
time received signal model corresponding to (1) is 89��(-,�) �. A/ ?�C A D � &'( � ):$I&$(-, J � )10 � . From the sampling theorem, we
know that $I&'(-,�) �32 A4 ?�C A $I&F� 5F�6��� ����( @� (-, J 59-7)�) . Plug-
ging this in and sampling at , � ! - gives:

8(��(-, � ! -7) � > 4 $I&F� 5F��8 / D � &'( � )1��� ���'( !KJ 5 J9�- )10 �: ;=< >? � @=A ; C 4CB
(4)

Letting D � !KJ 5 allows us to write

D � &F� D �#��8 A/ ?�C A D � &$( � )1��� ���'( D J �- )10 � R (5)

Now, we define the 2-D directional unit vector for source +
as � J �&%'�M.,� J ��� � .%��� and project it onto the position vector	�� � � ���
������������� for sensor � . This gives the distance be-
tween the sensor and the origin along the direction of arrival
(DOA) of the + -th source signal. The relative time delay is
then simply this distance divided by the speed 0 of propa-
gating wavefront to give (3). For a real-valued signal in a

LOS channel, D � &'( � )O���� &�EF( � J � � & J  &*) . Plugging this
into (5) gives (2). G

The channel amplitude ��� & can be approximated ��� &IH�#& since the sources lie in the far field. Furthermore, the
channel amplitudes �S& can be wrapped into the source sig-
nal amplitudes since we are not concerned with how far
away the sources are or what their transmit power is. Since
the propagation delay  & is also of no interest, it is suf-
ficient to consider a representation of the channel impulse
response in (2) that is parameterized solely by ./& and 	�� as:J � &9� !LK .'&(�:	��H�#�M��� ��� � ! L Q0 - ( ���
�$�&%'��(H.'&�)SL �����$��� �+(H.'&*)�) " R

(6)

3. SOURCE ESTIMATION

Taking the DFT of (1) we writeN8(� � 5F�#�
;=<>
& ?@

N
D � &F� 5F� N$I&F� 5F�,L NNO� � 5F�O5 �MP,�'Q(�'R R R �CQ J Q (7)

which in matrix-vector notation is
NR � 5F�#� NS � 5F� NT � 5F�=L NU � 5F� .

Taking the DFT of (6) to get
NJ � &9� 5 K .'&=�:	��H� and packing intoNV � 5 K=W � � � we note NS � 5F�#� NV � 5 K=WYX �6Z\[ 4 (8)

where [ 4 �9]F��^�_`(��#&ba&cFd+( Jfe�g�h 5  &�i/-\Qj)�)I�)+P� Q(�'R R R � !#" ,W X is the true DOA vector, and Z is a (possible) permutation
matrix. For notation following, we will use � k � &Cl m to denote
the + th row a matrix k and kon to denote the Moore-Penrose
pseudoinverse.

Proposition 2 If we define the + -th equalized signal to bepq &F� !LK=W � � �:5 �S� QQ3r CS@>4 ?tsvu NV n � 5 K=W � � � w &Cl m NR � 5F�6xCy�zC{ 4 ;�| r �
(9)

then the quantity
pq &9� !LK=W X � � � is the maximum likelihood

estimate (MLE) of $I&F� ! � up to an unknown amplitude, delay,
and (possibly) permutation of the source index + .

Proof: If we define
N} � 5F� �~Z\[ 4 NT � 5F� , the likelihood

function for
NR � 5F� can be written� ( N} � 5F� K NR � 5F�-)��Ma&cFd�� J�� � NR � 5F� J NV � 5 K=W X � � � N} � 5F� � � zz��

(10)
since the covariance matrix of

NU � 5F� is just a scaled identity
matrix if U � ! � possesses a scaled identity covariance matrix
(which is the case for AWGN). Therefore, the MLE of

N} � 5F�
for 5 is given aspN} � 5F�#� NV n � 5 K=W X � � � NR � 5F�95 ��P,�'Q(�'R R R �CQ J Q (11)

Since the linear transformation of a vector of MLEs is also
a MLE, it follows that (9) is the time domain MLE of (11)
since the inverse DFT is a linear operation. G



4. SOURCE LOCALIZATION

We saw in section 3 that the source signal realizations can
be recovered up to an unknown amplitude and delay by find-
ing the DOA vector W � � .F@/�'R R R �:. ;=< ��� that corresponds to
the true vector. Our goal here is to find an estimate of that
parameter (call it

pW ) which is a function of the observation
and possibly the source densities ���%&�( q )I�*�,+,� when they are
available. Depending on how much is known about the
source signals, we can estimate the channel using knowl-
edge only of which random variable attractor space the source
densities reside (Type-I) or the source density functions them-
selves (Type-II). In the first case the source densities are un-
known, but we know that they lie within a certain domain
of attraction to a limiting distribution. In the second case,
the source densities are known either theoretically from the
physics of the transmitting object or have been empirically
derived a priori. We describe these different objectives ge-
ometrically by considering “distance-like” measures on a
Riemannian manifold of probability densities.

4.1. Designing the Objective Function

We define the estimator
pW�� ��� for W that works with unknown

source densities to maximize distance between an attractor
density � ( q ) and the equalized (estimated) source densities
the Type-I estimator and write it aspW � ��� ��^	�C_�
� ^�c ;=<>

& ?@
� (��'&�( q � W � � �:5 ) � � � ( q )�) (12)

where
� (�� � � �F) is a divergence between two probability den-

sities � and � . We define the estimator
pW�� ����� for W that

works with known source densities �%&'( q ) to minimize the
distance to the equalized source densities the Type-II esti-
mator and write it aspW � ����� ��^	�C_�
� � � ;=<>

& ?@
� (��'&�( q � W � � �:5 ) � � �/&$( q )�)�R (13)

In Fig. 2 we illustrate a conceptual Riemannian manifold�
that contains three probability densities of interest: 1) the

attractor density � ( q ) (which is Gaussian in our problem) 2)
the + -th source density �%&'( q ) , and the estimated + -th source
density �'&'( q � W � � �:5 ) –the density of the equalized output.
When W � W X and the AWGN N � � ! � in (1) is zero, the
estimated source density agrees exactly with �=&'( q ) .

The divergence (or contrast) function we consider in this
study is the J-divergence (symmetric Kullback-Liebler di-
vergence) written

��� (�� � � � )K� ����� (�� � � � ) L ����� (�� � � �t)
where

����� � . �	��� � ( q )�� %�_ � � �! � � � 0 q is the Kullback-Liebler
divergence. The J-divergence is a function of a special class
of single-parameter information-type divergences developed
by Csiszar of the form " � 5t(��bi#� ))� for 5 convex (see e.g. [3]

Fig. 2. Conceptual Riemannian manifold of probability density functions
containing the attractor density, source densities, and equalized output den-
sities. If we know the source densities, we want to “move” towards them.
Otherwise, we want to simply “move” away from the attractor.

and reference therein). This class also includes the Bhat-
tacharyya distance, Hellinger distance, and Kullback-Liebler
divergence among others. Using the Parzen method, we
form the probability density function of the equalized sources
as

�'&'( q � W �:5 ) � QQ3r CS@>
; ?ts $ ( q J pq &9� !LK=W � � �:5 �-) (14)

where
$ (&% ) is the normalized kernel function chosen to be

Gaussian in our case.

4.2. Optimizing the Objective Function

We optimize the objective functions in (12) and (13) by mul-
tiscale sampling the !S" -dimensional space of W at lattice
points correspond to centers of spheres in a ! " -dimensional
sphere packing ([4]). In the first stage we find the lattice
point with minimum value of the function evaluation. In the
second stage we consider a local sphere packing with half
the radius about that point and evaluate the objective func-
tion for lattice points that “kiss” the sphere about the first
stage lattice point. We can continue this process until the
multi-resolutional lattice point remains unchanged.

Fig. 3 shows contour plots of the objective surface for
the Type-I and Type-II estimator as a function of the DOA
parameters .'& for SNR=30dB on the data described in sec-
tion 5. The multiresolutional sphere packed samples gener-
ated from the optimization algorithm are overlayed to show
where the parameter estimates converge. For symmetric ob-
jective functions such as those produced by the Type-I esti-
mator, we only have to sample the convex polytope contain-
ing the unique permutation of parameter elements ./& (half
space for !#" � g case). Note that the location of the global
minima for the Type-I objective function differs from the
true vector causing the estimator to incorrectly converge.

This simple example illustrates how objective functions
based on maximizing distance from a Gaussian attractor
density (e.g. kurtosis maximization, entropy minimization,
and minimization of mutual information [1]) can lead to
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Fig. 3. We show contour plots of the 2-D ( ����� � case) objective sur-
faces for the estimators described in (12) and (13). The sphere-packed
samples used to perform the multi-resolutional global optimization are
overlayed to indicate where the algorithm converges. Note that the Type-I
objective surface yields an inconsistent estimator.

a statistically inconsistent estimator. The Type-II estima-
tor, on the other hand, must yield a consistent estimator by
construction. The non-negative objective function is mini-
mized when the distance between probability density func-
tions is zero–which can only happen when the two densities
are identical.

5. SIMULATION RESULTS

We test our algorithms using 400 samples of two 8kHz sam-
pled acoustic waveforms impinging on a four-element cir-
cular array within a random uniformly distributed � P�� an-
gular space in which the two sources cannot be located at
the same angle. The LOS channel is simulated according
to (2). We then add artificial white Gaussian noise to drive
the received signal SNR to specified values. We estimate
average mean squared error (

��� " ) as

��� " ( pW ) � Q�
	>

 ?@

� � pW 
 J W X � � zz (15)

Source signal 1

Estimated source signal 1

Source signal 2

Estimated source signal 2

Fig. 4. The original source signals and equalized signals (estimated
sources) computed from (9) at the solution to (13).

where
pW 
 is the � -th estimate of

� ���P Monte Carlo
trials and !#" is the number of sources (length of W ). The av-
erage mean square error values of

pW�� ����� (13) at the SNR val-
ues of 10dB, 20dB, and 30dB is 0.5191, 0.0092, and 0.0022
respectively. The estimated sources computed using (9) for
the 30dB SNR case is plotted in Fig. 4.

6. CONCLUSION

Although we presented a solution to the problem of blindly
localizing and estimating signals in a line-of-sight environ-
ment, much work needs to be done to find better ways to
optimize the objective functions–namely making the esti-
mator sequential and able to exploit the Riemannian struc-
ture of the statistical manifold. Further work needs to be
done also to identify optimal contrast functions that will in-
duce metrics and connections that lead to faster converging
algorithms. Lastly, the constraint of real-valued source sig-
nals needs to be lifted to allow for complex-valued source
signals such as communication waveforms.
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