
XML-Native Constraint Evaluation
by

M. Cokus, Dr. R. Costello, Dr. M.A. Malloy, E. Masek, D. Winkowski

The MITRE Corporation
903 Gateway Boulevard, Suite 200

Hampton, VA 23666

Abstract

This paper discusses approaches to validating XML documents for compliance to
constraints. Our particular focus is on structural and content constraints that go beyond
what is readily expressible in XML Schema technologies. We provide examples and
solutions drawn from our specific experience building an XML-native constraint
validator based on a mathematical language called Structural Notation (SN). SN is used
to express operational constraints as machine-processible Rules against a particular
category of hierarchically structured, text-oriented military messages, called Message
Text Formats (MTFs), which have been migrated to a corresponding XML-based
representation.

We discuss the challenges we faced in implementing this XML-native constraint
evaluator. For example, we discuss how, to build a Rule validator, we found it necessary
to extend the underpinnings of logical evaluation in XPath 2.0 to use three-valued logic
(3VL) rather than two-valued logic. We detail some general principles for expressing and
enforcing constraints against regularly structured text, when rendered as an XML
document. We enumerate minimal capabilities needed by a constraint language and
evaluator for XML documents and suggest some ways our approaches can be generalized
for use in other domains. Because the need to apply constraints to incomplete or flawed
documents is not unique to the military messaging world, a constraint evaluation model
such as we propose, grounded in 3VL, is relevant to the XML user community at large.

Keywords: XML, XPath 2.0, XSL 2.0, Constraint, Validation, Text Messaging,

Three-valued Logic, Message Text Format, Structural Notation, XML-
MTF, XSN-MTF

Background

Message Text Formats (MTFs) support information exchange

To be effective, the military as well as other government and commercial organizations
must share information across dissimilar, independently developed systems that involve
diverse languages, cultures and command/management structures. One way of
addressing these challenges is through formatted, text-oriented information exchanges. A
particular standard of hierarchically structured messages, called Message Text Formats
(MTFs), has been used to relay battlefield information since the 1970’s. The MTF
standard comprises about 600 message types and over 6000 simple and complex data
types, all defined, agreed upon and implemented by more than 70 nations.

 1

SBORG
Text Box
Approved for Public Release; Distribution UnlimitedCase #04-0954

Each MTF type specifies a particular grammatical construction of components, each of
which may be composed of constituent components. At the lowest hierarchical level are
Fields. A Set is composed of a sequence of possible Fields, and possibly a logical
grouping of them called a Field Group. A Segment is composed of a sequence of Sets
and possibly other Segments. The Message component is a special case of Segment. In
addition, components can be specified as optional and/or repeatable. Because
components are built using agreed structures (syntax) and vocabulary (semantics), the
resulting MTFs help mitigate misunderstandings that can arise out of differences in
terminology, acronyms, and so on that exist across functional and geographical barriers.

Constraints refine MTF specifications

There are basic grammatical rules governing how to assemble the constituent components
of MTFs, together with specifications regarding the repeatability or optionality of those
components within individual message types. But they are insufficient for capturing all
the internal logical requirements that impact a message instance’s compliance with the
standard. Thus, the specification of each standard message type also includes Rules (i.e.,
constraints) that must be satisfied for any message instance of that type to be considered
“in compliance” with the standard.

Circa 1980, MITRE designed a mathematical language called Structural Notation (SN)
for formally encoding such operational constraints against MTFs in the form of machine-
processible Rules. Government-proprietary evaluation software was developed and
deployed to enforce SN Rules in MTF processing systems. We call the automation
aspect of the MTF SN compliance problem SN validation.

Structural Notation (SN) expresses MTF constraints

Each SN Rule consists of a Statement and an optional Condition. The Statement is the
part of a Rule that specifies some action on or requirement of any MTF to whose type the
Rule is assigned. For example, the Rule might require the use of the same alphanumeric
value within two components in the message, or it might specify the maximum number of
times a component can be repeated. A generic example of the former kind of Rule might
express a constraint like <Some component> must have the same alphanumeric value as
<some other component>. A Statement such as this, without an associated Condition,
makes an unconditional assertion about the document and applies to all instances of that
type. In such cases the Condition can be assumed to evaluate to true by default.

A Condition, if present, specifies the circumstances under which the action or
requirement part of the Rule as expressed in the Statement takes effect. For example, the
Statement might apply only when two components contain identical alphanumeric values,
or when some specified component is present in the message instance. Such a Rule
might generically state <Some component> must occur fewer than <N> times, if <some
other component> has the alphanumeric value “XYZ.” Such a Statement with an
associated Condition (i.e., the part of the Rule in the “if” clause) makes a conditional

 2

assertion about the message; the assertion expressed in the Statement part of the Rule
applies only when the Condition evaluates to true.

Figure 1 below synopsizes the Rule evaluation logic. We will discuss the significance of
the null evaluation that participates in this logic a little later.

If Condition is false or null, then
 MTF “passes” validation [by default] for Rule.

If Condition is true [by assessment or by default], then:
 If Statement is true, MTF “passes” validation for Rule.
 If Statement is null, MTF “passes” validation [by default] for Rule.
 If Statement is false, MTF “fails” validation for Rule.

Figure 1. Rule evaluation logic

It should be noted that the constraints we are interested in are intramessage (or
intradocument) constraints. That is, it is possible to examine information “within a single
message [document] instance” to determine whether a constraint is satisfied. For
example, the use of one particular optional component may preclude the use of some
other component, but only in the same message instance; or the use of a particular text
value may limit the values allowed elsewhere in the same message. We are not concerned
with expressing or evaluating constraints that require simultaneously looking at the
contents of multiple messages, which can be an even more complex problem!

MTFs go XML-based

The desire to leverage non-proprietary software in support of information exchange has
spurred many organizations, including the military, to quicken their adoption of XML
technology. The emerging body of XML standards naturally parallels the interoperability
supports and concepts needed to web-enable MTFs. To better meet the needs of the 21st
century warfighter, MTFs have been migrated to an XML-based representation called
XML-MTF.

An approved XML-MTF Mapping Specification was developed to provide the XML tags
needed to structure XML versions of existing MTF types. An XML-MTF Schema
Derivation Specification details how to algorithmically derive XML-MTF Schemas from
the standard. This enables XML-native validation of various syntactic, structural and
value constraints applicable to XML-MTFs by viewing them as classes of document
instances. Both specifications are in place and agreed by the MTF user community, so
that any MTF can be equivalently expressed as an XML document.

However, to provide the same level of validation for XML-MTF as that available for
MTFs – and to do so in an XML-native form – we had to devise the means to implement
SN validation for XML-MTF. In other words, it was not enough to support
demonstrating that an XML-MTF is well-formed and valid; the document also had to
satisfy these additional SN Rules. This required re-expressing those Rules so they are

 3

processible in an appropriate validation framework using XML technologies. We call
this task XSN-MTF.

Challenges to SN Migration

This section summarizes the challenges we faced during the XSN-MTF effort. Our
experiences provided the basis for the guiding principles for constraint expression and
evaluation presented later in the paper.

Constraint ambiguities

When we inspected the existing collection of constraints expressed in SN to assess the
amenability of migrating them to XML-based representations, it became clear that they
were products of a by-gone era. To conserve space, the designers of the constraint
language had provided many abbreviations and notational shortcuts to make the written
Rules terser. The unfortunate side-effect of this economy of expression is that terseness
tends to obscure the resulting Rules’ meanings.

For example, we discovered that Rule designers sometimes encoded the same kinds of
constraints differently into their specific SN representations. Operational personnel often
had different interpretations of the same Rule’s meaning. In addition, ambiguous
references to message components, as expressed within the Rule syntax, made it difficult
for implementers to encode appropriate validation software to locate and compare the
intended data; this resulted in implementation inconsistencies. Finally, we found
constraint language syntax “features” in operational use that were not documented as part
of the existing constraint language specification. Other features were formally included
in the specification, ostensibly for the sake of the theoretical beauty or completeness of
the language, but were used seldom if at all in practice.

Technology shortfalls

We initially hoped that many of the Rules expressible in SN could be re-expressed in
XML Schema constructs. This hope dimmed when we realized that many common
constraints encoded relationships between non-sibling elements in the XML-MTF
document. Such relationships cannot be captured easily in XML Schema.

Iteration and alignment

SN Rules can reference repeatable components in the message type to which they are
assigned. For such Rules to be evaluated, all referenced component repetitions must be
inspected, and appropriate pairings of the repeated components that appear as distinct
operands in the same Rule must be considered. We call the inspection of the repetitions
iteration; the formulation of appropriate pairings of repeated components is alignment.
The challenging part of Rule evaluation in these cases is determining all the combinations
of relevant data that must be evaluated to make a truth determination.

 4

For example, what happens when two repeatable components, which occur n and m times
respectively, must be compared for the Rule evaluation to take place? Should n 1-to-m
comparisons take place? Or m 1-to-n comparisons? Perhaps min(n,m) 1-to-1
comparisons? Some possibilities are illustrated in Figure 2.

1

2

3

n

1

2

3

m

n 1 x m

etc.

1

2

3

n

1

2

3

m

m 1 x n

etc.

1

2

n

1

2

3

m

min(n,m) 1 x 1

etc.

Figure 2. Possible comparison alignments

We found the encoding of many Rules confused the designers and implementers, which
led to many-to-many comparisons; but often such comparisons were not intended and are
not meaningful. For example, suppose a Rule were written to require that all m
repetitions of some element must have the same value as all n repetitions of another
element. The only way this can occur in an instance document is if all such components
have the very same value! Although it is possible this is a viable constraint, it appears
suspect in many situations; furthermore, simpler Rules requiring fewer comparisons
could be written to enforce such a constraint. We concluded Rules needed to expose the
intended alignments more succinctly when two or more repeatable components were
involved to avoid encoding and implementation inconsistencies.

The iteration and alignment requirements that exist for applying such constraints to MTFs
obviously exist for applying similar constraints to corresponding XML-MTF documents
as well. So we recognized a Rule evaluator for XML-MTF documents would need the
capability to process multiple instantiations of a constraint to determine whether that
constraint is satisfied by a given document instance. This meant the processing logic to
control repetition inspection (i.e., iteration) and repetition pairing (i.e., alignment) had to
be supported in the validation model.

Three-valued logic (3VL) requirement

 5

We can informally think about the loaded term context as “the situation that can lead to
the use of a component.” For a component that is not hierarchically subordinate to (i.e.,
nested within) another component of the document, its context is the document. For a
component that is hierarchically subordinate to (i.e., nested within) another component of
the document, its context is the component that contains it.

Typically, the evaluation of a logical expression results in a straightforward manner to
true or false, depending on whether the circumstance that expression describes is
exhibited within the context the evaluation takes place. In the constraints we are
concerned with, logical expressions reference elements of the document. For example, if
a component’s context is the document itself, then clearly it always is possible to assess
an expression as true or false when that expression questions such a component’s
occurrence within the document.

Now consider a slightly different situation. Suppose there is a component C2 whose
context is not the document, but rather it can only occur within some other component C1
within the document. Given an expression that questions the existence of C2, if C2 does
appear in the document – this only could come about if its context C1 appears in the
document – clearly the expression evaluates to true. Similarly, if C1 does appear in the
document, but C2 does not appear within C1, the expression evaluates to false.

But what if C1 does not appear in the document? In a standard two-valued logic system,
such as that used in XPath, an expression that attempts to examine C2 or questions the
existence of C2 in this situation will evaluate to false, which in many circumstance could
cause the Rule that contains that expression to evaluate to false also and thus fail. This
presents a problem for us, because in our operational environment, a Rule should not fail
if the context for evaluating it is not present in the document.

In other words, each SN Rule is written to enforce assertions against a collection of
possible instantiation of the document; for some other perfectly valid and well-formed
instantiations of the document, or for fragmentary instantiations, a Rule simply may not
apply because the document does not exhibit the context for evaluating it. Thus it would
be somewhat inaccurate for the expression that questions C2’s existence simply to
evaluate to false, because the context that could have led to evaluating the expression –
i.e., the use of C1 – does not occur in the document under examination. So we needed a
way of consistently addressing cases such as this.

One remedy to this situation is to AND existential tests for all relevant operands with the
expression that actually evaluates the constraint; but this is unwieldy for all but the
simplest cases. Our approach instead requires that such an expression evaluate to the
logical value null since its truth cannot be determined based on what is currently known
(i.e., what is contained in the document under examination).

A logical system in which this third logical value null is in effect – in addition to true and
false – is a three-valued logic (3VL) system. We found that the concept of 3VL was

 6

pivotal to evaluation as it originally had been specified for the constraint language SN.
We concluded that 3VL had to be incorporated into the XSN-MTF validation model. We
will discuss 3VL more later in the paper.

Universal and existential quantification

We had to consider how to implement two kinds of quantification for Rule evaluation for
XSN-MTF. The first, universal quantification, is commonly called “for all.” It
represents the conjunction (AND-ing together) of results from evaluating an expression
with different combinations of relevant data. By definition, if all the resulting
expressions evaluate to true, the quantification is satisfied. The second, existential
quantification, is commonly called “there exists.” It represents the disjunction (OR-ing
together) of results from evaluating an expression with different combinations of relevant
data. By definition, if at least one of the resulting expressions evaluates to true, the
quantification is satisfied.

The reason quantification is important for Rule evaluation is that many of the Rules
applicable to documents express one kind of quantification or the other. For example, it
might be necessary to require that for all components C1 in the document, C1 must
contain two or more uses of component C2. Or for a particular document type it might be
required that there exists at least one occurrence of a specific alphanumeric value within
any instance document. Some programming environments support specific constructs
that can be used to control quantification behaviors. However, at the same time the
constraint language syntax itself must provide the Rule designer the ability to express the
intent of the Rules involving such quantification concepts to ensure appropriate
implementations of those Rules.

Evaluation Infrastructure

Figure 3 pictorially depicts the stages of transforming the constraint language into its
XML-based counterpart. In the next few paragraphs, we discuss the infrastructure that
we needed to develop to support this transformation.

 7

SN BNF
Parser Generator

“JavaCC”

XML-MTF
Mega-

Schema

SN ParserSN Rule

XML-SN

SN-to-XPath
Transformation

Rules
XPath “Productionizer” XSN-MTF

Figure 3. Transforming SN to XSN-MTF

Rendering XML-SN

An initial part of the transformation process involved the capability to parse and tag the
Rule into a form more amenable to subsequent processing. This step could have been
omitted had the Rules been expressed directly in XML technologies to begin with; but we
were not in such a convenient situation. To ensure appropriate mappings were done, first
the original constraint language had to be modified to mitigate the problems cited earlier,
such as eliminating ambiguous component references and clarifying the intended iteration
and alignments. This was accomplished by coordinating formal changes to the language
specification through its relevant user communities.

For example, the revision of the language now requires that Rules incorporate complete
and fully qualified component references, similar in detail to path names in XPath.
Features of the constraint language that were redundant, out-of-use or confusing were
deprecated. Subsequently we developed a BNF grammar for the improved constraint
language that could serve as input to the parser generator JavaCC. Rules then could be
fed into the resulting parser to produce a tagged representation we call XML-SN, poised
for subsequent XML-based processing. We will not discuss that portion of the mapping
further in this paper; please refer to [1] for amplification.

Navigating with XPath 2.0

We chose XPath as the navigational language for locating data. We had to use XPath 2.0
to get built-in constructs for expressing universal and existential quantification that we
would need later in the processing. In the case of a Rule assigned to an MTF type, path

 8

names were expressed in the original constraint language syntax in terms of integer
Segment, Set, Field Group, and Field numbers, which sequentially reference the
hierarchical components of the MTF structural design, the so-called metaMTF. This
system of references is not meaningful for navigating an XML-MTF; however, a
component reference that appears in a Rule assigned to a given document schema can be
translated into an equivalent XPath reference using appropriate tags to navigate to the
relevant data.

More to the point, to re-interpret the component references from our constraint language
to useful path names for XPath, we needed to use tags referencing the XML-MTF
document structure instead of relative integer positions. We wrote interfaces to the
XML-MTF Schema to access the tagging metadata associated with a relevant document
instance to which the Rule might be assigned. When fed a group of metadata associated
with a particular component reference via the original Rule syntax, these functions
generated an XPath path name tailored to navigating the XML-MTF instance document
to which the Rule was assigned. For those interested in the details of this aspect of the
XSN-MTF mapping, please see [2].

3VL comparison operators

The behaviors of most programming languages are built around a two-valued logic (2VL)
paradigm. That is, expressions evaluate to true or false – period. XPath is no exception.
Because 3VL was pivotal to the evaluation behaviors in our constraint language as
explained earlier, we wrote an XSL 2.0 Stylesheet to implement 3VL function
counterparts for a number of comparison functions we needed so they would impose
3VL-based interpretations on their operands and results. These include numeric equality,
inequality, greater-than and less-than as well as lexicographic equality and inequality
functions. This step was necessary to by-pass the default behaviors of XPath and
incorporate 3VL-based reasoning.

Consider comparing two strings for equality. We can represent this generically using the
available XPath functions as string(left_operand) eq string(right_operand). Now
suppose the left_operand examines elements that do not occur in the document under
examination. This means we would not be able to retrieve any nodes of the kind
specified as the left_operand. Since the operand cites an empty node set (i.e., no
exemplars of this path exist in the document), the eq expression evaluates to false in the
XPath 2VL world. This is not what we wanted.

In a 3VL context, attempting a string equality comparison, when no exemplars exist per
either or both operand’s path name, must result in a null expression evaluation. This is
because a meaningful context for comparing the components fails to exist. For such
expressions to evaluate to false instead might inadvertently cause a Rule to be determined
as “failing” when it should not. Thus we provided for re-expressing such comparisons,
replacing the standard XPath function with our own 3VL-based function implementations
using XSL 2.0. For this notional example, the resulting expression, using function prefix

 9

notation, is the following: eq3-s(string(left_operand),string(right_operand)), where
eq3-s() is our implementation of the 3VL function for string equality comparison.

3VL logical operators

We also had to implement 3VL function counterparts for logical AND, OR and NOT.
The 3VL operators and3(), or3() and not3(), which we again implemented via the XSLT
Stylesheet, replaced the “default” logical operations in XPath and are extensions of those
operations familiar to us from 2VL. These operations are summarized in the truth tables
shown in Figure 4.

and3 true false null
true true false null
false false false false
null null false null

or3 true false null
true true true true
false true false null
null true null null

not3 true false null
 false true null

 E2

 true false null
true true false null
false true true true

E1
null true null null

Figure 4. 3VL Tables

Notice how the null valuation has been incorporated in these tables. The null valuation
addresses instances in which the logical outcome of the operation cannot be definitively
decided. For example, suppose we consider two string equality expressions E1 and E2.
Further suppose the comparison stated in E1 has been determined true, but unfortunately
the comparison stated in E2 involves examining nodes for which no exemplars exist in
the document. Because we have replaced the standard string equality comparison with
the 3VL function eq3-s(), E2 will return the null valuation in this situation. Further,
under the rules of 3VL, and3(E1,E2) produces null. The reasoning that underlies this is:
if additional information were made available, and3(E1,E2) could have a different
evaluation depending on whether we eventually find out E2 is true or E2 is false; but for
now, we are uncertain, so the logical result must be null.

On the other hand, when E1 is true and E2 is null, the expression or3(E1,E2) evaluates to
true. This is because, for a disjunction to evaluate to true, at least one of its operands
must be true. We already know E1 is true, so we don’t even need to concern ourselves
about the eventual valuation of E2 to decide the outcome of or3(E1,E2)! So we use the
null evaluation to model situations where the context fails to exist to evaluate an
expression. Recall we mentioned earlier when discussing the 3VL requirement what an
important consideration this is, for ensuring that Rules are not inadvertently interpreted as
failing as the intermediate results that contribute to their overall evaluation are combined
logically.

 10

Mapping SN expressions to XPath/XSL

Given this basic groundwork, we established semantic and syntactic correspondences
between all the operators we needed for the migrating constraint language and XPath
operators and XSL functions as a prelude to translating the expressions which are the
“building blocks” of the Rules. Figure 5 shows two examples of such mappings, for
numeric and string equality comparisons, respectively.

The examples also suggest the correspondence of operand syntax from the original
constraint language SN to XPath path names. Specifically, [3]F2 refers to the second
component or Field (F2) within the third hierarchical component or Set ([3]) in the MTF
structural design. As mentioned earlier, in the redefined expressions we must use tags
referencing the XML-MTF document structure instead of relative integer positions. So in
the figure we show the generic tags “set3” and “field2” for this purpose. Were the
example expressions bound to a specific XML-MTF type, actual tag names would have
been substituted from the corresponding XML-MTF Schema.

SN operator: =
Explanation: The "=" operator is for doing numeric comparison. It may be used in
either the Statement part or the Condition part of a Rule.
Available XPath operator: number(left_opnd) eq number(right_opnd)
Redefined operator in XSL function prefix notation:
 ex:eq3-n(left_opnd, right_opnd)
Example:
 SN: [3]F2 = 3
 Available XPath: number(/set3/field2) eq 3
 Redefined operator in XSL function prefix Notation:
 ex:eq3-n(/set3/field2, 3)
Note: “eq3-n” is the 3VL function for number equality comparisons.

SN operator: EQ
Explanation: The "EQ" operator is for doing string comparison. It may be used in
either the Statement part or the Condition part of a Rule.
Available XPath operator: string(left opnd) eq string(right opnd)
Redefined operator in XSL function prefix notation:
 ex:eq3-s(left opnd, right opnd)
Example:
 SN: [3]F2 EQ /foo/
 Available XPath: string(/set3/field2) eq "foo"
 Redefined operator in XSL function prefix Notation:
 ex:eq3-s(/set3/field2, "foo")
Note: “eq3-s” is the 3VL function for string equality comparisons.

Figure 5. SN to XPath/XSL Mapping Examples

A Rule as a closed-form logical expression

We noted each constraint is of the form if Statement then Condition, which is the
formulation of logical implication (i.e.,). We observed that Rule evaluation is

 11

equivalently stated Condition Statement (i.e., E1 E2). The 3VL variant of the
implication operator is shown in Figure 4.

It is easy to reason through this logic. The Rule evaluates to true and “passes” in two
situations. First, the constraint is satisfied if the Statement evaluates to true. This makes
sense, because if the assertion (Statement) is satisfied, then so is the Rule, whether it
applies to the document or not! If the Condition evaluates to false (which means the Rule
does not apply to the document), the Rule also evaluates to true. This is consistent with
the reasoning underlying implication: if we start with a false antecedent (Condition), it is
possible to prove any consequent (Statement) to be true, so the Rule is satisfied
regardless of the Statement’s evaluation in this case.

The Rule evaluates to false and “fails” in one situation only. This occurs when the
Condition is true but the Statement is false; that is, the assertion is applicable to the
document but it has not been satisfied. In all other cases, the Rule evaluates to null. This
means the context does not exist in the document instance to determine the satisfaction of
the Rule, so that the Rule passes “by default” (i.e., we can ignore it).

We also observed that logical implication is equivalent to the closed-form expression
Statement OR3 NOT3(Condition) – that is, or3(Statement, not3(Condition)) using
function prefix notation. The interested reader can validate this equivalence by
constructing the associated truth table to ensure that it is identical to that of 3VL
implication (but we promise you it is). This simple equivalence allowed us to create an
XPath equivalent, closed-form logical expression for a Rule instead of complex if-then-
else constructs, by applying the path name and operator mappings to its expression
building blocks and using the prefix function notation.

The resulting closed-form expression is constructed to evaluate to true if the Rule is
satisfied and null if the context for evaluating the Rule does not exist; it will evaluate to
false if the Rule is not satisfied. We wrote a simple function rule-satisfied() whose role is
to implement this 3VL-based evaluation behavior, summarized earlier in Figure 1, when
the constraint is applied to the instance document in this form. (This function essentially
maps the null evaluation to true or false as appropriate, so that Rules that are to be
ignored will not inadvertently appear to fail in XPath’s 2VL system.)

Evaluation Model

The final stage in this process involves embedding the resulting XPath expression of the
Rule into suitable processing logic. The focus here is for the infrastructure to provide
control of the iteration (i.e., repetition inspection) and alignment (repetition pairing)
aspects of Rule validation against an instance document when repeatable elements are
referenced.

An Easier Model for Illustrations

 12

In the XML-MTF model, each message is a document type, and we express constraints
for evaluation against an individual message instance. To avoid getting bogged down in
understanding the XML-MTF design and tag names, for the remaining examples in this
paper we instead will reference a well-known Recipe model. Cooking terms and
concepts probably are familiar to more readers than the semantic details of tactical
messages! In particular, we use a model similar to the example published by Møller and
Schwartzbach [3]. So for the illustrative examples we will express constraints for
evaluation against a recipe instance where:

• Each Recipe consists of a Title, ingredients, preparation, possibly some
Comments, and its Nutrition content.

Each ingredient can be base or composite:

• A BaseIngredient is composed of a Name, an Amount (possibly unspecified), and
a Unit (unless Amount is dimensionless).

• A CompositeIngredient is composed of BaseIngredients and
IngredientPreparation listed as Steps.

The FinalPreparation lists the Steps needed to complete the Recipe.

An example Recipe document is shown as Figure 6.

<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSPY v2004 rel. 4 U (http://www.xmlspy.com)-->
<Recipe
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:noNamespaceSchemaLocation="XML2004ConferenceExample02.xsd">
 <Title>Ricotta Pie</Title>
 <CompositeIngredient>
 <Name>Dough</Name>
 <BaseIngredient>
 <Name>Flour</Name>
 <Amount>4</Amount>
 <Unit>cup</Unit>
 </BaseIngredient>
 <BaseIngredient>
 <Name>Baking powder</Name>
 <Amount>5</Amount>
 <Unit>teaspoon</Unit>
 </BaseIngredient>
 <!-- etc • • • -->
 <IngredientPreparation>
 <Step>Combine the flour, baking powder, and 1 cup of the sugar
 together.</Step>
 <Step>Cut in the shortening and mix until the mixture resembles coarse
 crumbs.</Step>
 <Step>Mix in 4 of the eggs and 1 teaspoon of the vanilla.</Step>
 <Step>Divide dough into 4 balls and chill (if needed).</Step>
 </IngredientPreparation>
 </CompositeIngredient>

 13

 <CompositeIngredient>
 <Name>Filling</Name>
 <BaseIngredient>
 <Name>ricotta cheese</Name>
 <Amount>3</Amount>
 <Unit>pound</Unit>
 </BaseIngredient>
 <BaseIngredient>
 <Name>eggs</Name>
 <Amount>12</Amount>
 </BaseIngredient>
 <!-- etc • • • -->
 <IngredientPreparation>
 <Step>Beat the 12 eggs, 2 cups sugar and vanilla extract together </Step>
 <Step>Stir in the ricotta cheese and the chocolate chips.</Step>
 <Step>Set aside.</Step>
 </IngredientPreparation>
 </CompositeIngredient>
 <BaseIngredient>
 <Name>Milk</Name>
 <Amount>Variable</Amount>
 <Unit>Text</Unit>
 </BaseIngredient>
 <FinalPreparation>
 <Step>Roll dough flat and place into a 9 greased inch pie pan ...</Step>
 <Step>Add the filling ... </Step>
 <!-- etc • • • -->
 </FinalPreparation>
 <Comment>This sounds harder than it is. Do not be intimidated by all the steps.</Comment>
 <Nutrition>
 <Serving>6 ounces</Serving>
 <Calories>348</Calories>
 <Fat>18</Fat>
 <Carbohydrates>64</Carbohydrates>
 <Protein>18</Protein>
 </Nutrition>
</Recipe>

Figure 6. Recipe Example

Singular cases

In the simplest case, a Rule may reference only components that appear either once or not
at all in the instance document. Or, the Rule may consider only existential assertions,
where one or more occurrences of a component will satisfy the constraint. That is, only
one inspection of data is required to decide the Rule.

Suppose the designer decided that recipes appropriate for beginner cooks should contain
the word “Easy” at the beginning of the title, and that composite ingredients are too
complicated for “Easy” recipes. The designer might state a Rule If the recipe title starts
with “Easy” then it must not contain any composite ingredients. We can re-express the
proposed Rule in XPath/XSL as follows:

rule-satisfied(or3(eq3-n(count(/Recipe/CompositeIngredient),0),

 14

 not3(eq3-s(/Recipe/Title,’/Easy/*’))))

This expression is built around the or3(Statement, not3(Condition)) formulation of the
Rule. The Statement or assertive part of the Rule is expressed in by examining the size of
the node set that results from looking for any composite ingredients. The Condition part
of the Rule is expressed using our 3VL implementation of string comparison eq3-s(),
where the special pattern-matching syntax ′/Easy/*′ determines whether the Title string
begins as desired. (This particular syntax was motivated to ensure compatibility with the
syntax of the original constraint language.) The above expression will evaluate to true if
the Rule is satisfied and false if it is not satisfied. In particular, the recipe for Ricotta Pie
suggested by Figure 6 would not satisfy the Rule, because both the filling and the dough
are composite ingredients, and the title fails to start with the word “Easy”.

If the world of documents and constraints we wished to express were so simple, the job
would nearly be done at this point, except for thinking through a few minor details.
Unfortunately, document elements can be repeated, and constraints can inspect more
complex document features. When a Rule’s operands cite repeated elements in the
document, or Rules inspect more interesting features of the document, multiple
combinations of data may need to be considered to produce an overall evaluation of the
Rule.

Iteration

Because MTF components can be repeatable, the SN constraint language we were
migrating provides a syntax called subscripts to modify each repeatable component to
make explicit which of it repetitions should be considered during the iteration. Similarly,
when re-expressing these Rules in many cases an operand must be examined iteratively
“for all” its relevant manifestations within the document instance, considering each
component occurrence at each hierarchical or nested level along the operand’s path.

As a starting point for discussing iteration, suppose the designer decided to enforce the
constraint Within each composite ingredient, the number of base ingredients must be
fewer than the number of ingredient preparation steps. (We will not argue whether this
is a reasonable constraint.) This Rule is an unconditional assertion. That is, there is no
Condition part of the Rule, so the Condition is assumed to be true. Thus this Rule applies
to every instance of the document type to which it is assigned, with the outcome of Rule
evaluation depending solely on the evaluation of the Statement part. We have pictorially
illustrated the intended inspection for a notional example in Figure 7.

 15

Name=Garnish

Name=Dough

Segment

Name=Filling

Segment

Name=Egg Whites

Name=Sauteed
Mushrooms

Step

There must be fewer
BaseIngredients than
IngredientPreparation/Steps
in all CompositeIngredients

IngredientPreparation

Step

StepStep

StepStep

BaseIngredientBaseIngredientBaseIngredient

IngredientPreparation

IngredientPreparation

BaseIngredientBaseIngredientBaseIngredient

BaseIngredientBaseIngredientBaseIngredient

Figure 7. A simple “for all” inspection

At this point the technically-oriented reader might imagine a loop construct in a
conventional programming language to guide the iterative inspection. A looping
mechanism can enforce the described “for all” examination of the composite ingredients,
and the logic within that loop can test for situations in which the constraint should fail.
We can informally re-express the intent of the above Rule from this negative viewpoint
as: The constraint fails to be satisfied if there is any composite ingredient with the same
or fewer ingredient preparation steps than base ingredients in it; otherwise the constraint
is satisfied. If the constraint fails to be satisfied on any iteration, false is returned and the
Rule fails. If the constraint is satisfied for all iterations, true is returned and the Rule
passes.

Let n denote the number of composite ingredients, and let i denote an iteration index. A
pseudocode example is:

 for i = 1 to n

if number of BaseIngredients in ith CompositeIngredient >=
number of IngredientPreparation/Steps within ith CompositeIngredient then

 return false;
 return true;

Thinking back to the original constraint language, repeatable components – which must
be modified with an SN subscript – can be interpreted as a realization of the “for all”
concept, which in turn can be expressed as an iteration construct. Additionally, iterations
can be nested according to the hierarchical structure of the document, from hierarchically
outermost to hierarchically innermost components, if more than one repeatable element
must be iterated.

 16

In this case the transformation to XPath equivalent forms also must set up iterations to
navigate the document during evaluation when repeatable elements are involved. We
need to formulate an expression that describes the conditions under which the constraint
is satisfied. For this example, an XPath/XSL formulation is:

rule-satisfied(or3(every $i in /Recipe/CompositeIngredient satisfies
 lt3-n(count($i/BaseIngredient), count($i/Ingredient/Preparation/Step)),

not3(true))

where lt3-n() is our 3VL implementation for numeric less-than comparison. The “every”
clause cites a collection of composite ingredient elements to examine. The “satisfies”
clause is built using the or3(Statement, not3(Condition)) formulation of the Rule. The
default Condition part is represented by true. This is a bit superfluous, but we have
included it to keep the translation consistent. The outcome of the first argument to the
or3() function (i.e., the Statement part of the Rule) will determine the outcome of the
Rule evaluation. This part checks to make sure for each composite ingredient iterated
using $i that it contains fewer base ingredients than ingredient preparation steps.

The above expression evaluates to true if the expressed constraint is satisfied; it evaluates
to false otherwise, which is the desired result. Thus in XPath, the every construct,
together with its dollar variable index (i.e., $i) controls the “for all” examination of
repeated components and so can be used to accomplish iteration over a collection of
element repetitions. If more than one level of repetition needs to be examined, the every
constructs can be nested and distinct index variables used.

Alignment

Alignment is a specialization of iteration; it refers to simultaneously comparing the same
repetition of two or more repeatable components during evaluation. This can be stated
another way as lock-step comparison. A goal of alignment is to facilitate pairing
components in such a way that the Rule performs one-to-one comparisons. We pointed
out earlier that many-to-many comparisons, although supported by the original constraint
language syntax, usually are not meaningful.

We saw above how in XPath, the every construct can be used to control the “for all”
examination of repeated components. By subscripting (e.g., [$i]) the relevant elements
with the same iteration index (i.e., $i) from the every construct, we can accomplish
aligned comparisons.

To provide an example for understanding alignment, imagine that to help ensure the
logical readability of the recipe, the designer wants to require that for a recipe with n
composite ingredients, there are at least n steps in the recipe preparation, with the first n
of those steps using each of those n composite ingredients in turn: the first of those steps
mentions the first composite ingredient; the second step mentions the second composite
ingredient; and so on. (Once again, we won’t dwell on the reasonableness of this
requirement.)

 17

This requirement expresses an aligned comparison, matching composite ingredients with
recipe preparation steps. Not all aligned comparisons require that there is a one-to-one
alignment of the two comparison node sets, but in this example, that’s what the designer
intended. We would express this requirement as two constraints. The first constraint
enforces that the number of final preparation steps must equal or exceed the number of
composite ingredients. That is, If the recipe has composite ingredients, then there must
be at least as many steps in the final preparation. We leave it as an exercise for the
reader to build this Rule. The second constraint can be expressed as the Rule: If the
recipe has composite ingredients, then there must be a corresponding final preparation
step for each composite ingredient in which its name appears. We have depicted this
aligned comparison concept pictorially in Figure 8.

There must be a FinalPreparation Step
involving each CompositeIngredient

Step

FinalPreparation

Name=Garnish

Name=Dough

Segment

Name=Filling

Segment

Name=Egg Whites

Name=Sauteed
Mushrooms

Step

IngredientPreparation

Step

StepStep

StepStep

BaseIngredientBaseIngredientBaseIngredient

IngredientPreparation

IngredientPreparation

BaseIngredientBaseIngredientBaseIngredient

BaseIngredientBaseIngredientBaseIngredient

Figure 8. The aligned comparison concept

Again at this point the reader might imagine a loop construct in a conventional
programming language. To compare two components in lock step, the same iteration
index must be used for them. To know when false should be returned and the Rule
should fail, we can informally re-express the intent of this constraint from a negative
viewpoint as: The constraint fails to be satisfied if the final preparation step in
correspondence with any composite ingredient fails to contain that ingredient’s name;
otherwise the constraint is satisfied. Let n denote the number of composite ingredients,
and let i denote an iteration index. A pseudocode formulation is:

for i = 1 to n
if /Recipe/FinalPreparation/Step[i] does not contain ith CompositeIngredient’s name then

 return false;
 return true;

 18

By logical extension, if two or more levels of paired comparisons are required, more than
one looping construct and index can be encoded.

Similarly, the XPath expression of the aligned comparison concept must set up iteration
in such a way that the same dollar variable is used to choose paired element repetitions
“in lock step” while navigating the XML-MTF document during evaluation. If more than
one unique pairing is needed, nested every constructs can be used.

For this example, the constraint which enforces the alignment of the steps to the
composite ingredients, expresses in XPath the conditions under which the constraint is
satisfied. An expression E1 captures the Condition part of the Rule by testing whether
the recipe actually contains composite ingredients:

 gt3-n(count(/Recipe/CompositeIngredient),0)

where gt3-n() is our 3VL implementation for numeric greater-than. An expression E2
enforces the Statement part of the Rule and is formulated as follows. Our 3VL
implementation of string comparison eq3-s() can take a second argument with the special
pattern-matching syntax ′*/<s>/*′ which determines whether the first argument contains
the string <s> preceded by and followed by zero or more additional characters. (This
particular syntax was motivated to ensure compatibility with the syntax of the original
constraint language.) Here we use it to make sure the composite ingredient name appears
in its corresponding final preparation step:

 every $i in 1 to count(/Recipe/CompositeIngredient) satisfies
 eq3-s(/Recipe/FinalPreparation/Step[$i],
 concat(‘*/’,/Recipe/CompositeIngredient[$i]/Name, ‘/*’))

We can combine these two ideas in the form:

rule-satisfied(or3 (E2, not3(E1)))

This expression evaluates to true only if the expressed constraint is satisfied for all
composite ingredients in the Recipe. If the pairing is not “perfect” (e.g., maybe there are
n composite ingredients, but only n-1 final preparation steps), the failure of the document
to comply with the designer’s intent would have been detected by the first Rule we
mentioned earlier which would fail during validation under these circumstances.

Other iteration restrictions

Alignment can be viewed as a restriction on the basic concept of iteration or “for all”
inspection. The constraint language we work with supports other iteration restrictions as
well, all accomplished using a subscript syntax in the original language. Each has a
counterpart in XPath. Some realizations are fairly simple. For example, it sometimes
can be meaningful to restrict the applicability of a constraint to only the nth or only the
last occurrence of an element. This can be accomplished by modifying references to that

 19

element with the subscript [n] or [last()] respectively. For example, referring to the
recipe model, the designer might require that the first final preparation step in a recipe
must contain the word “Preheat” to ensure the cook gets the oven going.

Some constraints are satisfied if the assertion is satisfied for just SOME combination of
relevant elements in the document: in other words, there must exist at least one situation
in the examined document for which the assertion holds. An example is a concept such
as There is some repetition of this element that contains the specified value. For
example, the designer might require for each base ingredient in the recipe only that There
is some ingredient preparation step that contains the base ingredient’s name. Such
expressions can be re-formulated using the exists construct in XPath. Or, a less direct re-
expressions can be formulated using the negation of an expression with the every
construct. For this example, we can loosely state that as: NOT(every ingredient
preparation step does NOT contain the base ingredient’s name). In general terms, if it is
NOT the case that every element does NOT contain a specified value, then there must be
SOME element that DOES contain that value.

Other restrictions have less direct counterparts too. For example, our constraint language
supports expressing an assertion that is satisfied only if there is NO combination of
relevant elements in the document that exhibit the feature being examined. With a little
thought, this can be recognized as the negation of the existential case. That is, to say that
“there is NO repetition of this element that contains the specified value” is the same as
NOT(There is some repetition of this element that contains the specified value). Or, it
can be re-expressed as an every case in which the examined feature itself is negated. For
this example, we could say every repetition of this element does NOT contain the
specified value.

Value containment is just one possible assertion that can be involved in these
formulations; it was used in these examples for the sake of simplicity. Other more
complex features can be enforced similarly, using some combination of comparative
expressions and the every and exists constructs.

Proof-of-concept and use cases

To illustrate the practical application of the mappings and the methodologies discussed
above, we set up a prototype of the workflow illustrated earlier in Figure 3. We devised a
small collection of hypothetical Rules or use cases typical of the kinds of constraints
expressed in the target operational environment and built a hypothetical XML-MTF
Schema for test purposes. We wrote an XPath Generator Stylesheet to demonstrate the
feasibility of automating the transformation of the XML-SN (parsed form of Rules) into
XSN (XPath/XSL equivalents) bound to that hypothetical document type per the
transformation principles described in this paper. We successfully validated the
feasibility of the process for the use cases. The proof-of-concept validator and use cases
were intended to provide a reference model for future vendor implementations.

Conclusions

 20

To support generalizing XML-native constraint techniques such as we have described
here to arbitrary discourse domains, we need to summarize what we have learned about
expressing and enforcing constraints in more abstract terms.

General Principles

Based on our experiences, we generalized the following guiding principles for expressing
constraints against XML documents:

• To ensure constraints are unambiguous, an accurate specification for encoding
[syntax] and interpreting [semantics] constraints must exist. This will increase the
likelihood that:

- Similarly educated operational personnel will discern the same meaning

[semantics] from the same Rule [syntax].

- Similarly educated document and Rule designers will encode similar
Rules [syntax] to express similar concepts.

• To appropriately and consistently enforce Rules, an accurate specification for

encoding [syntax] and interpreting [semantics] constraints must exist as the basis
for implementing validation software. In particular:

- The syntax must include a construct to provide the navigational

information to locate any element in a document structure. We use the
term path name for this construct.

- The syntax must require that the navigational information provided to

locate elements within the document structure is complete and fully
qualified.

 Complete means the path name syntax must require citing any and

all elements needed to locate the referenced element, listed in
hierarchical order according to the document specification.

 Fully qualified means the path name syntax must require citing

specific occurrences of any repeatable elements it references.

- For Rules involving comparisons that references repeatable components,
syntax must be provided to align comparisons of those components as
needed to support the intent of the Rule (i.e., 1-to-1 or n-to-m).

 It should be noted that constraints involving n-to-m comparisons

may be suspect or are reducible in complexity.

 21

In this paper, we did not discuss the syntactic details of our original constraint language
SN beyond a high level view. We did this to avoid getting the reader bogged down in
understanding the tactical messaging world from which this language arose.
Nonetheless, one advantage we want to point out to using this sort of “third party”
constraint language as a starting point, and transforming it to XPath equivalents, is that it
allows the message (i.e., document) designer to express constraints in terms [s]he
understands, without having to learn the syntax of XPath. SN in fact complies with the
guidance we have listed here for a useful constraint expression language.

Additionally, we generalized the following guiding principles for evaluating constraints
against XML documents:

• The validation framework must support the processing logic to realize iteration
and alignment when Rules reference repeatable document components.

• The validation framework must support 3VL logic to handle in a consistent way

those situations in which Rules cannot be evaluated due to insufficient document
content.

Minimal evaluator capabilities

We recommend the following list items as minimal capabilities needed by a constraint
evaluator for XML documents.

• The evaluator shall be capable of locating elements referenced in the
document instance per the path name.

• The evaluator shall be capable of inspecting an element’s metadata as needed

to support other functions of the validation process.

• The evaluator shall implement the 3VL logical operations and(), or() and not().

• The evaluator shall implement other functions needed to support constraints
expressible in the domain, consistent with the principles of 3VL.

- We found the following comparison operators were needed at a minimum

to migrate our constraint language: numeric equality, inequality, greater-
than and less-than, as well as lexicographic equality and inequality. Other
functions might be useful as well, such as arithmetic operations.

• The evaluator shall provide constructs for supporting iteration over a collection of

elements.

• The evaluator shall provide constructs for supporting restrictions of iteration, such
as alignment.

 22

Future Directions

The migration of the SN constraint language to XML-native equivalents will be formally
embodied in the appropriate military standards that specify XML-MTFs. Due to project
resource constraints, we automated the XPath generation aspect of the XSN-MTF
transformation process for only those Rules that involve no iteration restrictions. That is,
we implemented “for all” case generation only; we manually generated
iterative/alignment examples to bench check them. So further automation work can be
accomplished in this area. In addition, the processes need to be generalized beyond the
specifics of the XML-MTF domain in which we work; however, we believe the
conceptual building blocks for doing that have been well laid out in our work and provide
a basis for extension by others.

The migration path we chose for XML-enabling constraint validation allowed us to
leverage a 30-year community investment in the definition and management of text-
oriented tactical messages and the kinds of information they contain. When migrating the
message standard to an XML form, we found the existing notions of document well-
formedness and validity with respect to a Schema insufficient for capturing all the
internal logical requirements that impact assessing an XML-MTF instance’s compliance
with the underlying MTF standard. We had to incorporate SN Rule validation to
supplement this process.

The need to apply constraints to structured text when rendered as an XML document,
including incomplete or flawed documents, is not unique to the military messaging world.
XML-native techniques for expressing and enforcing constraints such as we have
described here can be generalized to other discourse domains. We found there could be
advantages in allowing designers to continue expressing constraints in a legacy language
whose terminologies are intuitively meaningful to them, to avoid their having to learn the
complexities of XPath syntax, provided a methodology can be established for mapping
from the legacy language to XML technologies. This is something to consider when
looking at this same problem in other contexts. The principles and capabilities we have
laid out as a model for XML-based constraint expression and evaluation, grounded in
3VL, are relevant and useful for the XML community at large.

Acknowledgements

The work described in this paper was performed by The MITRE Corporation under the
sponsorship of the Air Force Command and Control, Intelligence, Surveillance, and
Reconnaissance Center (AC2ISRC) Information Management Branch (SCG) at Langley
Air Force Base, VA.

References

[1] Cokus, M. et. al., Transforming Military Command and Control Information
Exchange, XML 2004 Conference Proceedings, November 2004.

 23

[2] Malloy, M. A., XML-MTF Derivation Procedures for Message Text Format (MTF)
Structural Notation (SN) version 1.3 [draft], August 2004, The MITRE Corporation.

[3] Møller, Anders and Schwartzbach, Michael A., The XML Revolution – Technologies
for the Future Web, http://www.brics.db/~amoeller/XML/xml/example.html.

 24

http://www.brics.db/~amoeller/XML/xml/example.html

