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Abstract 
 
This paper discusses approaches to validating XML documents for compliance to 
constraints.  Our particular focus is on structural and content constraints that go beyond 
what is readily expressible in XML Schema technologies. We provide examples and 
solutions drawn from our specific experience building an XML-native constraint 
validator based on a mathematical language called Structural Notation (SN).  SN is used 
to express operational constraints as machine-processible Rules against a particular 
category of hierarchically structured, text-oriented military messages, called Message 
Text Formats (MTFs), which have been migrated to a corresponding XML-based 
representation. 
 
We discuss the challenges we faced in implementing this XML-native constraint 
evaluator.  For example, we discuss how, to build a Rule validator, we found it necessary 
to extend the underpinnings of logical evaluation in XPath 2.0 to use three-valued logic 
(3VL) rather than two-valued logic.  We detail some general principles for expressing and 
enforcing constraints against regularly structured text, when rendered as an XML 
document.  We enumerate minimal capabilities needed by a constraint language and 
evaluator for XML documents and suggest some ways our approaches can be generalized 
for use in other domains.  Because the need to apply constraints to incomplete or flawed 
documents is not unique to the military messaging world, a constraint evaluation model 
such as we propose, grounded in 3VL, is relevant to the XML user community at large. 
 
Keywords: XML, XPath 2.0, XSL 2.0, Constraint, Validation, Text Messaging,  

Three-valued Logic, Message Text Format, Structural Notation, XML-
MTF, XSN-MTF 

 
Background 
 
Message Text Formats (MTFs) support information exchange 
 
To be effective, the military as well as other government and commercial organizations 
must share information across dissimilar, independently developed systems that involve 
diverse languages, cultures and command/management structures.  One way of 
addressing these challenges is through formatted, text-oriented information exchanges.  A 
particular standard of hierarchically structured messages, called Message Text Formats 
(MTFs), has been used to relay battlefield information since the 1970’s.  The MTF 
standard comprises about 600 message types and over 6000 simple and complex data 
types, all defined, agreed upon and implemented by more than 70 nations.   
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Each MTF type specifies a particular grammatical construction of components, each of 
which may be composed of constituent components.  At the lowest hierarchical level are 
Fields.  A Set is composed of a sequence of possible Fields, and possibly a logical 
grouping of them called a Field Group.  A Segment is composed of a sequence of Sets 
and possibly other Segments.  The Message component is a special case of Segment.  In 
addition, components can be specified as optional and/or repeatable.  Because 
components are built using agreed structures (syntax) and vocabulary (semantics), the 
resulting MTFs help mitigate misunderstandings that can arise out of differences in 
terminology, acronyms, and so on that exist across functional and geographical barriers. 
 
Constraints refine MTF specifications 
 
There are basic grammatical rules governing how to assemble the constituent components 
of MTFs, together with specifications regarding the repeatability or optionality of those 
components within individual message types.  But they are insufficient for capturing all 
the internal logical requirements that impact a message instance’s compliance with the 
standard.  Thus, the specification of each standard message type also includes Rules (i.e., 
constraints) that must be satisfied for any message instance of that type to be considered 
“in compliance” with the standard. 
 
Circa 1980, MITRE designed a mathematical language called Structural Notation (SN) 
for formally encoding such operational constraints against MTFs in the form of machine-
processible Rules.  Government-proprietary evaluation software was developed and 
deployed to enforce SN Rules in MTF processing systems.  We call the automation 
aspect of the MTF SN compliance problem SN validation. 
 
Structural Notation (SN) expresses MTF constraints 
 
Each SN Rule consists of a Statement and an optional Condition.  The Statement is the 
part of a Rule that specifies some action on or requirement of any MTF to whose type the 
Rule is assigned.  For example, the Rule might require the use of the same alphanumeric 
value within two components in the message, or it might specify the maximum number of 
times a component can be repeated.  A generic example of the former kind of Rule might 
express a constraint like <Some component> must have the same alphanumeric value as 
<some other component>.  A Statement such as this, without an associated Condition, 
makes an unconditional assertion about the document and applies to all instances of that 
type.  In such cases the Condition can be assumed to evaluate to true by default. 
 
A Condition, if present, specifies the circumstances under which the action or 
requirement part of the Rule as expressed in the Statement takes effect.  For example, the 
Statement might apply only when two components contain identical alphanumeric values, 
or when some specified component is present in the message instance.  Such a Rule 
might generically state <Some component> must occur fewer than <N> times, if <some 
other component> has the alphanumeric value “XYZ.”  Such a Statement with an 
associated Condition (i.e., the part of the Rule in the “if” clause) makes a conditional 
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assertion about the message; the assertion expressed in the Statement part of the Rule 
applies only when the Condition evaluates to true. 
 
Figure 1 below synopsizes the Rule evaluation logic.  We will discuss the significance of 
the null evaluation that participates in this logic a little later. 
 

 
If Condition is false or null, then 
     MTF “passes” validation [by default] for Rule. 

 
If Condition is true [by assessment or by default], then: 
     If Statement is true, MTF “passes” validation for Rule. 
     If Statement is null, MTF “passes” validation [by default] for Rule. 
     If Statement is false, MTF “fails” validation for Rule. 
 

Figure 1.  Rule evaluation logic 
 
It should be noted that the constraints we are interested in are intramessage (or 
intradocument) constraints.  That is, it is possible to examine information “within a single 
message [document] instance” to determine whether a constraint is satisfied.  For 
example, the use of one particular optional component may preclude the use of some 
other component, but only in the same message instance; or the use of a particular text 
value may limit the values allowed elsewhere in the same message. We are not concerned 
with expressing or evaluating constraints that require simultaneously looking at the 
contents of multiple messages, which can be an even more complex problem!   
 
MTFs go XML-based 
 
The desire to leverage non-proprietary software in support of information exchange has 
spurred many organizations, including the military, to quicken their adoption of XML 
technology.  The emerging body of XML standards naturally parallels the interoperability 
supports and concepts needed to web-enable MTFs.  To better meet the needs of the 21st 
century warfighter, MTFs have been migrated to an XML-based representation called 
XML-MTF. 
 
An approved XML-MTF Mapping Specification was developed to provide the XML tags 
needed to structure XML versions of existing MTF types.  An XML-MTF Schema 
Derivation Specification details how to algorithmically derive XML-MTF Schemas from 
the standard.  This enables XML-native validation of various syntactic, structural and 
value constraints applicable to XML-MTFs by viewing them as classes of document 
instances.  Both specifications are in place and agreed by the MTF user community, so 
that any MTF can be equivalently expressed as an XML document. 
 
However, to provide the same level of validation for XML-MTF as that available for 
MTFs – and to do so in an XML-native form – we had to devise the means to implement 
SN validation for XML-MTF.  In other words, it was not enough to support 
demonstrating that an XML-MTF is well-formed and valid; the document also had to 
satisfy these additional SN Rules.  This required re-expressing those Rules so they are 
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processible in an appropriate validation framework using XML technologies.  We call 
this task XSN-MTF. 
 
Challenges to SN Migration 
 
This section summarizes the challenges we faced during the XSN-MTF effort.  Our 
experiences provided the basis for the guiding principles for constraint expression and 
evaluation presented later in the paper. 
 
Constraint ambiguities 
 
When we inspected the existing collection of constraints expressed in SN to assess the 
amenability of migrating them to XML-based representations, it became clear that they 
were products of a by-gone era.  To conserve space, the designers of the constraint 
language had provided many abbreviations and notational shortcuts to make the written 
Rules terser.  The unfortunate side-effect of this economy of expression is that terseness 
tends to obscure the resulting Rules’ meanings. 
 
For example, we discovered that Rule designers sometimes encoded the same kinds of 
constraints differently into their specific SN representations.  Operational personnel often 
had different interpretations of the same Rule’s meaning.  In addition, ambiguous 
references to message components, as expressed within the Rule syntax, made it difficult 
for implementers to encode appropriate validation software to locate and compare the 
intended data; this resulted in implementation inconsistencies.  Finally, we found 
constraint language syntax “features” in operational use that were not documented as part 
of the existing constraint language specification.  Other features were formally included 
in the specification, ostensibly for the sake of the theoretical beauty or completeness of 
the language, but were used seldom if at all in practice. 
 
Technology shortfalls 
 
We initially hoped that many of the Rules expressible in SN could be re-expressed in 
XML Schema constructs.  This hope dimmed when we realized that many common 
constraints encoded relationships between non-sibling elements in the XML-MTF 
document.  Such relationships cannot be captured easily in XML Schema. 
 
Iteration and alignment 
 
SN Rules can reference repeatable components in the message type to which they are 
assigned.  For such Rules to be evaluated, all referenced component repetitions must be 
inspected, and appropriate pairings of the repeated components that appear as distinct 
operands in the same Rule must be considered.  We call the inspection of the repetitions 
iteration; the formulation of appropriate pairings of repeated components is alignment.  
The challenging part of Rule evaluation in these cases is determining all the combinations 
of relevant data that must be evaluated to make a truth determination. 
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For example, what happens when two repeatable components, which occur n and m times 
respectively, must be compared for the Rule evaluation to take place?  Should n 1-to-m 
comparisons take place? Or m 1-to-n comparisons? Perhaps min(n,m) 1-to-1 
comparisons? Some possibilities are illustrated in Figure 2. 
 

1

2

3

n

1

2

3

m

n 1 x m

etc.

1

2

3

n

1

2

3

m

m 1 x n

etc.

1

2

n

1

2

3

m

min(n,m) 1 x 1

etc.

 
Figure 2.  Possible comparison alignments 

 
We found the encoding of many Rules confused the designers and implementers, which 
led to many-to-many comparisons; but often such comparisons were not intended and are 
not meaningful.  For example, suppose a Rule were written to require that all m 
repetitions of some element must have the same value as all n repetitions of another 
element.  The only way this can occur in an instance document is if all such components 
have the very same value!  Although it is possible this is a viable constraint, it appears 
suspect in many situations; furthermore, simpler Rules requiring fewer comparisons 
could be written to enforce such a constraint.  We concluded Rules needed to expose the 
intended alignments more succinctly when two or more repeatable components were 
involved to avoid encoding and implementation inconsistencies. 
 
The iteration and alignment requirements that exist for applying such constraints to MTFs 
obviously exist for applying similar constraints to corresponding XML-MTF documents 
as well.  So we recognized a Rule evaluator for XML-MTF documents would need the 
capability to process multiple instantiations of a constraint to determine whether that 
constraint is satisfied by a given document instance.  This meant the processing logic to 
control repetition inspection (i.e., iteration) and repetition pairing (i.e., alignment) had to 
be supported in the validation model. 
 
Three-valued logic (3VL) requirement 
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We can informally think about the loaded term context as “the situation that can lead to 
the use of a component.”  For a component that is not hierarchically subordinate to (i.e., 
nested within) another component of the document, its context is the document.  For a 
component that is hierarchically subordinate to (i.e., nested within) another component of 
the document, its context is the component that contains it.   
 
Typically, the evaluation of a logical expression results in a straightforward manner to 
true or false, depending on whether the circumstance that expression describes is 
exhibited within the context the evaluation takes place.  In the constraints we are 
concerned with, logical expressions reference elements of the document.  For example, if 
a component’s context is the document itself, then clearly it always is possible to assess 
an expression as true or false when that expression questions such a component’s 
occurrence within the document. 
 
Now consider a slightly different situation.  Suppose there is a component C2 whose 
context is not the document, but rather it can only occur within some other component C1 
within the document.  Given an expression that questions the existence of C2, if C2 does 
appear in the document – this only could come about if its context C1 appears in the 
document – clearly the expression evaluates to true.  Similarly, if C1 does appear in the 
document, but C2 does not appear within C1, the expression evaluates to false. 
 
But what if C1 does not appear in the document?  In a standard two-valued logic system, 
such as that used in XPath, an expression that attempts to examine C2 or questions the 
existence of C2 in this situation will evaluate to false, which in many circumstance could 
cause the Rule that contains that expression to evaluate to false also and thus fail.  This 
presents a problem for us, because in our operational environment, a Rule should not fail 
if the context for evaluating it is not present in the document. 
 
In other words, each SN Rule is written to enforce assertions against a collection of 
possible instantiation of the document; for some other perfectly valid and well-formed 
instantiations of the document, or for fragmentary instantiations, a Rule simply may not 
apply because the document does not exhibit the context for evaluating it.  Thus it would 
be somewhat inaccurate for the expression that questions C2’s existence simply to 
evaluate to false, because the context that could have led to evaluating the expression – 
i.e., the use of C1 – does not occur in the document under examination.  So we needed a 
way of consistently addressing cases such as this. 
 
One remedy to this situation is to AND existential tests for all relevant operands with the 
expression that actually evaluates the constraint; but this is unwieldy for all but the 
simplest cases.  Our approach instead requires that such an expression evaluate to the 
logical value null since its truth cannot be determined based on what is currently known 
(i.e., what is contained in the document under examination). 
 
A logical system in which this third logical value null is in effect – in addition to true and 
false – is a three-valued logic (3VL) system.  We found that the concept of 3VL was 
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pivotal to evaluation as it originally had been specified for the constraint language SN.  
We concluded that 3VL had to be incorporated into the XSN-MTF validation model.  We 
will discuss 3VL more later in the paper. 
 
Universal and existential quantification 
 
We had to consider how to implement two kinds of quantification for Rule evaluation for 
XSN-MTF.  The first, universal quantification, is commonly called “for all.”  It 
represents the conjunction (AND-ing together) of results from evaluating an expression 
with different combinations of relevant data.  By definition, if all the resulting 
expressions evaluate to true, the quantification is satisfied.  The second, existential 
quantification, is commonly called “there exists.”  It represents the disjunction (OR-ing 
together) of results from evaluating an expression with different combinations of relevant 
data.  By definition, if at least one of the resulting expressions evaluates to true, the 
quantification is satisfied. 
 
The reason quantification is important for Rule evaluation is that many of the Rules 
applicable to documents express one kind of quantification or the other.  For example, it 
might be necessary to require that for all components C1 in the document, C1 must 
contain two or more uses of component C2.  Or for a particular document type it might be 
required that there exists at least one occurrence of a specific alphanumeric value within 
any instance document.  Some programming environments support specific constructs 
that can be used to control quantification behaviors.  However, at the same time the 
constraint language syntax itself must provide the Rule designer the ability to express the 
intent of the Rules involving such quantification concepts to ensure appropriate 
implementations of those Rules. 
 
Evaluation Infrastructure 
 
Figure 3 pictorially depicts the stages of transforming the constraint language into its 
XML-based counterpart.  In the next few paragraphs, we discuss the infrastructure that 
we needed to develop to support this transformation. 
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Figure 3.  Transforming SN to XSN-MTF 

 
Rendering XML-SN 
 
An initial part of the transformation process involved the capability to parse and tag the 
Rule into a form more amenable to subsequent processing.  This step could have been 
omitted had the Rules been expressed directly in XML technologies to begin with; but we 
were not in such a convenient situation.  To ensure appropriate mappings were done, first 
the original constraint language had to be modified to mitigate the problems cited earlier, 
such as eliminating ambiguous component references and clarifying the intended iteration 
and alignments.  This was accomplished by coordinating formal changes to the language 
specification through its relevant user communities. 
 
For example, the revision of the language now requires that Rules incorporate complete 
and fully qualified component references, similar in detail to path names in XPath.  
Features of the constraint language that were redundant, out-of-use or confusing were 
deprecated.  Subsequently we developed a BNF grammar for the improved constraint 
language that could serve as input to the parser generator JavaCC.  Rules then could be 
fed into the resulting parser to produce a tagged representation we call XML-SN, poised 
for subsequent XML-based processing.  We will not discuss that portion of the mapping 
further in this paper; please refer to [1] for amplification. 
 
Navigating with XPath 2.0 
 
We chose XPath as the navigational language for locating data.  We had to use XPath 2.0 
to get built-in constructs for expressing universal and existential quantification that we 
would need later in the processing.  In the case of a Rule assigned to an MTF type, path 
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names were expressed in the original constraint language syntax in terms of integer 
Segment, Set, Field Group, and Field numbers, which sequentially reference the 
hierarchical components of the MTF structural design, the so-called metaMTF.  This 
system of references is not meaningful for navigating an XML-MTF; however, a 
component reference that appears in a Rule assigned to a given document schema can be 
translated into an equivalent XPath reference using appropriate tags to navigate to the 
relevant data. 
 
More to the point, to re-interpret the component references from our constraint language 
to useful path names for XPath, we needed to use tags referencing the XML-MTF 
document structure instead of relative integer positions.  We wrote interfaces to the 
XML-MTF Schema to access the tagging metadata associated with a relevant document 
instance to which the Rule might be assigned.  When fed a group of metadata associated 
with a particular component reference via the original Rule syntax, these functions 
generated an XPath path name tailored to navigating the XML-MTF instance document 
to which the Rule was assigned. For those interested in the details of this aspect of the 
XSN-MTF mapping, please see [2].   
 
3VL comparison operators 
 
The behaviors of most programming languages are built around a two-valued logic (2VL) 
paradigm.  That is, expressions evaluate to true or false – period.  XPath is no exception.  
Because 3VL was pivotal to the evaluation behaviors in our constraint language as 
explained earlier, we wrote an XSL 2.0 Stylesheet to implement 3VL function 
counterparts for a number of comparison functions we needed so they would impose 
3VL-based interpretations on their operands and results.  These include numeric equality, 
inequality, greater-than and less-than as well as lexicographic equality and inequality 
functions.  This step was necessary to by-pass the default behaviors of XPath and 
incorporate 3VL-based reasoning.   
 
Consider comparing two strings for equality.  We can represent this generically using the 
available XPath functions as string(left_operand) eq string(right_operand).  Now 
suppose the left_operand examines elements that do not occur in the document under 
examination.  This means we would not be able to retrieve any nodes of the kind 
specified as the left_operand.  Since the operand cites an empty node set (i.e., no 
exemplars of this path exist in the document), the eq expression evaluates to false in the 
XPath 2VL world.  This is not what we wanted. 
 
In a 3VL context, attempting a string equality comparison, when no exemplars exist per 
either or both operand’s path name, must result in a null expression evaluation.  This is 
because a meaningful context for comparing the components fails to exist.  For such 
expressions to evaluate to false instead might inadvertently cause a Rule to be determined 
as “failing” when it should not.  Thus we provided for re-expressing such comparisons, 
replacing the standard XPath function with our own 3VL-based function implementations 
using XSL 2.0.  For this notional example, the resulting expression, using function prefix 
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notation, is the following: eq3-s(string(left_operand),string(right_operand)), where 
eq3-s() is our implementation of the 3VL function for string equality comparison. 
 
3VL logical operators 
 
We also had to implement 3VL function counterparts for logical AND, OR and NOT.  
The 3VL operators and3(), or3() and not3(), which we again implemented via the XSLT 
Stylesheet, replaced the “default” logical operations in XPath and are extensions of those 
operations familiar to us from 2VL.  These operations are summarized in the truth tables 
shown in Figure 4. 
 
 

and3 true false null 
true true false null 
false false false false 
null null false null  

 
or3 true false null 
true true true true 
false true false null 
null true null null  

 
 
 

not3 true false null 
 false true null 

 
 

 
 E2 

 true false null 
true true false null 
false true true true 

 
 

E1 
null true null null 

 
 

Figure 4.  3VL Tables 
 
Notice how the null valuation has been incorporated in these tables.  The null valuation 
addresses instances in which the logical outcome of the operation cannot be definitively 
decided.  For example, suppose we consider two string equality expressions E1 and E2.  
Further suppose the comparison stated in E1 has been determined true, but unfortunately 
the comparison stated in E2 involves examining nodes for which no exemplars exist in 
the document.  Because we have replaced the standard string equality comparison with 
the 3VL function eq3-s(), E2 will return the null valuation in this situation.  Further, 
under the rules of 3VL, and3(E1,E2) produces null.  The reasoning that underlies this is:  
if additional information were made available, and3(E1,E2) could have a different 
evaluation depending on whether we eventually find out E2 is true or E2 is false; but for 
now, we are uncertain, so the logical result must be null. 
 
On the other hand, when E1 is true and E2 is null, the expression or3(E1,E2) evaluates to 
true.  This is because, for a disjunction to evaluate to true, at least one of its operands 
must be true.  We already know E1 is true, so we don’t even need to concern ourselves 
about the eventual valuation of E2 to decide the outcome of or3(E1,E2)!  So we use the 
null evaluation to model situations where the context fails to exist to evaluate an 
expression.  Recall we mentioned earlier when discussing the 3VL requirement what an 
important consideration this is, for ensuring that Rules are not inadvertently interpreted as 
failing as the intermediate results that contribute to their overall evaluation are combined 
logically. 
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Mapping SN expressions to XPath/XSL 
 
Given this basic groundwork, we established semantic and syntactic correspondences 
between all the operators we needed for the migrating constraint language and XPath 
operators and XSL functions as a prelude to translating the expressions which are the 
“building blocks” of the Rules.  Figure 5 shows two examples of such mappings, for 
numeric and string equality comparisons, respectively. 
 
The examples also suggest the correspondence of operand syntax from the original 
constraint language SN to XPath path names.  Specifically, [3]F2 refers to the second 
component or Field (F2) within the third hierarchical component or Set ([3]) in the MTF 
structural design.  As mentioned earlier, in the redefined expressions we must use tags 
referencing the XML-MTF document structure instead of relative integer positions.  So in 
the figure we show the generic tags “set3” and “field2” for this purpose.  Were the 
example expressions bound to a specific XML-MTF type, actual tag names would have 
been substituted from the corresponding XML-MTF Schema. 
 

 
SN operator: = 
Explanation: The "=" operator is for doing numeric comparison.  It may be used in 
either the Statement part or the Condition part of a Rule. 
Available XPath operator:  number(left_opnd) eq number(right_opnd) 
Redefined operator in XSL function prefix notation: 
      ex:eq3-n(left_opnd, right_opnd) 
Example: 
      SN: [3]F2 = 3 
      Available XPath: number(/set3/field2) eq 3 
      Redefined operator in XSL function prefix Notation: 
           ex:eq3-n(/set3/field2, 3) 
Note:  “eq3-n” is the 3VL function for number equality comparisons. 
 
 
SN operator: EQ 
Explanation: The "EQ" operator is for doing string comparison.  It may be used in 
either the Statement part or the Condition part of a Rule. 
Available XPath operator:  string(left opnd) eq string(right opnd) 
Redefined operator in XSL function prefix notation: 
     ex:eq3-s(left opnd, right opnd) 
Example: 
      SN: [3]F2 EQ /foo/ 
      Available XPath: string(/set3/field2) eq "foo" 
      Redefined operator in XSL function prefix Notation: 
           ex:eq3-s(/set3/field2, "foo") 
Note: “eq3-s” is the 3VL function for string equality comparisons. 
 

Figure 5.  SN to XPath/XSL Mapping Examples 
 
A Rule as a closed-form logical expression 
 
We noted each constraint is of the form if Statement then Condition, which is the 
formulation of logical implication (i.e.,  ).  We observed that Rule evaluation is 
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equivalently stated Condition  Statement (i.e., E1  E2). The 3VL variant of the 
implication operator is shown in Figure 4.   
 
It is easy to reason through this logic.  The Rule evaluates to true and “passes” in two 
situations.  First, the constraint is satisfied if the Statement evaluates to true.  This makes 
sense, because if the assertion (Statement) is satisfied, then so is the Rule, whether it 
applies to the document or not!  If the Condition evaluates to false (which means the Rule 
does not apply to the document), the Rule also evaluates to true.  This is consistent with 
the reasoning underlying implication:  if we start with a false antecedent (Condition), it is 
possible to prove any consequent (Statement) to be true, so the Rule is satisfied 
regardless of the Statement’s evaluation in this case. 
 
The Rule evaluates to false and “fails” in one situation only.  This occurs when the 
Condition is true but the Statement is false; that is, the assertion is applicable to the 
document but it has not been satisfied.  In all other cases, the Rule evaluates to null.  This 
means the context does not exist in the document instance to determine the satisfaction of 
the Rule, so that the Rule passes “by default” (i.e., we can ignore it). 
 
We also observed that logical implication is equivalent to the closed-form expression 
Statement OR3 NOT3(Condition) – that is, or3(Statement, not3(Condition)) using 
function prefix notation.  The interested reader can validate this equivalence by 
constructing the associated truth table to ensure that it is identical to that of 3VL 
implication (but we promise you it is).  This simple equivalence allowed us to create an 
XPath equivalent, closed-form logical expression for a Rule instead of complex if-then-
else constructs, by applying the path name and operator mappings to its expression 
building blocks and using the prefix function notation. 
 
The resulting closed-form expression is constructed to evaluate to true if the Rule is 
satisfied and null if the context for evaluating the Rule does not exist; it will evaluate to 
false if the Rule is not satisfied.  We wrote a simple function rule-satisfied() whose role is 
to implement this 3VL-based evaluation behavior, summarized earlier in Figure 1, when 
the constraint is applied to the instance document in this form.  (This function essentially 
maps the null evaluation to true or false as appropriate, so that Rules that are to be 
ignored will not inadvertently appear to fail in XPath’s 2VL system.) 
 
Evaluation Model 
 
The final stage in this process involves embedding the resulting XPath expression of the 
Rule into suitable processing logic.  The focus here is for the infrastructure to provide 
control of the iteration (i.e., repetition inspection) and alignment (repetition pairing) 
aspects of Rule validation against an instance document when repeatable elements are 
referenced. 

An Easier Model for Illustrations 
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In the XML-MTF model, each message is a document type, and we express constraints 
for evaluation against an individual message instance.  To avoid getting bogged down in 
understanding the XML-MTF design and tag names, for the remaining examples in this 
paper we instead will reference a well-known Recipe model.  Cooking terms and 
concepts probably are familiar to more readers than the semantic details of tactical 
messages!  In particular, we use a model similar to the example published by Møller and 
Schwartzbach [3].  So for the illustrative examples we will express constraints for 
evaluation against a recipe instance where: 

• Each Recipe consists of a Title, ingredients, preparation, possibly some 
Comments, and its Nutrition content. 

Each ingredient can be base or composite: 

• A BaseIngredient is composed of a Name, an Amount (possibly unspecified), and 
a Unit (unless Amount is dimensionless). 

• A CompositeIngredient is composed of BaseIngredients and 
IngredientPreparation listed as Steps. 

The FinalPreparation lists the Steps needed to complete the Recipe. 

An example Recipe document is shown as Figure 6.  
 
<?xml version="1.0" encoding="UTF-8"?> 
<!--Sample XML file generated by XMLSPY v2004 rel. 4 U (http://www.xmlspy.com)--> 
<Recipe  
     xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance 
     xsi:noNamespaceSchemaLocation="XML2004ConferenceExample02.xsd"> 
 <Title>Ricotta Pie</Title> 
 <CompositeIngredient> 
  <Name>Dough</Name> 
  <BaseIngredient> 
   <Name>Flour</Name> 
   <Amount>4</Amount> 
   <Unit>cup</Unit> 
  </BaseIngredient> 
  <BaseIngredient> 
   <Name>Baking powder</Name> 
   <Amount>5</Amount> 
   <Unit>teaspoon</Unit> 
  </BaseIngredient> 
  <!-- etc •  •  •  --> 
  <IngredientPreparation> 
   <Step>Combine the flour, baking powder, and 1 cup of the sugar  
                                                        together.</Step> 
   <Step>Cut in the shortening and mix until the mixture resembles coarse  
                                                       crumbs.</Step> 
   <Step>Mix in 4 of the eggs and 1 teaspoon of the vanilla.</Step> 
   <Step>Divide dough into 4 balls and chill (if needed).</Step> 
  </IngredientPreparation> 
 </CompositeIngredient> 
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 <CompositeIngredient> 
  <Name>Filling</Name> 
  <BaseIngredient> 
   <Name>ricotta cheese</Name> 
   <Amount>3</Amount> 
   <Unit>pound</Unit> 
  </BaseIngredient> 
  <BaseIngredient> 
   <Name>eggs</Name> 
   <Amount>12</Amount> 
  </BaseIngredient> 
  <!-- etc •  •  •  --> 
  <IngredientPreparation> 
   <Step>Beat the 12 eggs, 2 cups sugar and vanilla extract together </Step> 
   <Step>Stir in the ricotta cheese and the chocolate chips.</Step> 
   <Step>Set aside.</Step> 
  </IngredientPreparation> 
 </CompositeIngredient> 
 <BaseIngredient> 
  <Name>Milk</Name> 
  <Amount>Variable</Amount> 
  <Unit>Text</Unit> 
 </BaseIngredient> 
 <FinalPreparation> 
  <Step>Roll dough flat and place into a 9 greased inch pie pan ...</Step> 
  <Step>Add the filling ... </Step> 
  <!-- etc •  •  •  --> 
 </FinalPreparation> 
 <Comment>This sounds harder than it is.  Do not be intimidated by all the steps.</Comment> 
 <Nutrition> 
  <Serving>6 ounces</Serving> 
  <Calories>348</Calories> 
  <Fat>18</Fat> 
  <Carbohydrates>64</Carbohydrates> 
  <Protein>18</Protein> 
 </Nutrition> 
</Recipe> 

Figure 6.  Recipe Example 
 
Singular cases 
 
In the simplest case, a Rule may reference only components that appear either once or not 
at all in the instance document.  Or, the Rule may consider only existential assertions, 
where one or more occurrences of a component will satisfy the constraint.  That is, only 
one inspection of data is required to decide the Rule.   
 
Suppose the designer decided that recipes appropriate for beginner cooks should contain 
the word “Easy” at the beginning of the title, and that composite ingredients are too 
complicated for “Easy” recipes.  The designer might state a Rule If the recipe title starts 
with “Easy” then it must not contain any composite ingredients.  We can re-express the 
proposed Rule in XPath/XSL as follows: 
 

rule-satisfied(or3( eq3-n(count(/Recipe/CompositeIngredient),0), 
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     not3(eq3-s(/Recipe/Title,’/Easy/*’) ))) 
 
This expression is built around the or3(Statement, not3(Condition)) formulation of the 
Rule.  The Statement or assertive part of the Rule is expressed in by examining the size of 
the node set that results from looking for any composite ingredients.  The Condition part 
of the Rule is expressed using our 3VL implementation of string comparison eq3-s(), 
where the special pattern-matching syntax ′/Easy/*′ determines whether the Title string 
begins as desired.  (This particular syntax was motivated to ensure compatibility with the 
syntax of the original constraint language.)  The above expression will evaluate to true if 
the Rule is satisfied and false if it is not satisfied.  In particular, the recipe for Ricotta Pie 
suggested by Figure 6 would not satisfy the Rule, because both the filling and the dough 
are composite ingredients, and the title fails to start with the word “Easy”. 
 
If the world of documents and constraints we wished to express were so simple, the job 
would nearly be done at this point, except for thinking through a few minor details.  
Unfortunately, document elements can be repeated, and constraints can inspect more 
complex document features.  When a Rule’s operands cite repeated elements in the 
document, or Rules inspect more interesting features of the document, multiple 
combinations of data may need to be considered to produce an overall evaluation of the 
Rule.   
 
Iteration 
 
Because MTF components can be repeatable, the SN constraint language we were 
migrating provides a syntax called subscripts to modify each repeatable component to 
make explicit which of it repetitions should be considered during the iteration.  Similarly, 
when re-expressing these Rules in many cases an operand must be examined iteratively 
“for all” its relevant manifestations within the document instance, considering each 
component occurrence at each hierarchical or nested level along the operand’s path. 
 
As a starting point for discussing iteration, suppose the designer decided to enforce the 
constraint Within each composite ingredient, the number of base ingredients must be 
fewer than the number of ingredient preparation steps.   (We will not argue whether this 
is a reasonable constraint.)  This Rule is an unconditional assertion.  That is, there is no 
Condition part of the Rule, so the Condition is assumed to be true.  Thus this Rule applies 
to every instance of the document type to which it is assigned, with the outcome of Rule 
evaluation depending solely on the evaluation of the Statement part.  We have pictorially 
illustrated the intended inspection for a notional example in Figure 7. 
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Figure 7.  A simple “for all” inspection 

 
At this point the technically-oriented reader might imagine a loop construct in a 
conventional programming language to guide the iterative inspection.  A looping 
mechanism can enforce the described “for all” examination of the composite ingredients, 
and the logic within that loop can test for situations in which the constraint should fail. 
We can informally re-express the intent of the above Rule from this negative viewpoint 
as: The constraint fails to be satisfied if there is any composite ingredient with the same 
or fewer ingredient preparation steps than base ingredients in it; otherwise the constraint 
is satisfied.  If the constraint fails to be satisfied on any iteration, false is returned and the 
Rule fails.  If the constraint is satisfied for all iterations, true is returned and the Rule 
passes. 
 
Let n denote the number of composite ingredients, and let i denote an iteration index.  A 
pseudocode example is:   
 
 for i = 1 to n 

if number of BaseIngredients in ith CompositeIngredient >= 
number of IngredientPreparation/Steps within ith CompositeIngredient then 

    return false; 
 return true; 
 
Thinking back to the original constraint language, repeatable components – which must 
be modified with an SN subscript – can be interpreted as a realization of the “for all” 
concept, which in turn can be expressed as an iteration construct.  Additionally, iterations 
can be nested according to the hierarchical structure of the document, from hierarchically 
outermost to hierarchically innermost components, if more than one repeatable element 
must be iterated. 

 16



 
In this case the transformation to XPath equivalent forms also must set up iterations to 
navigate the document during evaluation when repeatable elements are involved.  We 
need to formulate an expression that describes the conditions under which the constraint 
is satisfied.  For this example, an XPath/XSL formulation is: 

 
rule-satisfied( or3( every $i in /Recipe/CompositeIngredient satisfies 
 lt3-n(count($i/BaseIngredient), count($i/Ingredient/Preparation/Step)), 

not3(true) ) 
 
where lt3-n() is our 3VL implementation for numeric less-than comparison.  The “every” 
clause cites a collection of composite ingredient elements to examine.  The “satisfies” 
clause is built using the or3(Statement, not3(Condition)) formulation of the Rule.  The 
default Condition part is represented by true.  This is a bit superfluous, but we have 
included it to keep the translation consistent.  The outcome of the first argument to the 
or3() function (i.e., the Statement part of the Rule) will determine the outcome of the 
Rule evaluation.  This part checks to make sure for each composite ingredient iterated 
using $i that it contains fewer base ingredients than ingredient preparation steps. 
 
The above expression evaluates to true if the expressed constraint is satisfied; it evaluates 
to false otherwise, which is the desired result.  Thus in XPath, the every construct, 
together with its dollar variable index (i.e., $i) controls the “for all” examination of 
repeated components and so can be used to accomplish iteration over a collection of 
element repetitions.  If more than one level of repetition needs to be examined, the every 
constructs can be nested and distinct index variables used. 
 
Alignment 
 
Alignment is a specialization of iteration; it refers to simultaneously comparing the same 
repetition of two or more repeatable components during evaluation.  This can be stated 
another way as lock-step comparison.  A goal of alignment is to facilitate pairing 
components in such a way that the Rule performs one-to-one comparisons. We pointed 
out earlier that many-to-many comparisons, although supported by the original constraint 
language syntax, usually are not meaningful. 
 
We saw above how in XPath, the every construct can be used to control the “for all” 
examination of repeated components.  By subscripting (e.g., [$i]) the relevant elements 
with the same iteration index (i.e., $i) from the every construct, we can accomplish 
aligned comparisons. 
 
To provide an example for understanding alignment, imagine that to help ensure the 
logical readability of the recipe, the designer wants to require that for a recipe with n 
composite ingredients, there are at least n steps in the recipe preparation, with the first n 
of those steps using each of those n composite ingredients in turn:  the first of those steps 
mentions the first composite ingredient; the second step mentions the second composite 
ingredient; and so on.  (Once again, we won’t dwell on the reasonableness of this 
requirement.) 
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This requirement expresses an aligned comparison, matching composite ingredients with 
recipe preparation steps.  Not all aligned comparisons require that there is a one-to-one 
alignment of the two comparison node sets, but in this example, that’s what the designer 
intended.   We would express this requirement as two constraints.  The first constraint 
enforces that the number of final preparation steps must equal or exceed the number of 
composite ingredients.  That is, If the recipe has composite ingredients, then there must 
be at least as many steps in the final preparation.  We leave it as an exercise for the 
reader to build this Rule.  The second constraint can be expressed as the Rule:  If the 
recipe has composite ingredients, then there must be a corresponding final preparation 
step for each composite ingredient in which its name appears.  We have depicted this 
aligned comparison concept pictorially in Figure 8.   
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Figure 8.  The aligned comparison concept 

 
Again at this point the reader might imagine a loop construct in a conventional 
programming language.  To compare two components in lock step, the same iteration 
index must be used for them.  To know when false should be returned and the Rule 
should fail, we can informally re-express the intent of this constraint from a negative 
viewpoint as: The constraint fails to be satisfied if the final preparation step in 
correspondence with any composite ingredient fails to contain that ingredient’s name; 
otherwise the constraint is satisfied.  Let n denote the number of composite ingredients, 
and let i denote an iteration index.  A pseudocode formulation is: 
 

for i = 1 to n 
if /Recipe/FinalPreparation/Step[i] does not contain ith CompositeIngredient’s name then 

   return false; 
 return true; 
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By logical extension, if two or more levels of paired comparisons are required, more than 
one looping construct and index can be encoded. 
 
Similarly, the XPath expression of the aligned comparison concept must set up iteration 
in such a way that the same dollar variable is used to choose paired element repetitions 
“in lock step” while navigating the XML-MTF document during evaluation.  If more than 
one unique pairing is needed, nested every constructs can be used. 
 
For this example, the constraint which enforces the alignment of the steps to the 
composite ingredients, expresses in XPath the conditions under which the constraint is 
satisfied.  An expression E1 captures the Condition part of the Rule by testing whether 
the recipe actually contains composite ingredients: 
 
 gt3-n(count(/Recipe/CompositeIngredient),0) 
 
where gt3-n() is our 3VL implementation for numeric greater-than.  An expression E2 
enforces the Statement part of the Rule and is formulated as follows.  Our 3VL 
implementation of string comparison eq3-s() can take a second argument with the special 
pattern-matching syntax ′*/<s>/*′  which determines whether the first argument contains 
the string <s> preceded by and followed by zero or more additional characters.  (This 
particular syntax was motivated to ensure compatibility with the syntax of the original 
constraint language.)  Here we use it to make sure the composite ingredient name appears 
in its corresponding final preparation step: 
 
 every $i in 1 to count(/Recipe/CompositeIngredient) satisfies 
  eq3-s(/Recipe/FinalPreparation/Step[$i], 
   concat(‘*/’,/Recipe/CompositeIngredient[$i]/Name, ‘/*’)) 
 
We can combine these two ideas in the form:   
 

rule-satisfied(or3 (E2, not3(E1) ) ) 
 
This expression evaluates to true only if the expressed constraint is satisfied for all 
composite ingredients in the Recipe.  If the pairing is not “perfect” (e.g., maybe there are 
n composite ingredients, but only n-1 final preparation steps), the failure of the document 
to comply with the designer’s intent would have been detected by the first Rule we 
mentioned earlier which would fail during validation under these circumstances. 
 
Other iteration restrictions 
 
Alignment can be viewed as a restriction on the basic concept of iteration or “for all” 
inspection.  The constraint language we work with supports other iteration restrictions as 
well, all accomplished using a subscript syntax in the original language.  Each has a 
counterpart in XPath.  Some realizations are fairly simple.  For example, it sometimes 
can be meaningful to restrict the applicability of a constraint to only the nth or only the 
last occurrence of an element.  This can be accomplished by modifying references to that 

 19



element with the subscript [n] or [last()] respectively.  For example, referring to the 
recipe model, the designer might require that the first final preparation step in a recipe 
must contain the word “Preheat” to ensure the cook gets the oven going. 
 
Some constraints are satisfied if the assertion is satisfied for just SOME combination of 
relevant elements in the document:  in other words, there must exist at least one situation 
in the examined document for which the assertion holds.  An example is a concept such 
as There is some repetition of this element that contains the specified value.  For 
example, the designer might require for each base ingredient in the recipe only that There 
is some ingredient preparation step that contains the base ingredient’s name.  Such 
expressions can be re-formulated using the exists construct in XPath.  Or, a less direct re-
expressions can be formulated using the negation of an expression with the every 
construct.  For this example, we can loosely state that as:  NOT(every ingredient 
preparation step does NOT contain the base ingredient’s name).  In general terms, if it is 
NOT the case that every element does NOT contain a specified value, then there must be 
SOME element that DOES contain that value.   
 
Other restrictions have less direct counterparts too.  For example, our constraint language 
supports expressing an assertion that is satisfied only if there is NO combination of 
relevant elements in the document that exhibit the feature being examined.  With a little 
thought, this can be recognized as the negation of the existential case.  That is, to say that 
“there is NO repetition of this element that contains the specified value” is the same as 
NOT(There is some repetition of this element that contains the specified value).  Or, it 
can be re-expressed as an every case in which the examined feature itself is negated.  For 
this example, we could say every repetition of this element does NOT contain the 
specified value. 
 
Value containment is just one possible assertion that can be involved in these 
formulations; it was used in these examples for the sake of simplicity.  Other more 
complex features can be enforced similarly, using some combination of comparative 
expressions and the every and exists constructs. 
 
Proof-of-concept and use cases 
 
To illustrate the practical application of the mappings and the methodologies discussed 
above, we set up a prototype of the workflow illustrated earlier in Figure 3.  We devised a 
small collection of hypothetical Rules or use cases typical of the kinds of constraints 
expressed in the target operational environment and built a hypothetical XML-MTF 
Schema for test purposes.  We wrote an XPath Generator Stylesheet to demonstrate the 
feasibility of automating the transformation of the XML-SN (parsed form of Rules) into 
XSN (XPath/XSL equivalents) bound to that hypothetical document type per the 
transformation principles described in this paper.  We successfully validated the 
feasibility of the process for the use cases.  The proof-of-concept validator and use cases 
were intended to provide a reference model for future vendor implementations. 
 
Conclusions 
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To support generalizing XML-native constraint techniques such as we have described 
here to arbitrary discourse domains, we need to summarize what we have learned about 
expressing and enforcing constraints in more abstract terms. 
 
General Principles 
 
Based on our experiences, we generalized the following guiding principles for expressing 
constraints against XML documents: 
 

• To ensure constraints are unambiguous, an accurate specification for encoding 
[syntax] and interpreting [semantics] constraints must exist.  This will increase the 
likelihood that: 

   
- Similarly educated operational personnel will discern the same meaning 

[semantics] from the same Rule [syntax]. 
 

- Similarly educated document and Rule designers will encode similar 
Rules [syntax] to express similar concepts. 

 
• To appropriately and consistently enforce Rules, an accurate specification for 

encoding [syntax] and interpreting [semantics] constraints must exist as the basis 
for implementing validation software.  In particular: 

 
- The syntax must include a construct to provide the navigational 

information to locate any element in a document structure.  We use the 
term path name for this construct. 

 
- The syntax must require that the navigational information provided to 

locate elements within the document structure is complete and fully 
qualified. 

 
 Complete means the path name syntax must require citing any and 

all elements needed to locate the referenced element, listed in 
hierarchical order according to the document specification.   

 
 Fully qualified means the path name syntax must require citing 

specific occurrences of any repeatable elements it references. 
 

- For Rules involving comparisons that references repeatable components, 
syntax must be provided to align comparisons of those components as 
needed to support the intent of the Rule (i.e., 1-to-1 or n-to-m). 

 
 It should be noted that constraints involving n-to-m comparisons 

may be suspect or are reducible in complexity. 
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In this paper, we did not discuss the syntactic details of our original constraint language 
SN beyond a high level view.  We did this to avoid getting the reader bogged down in 
understanding the tactical messaging world from which this language arose.  
Nonetheless, one advantage we want to point out to using this sort of “third party” 
constraint language as a starting point, and transforming it to XPath equivalents, is that it 
allows the message (i.e., document) designer to express constraints in terms [s]he 
understands, without having to learn the syntax of XPath.  SN in fact complies with the 
guidance we have listed here for a useful constraint expression language. 
 
Additionally, we generalized the following guiding principles for evaluating constraints 
against XML documents: 
 

• The validation framework must support the processing logic to realize iteration 
and alignment when Rules reference repeatable document components. 

 
• The validation framework must support 3VL logic to handle in a consistent way 

those situations in which Rules cannot be evaluated due to insufficient document 
content. 

 
Minimal evaluator capabilities 
 
We recommend the following list items as minimal capabilities needed by a constraint 
evaluator for XML documents. 
 

• The evaluator shall be capable of locating elements referenced in the 
document instance per the path name. 

 
• The evaluator shall be capable of inspecting an element’s metadata as needed 

to support other functions of the validation process. 
 

• The evaluator shall implement the 3VL logical operations and(), or() and not(). 
 

• The evaluator shall implement other functions needed to support constraints 
expressible in the domain, consistent with the principles of 3VL. 

 
- We found the following comparison operators were needed at a minimum 

to migrate our constraint language:  numeric equality, inequality, greater-
than and less-than, as well as lexicographic equality and inequality.  Other 
functions might be useful as well, such as arithmetic operations. 

 
• The evaluator shall provide constructs for supporting iteration over a collection of 

elements. 
 

• The evaluator shall provide constructs for supporting restrictions of iteration, such 
as alignment. 
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Future Directions 
 
The migration of the SN constraint language to XML-native equivalents will be formally 
embodied in the appropriate military standards that specify XML-MTFs.  Due to project 
resource constraints, we automated the XPath generation aspect of the XSN-MTF 
transformation process for only those Rules that involve no iteration restrictions.  That is, 
we implemented “for all” case generation only; we manually generated 
iterative/alignment examples to bench check them.  So further automation work can be 
accomplished in this area.  In addition, the processes need to be generalized beyond the 
specifics of the XML-MTF domain in which we work; however, we believe the 
conceptual building blocks for doing that have been well laid out in our work and provide 
a basis for extension by others. 
 
The migration path we chose for XML-enabling constraint validation allowed us to 
leverage a 30-year community investment in the definition and management of text-
oriented tactical messages and the kinds of information they contain.  When migrating the 
message standard to an XML form, we found the existing notions of document well-
formedness and validity with respect to a Schema insufficient for capturing all the 
internal logical requirements that impact assessing an XML-MTF instance’s compliance 
with the underlying MTF standard.  We had to incorporate SN Rule validation to 
supplement this process.  
 
The need to apply constraints to structured text when rendered as an XML document, 
including incomplete or flawed documents, is not unique to the military messaging world.  
XML-native techniques for expressing and enforcing constraints such as we have 
described here can be generalized to other discourse domains. We found there could be 
advantages in allowing designers to continue expressing constraints in a legacy language 
whose terminologies are intuitively meaningful to them, to avoid their having to learn the 
complexities of XPath syntax, provided a methodology can be established for mapping 
from the legacy language to XML technologies.  This is something to consider when 
looking at this same problem in other contexts.  The principles and capabilities we have 
laid out as a model for XML-based constraint expression and evaluation, grounded in 
3VL, are relevant and useful for the XML community at large. 
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