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ABSTRACT 
 
Large-scale systems engineering efforts involving 
multiple stakeholders often have been problematic, and 
there has been recent interest in understanding how to 
improve the systems engineering process.  This paper 
presents an approach to modeling the systems 
engineering process, with possible extensions to systems 
investment and systems operations, inspired by the 
highly optimized tolerance (HOT) framework for 
understanding complexity in designed systems.  HOT is 
complementary to agent-based modeling (ABM) in the 
sense that it emphasizes the centrally planned aspect of 
designed systems with tradeoffs and uncertainty, rather 
than distributed decision making based on local 
knowledge and goals.  To begin the exploration of 
models of the systems engineering process, a temporal 
model is presented with stakeholder interactions modeled 
as random events.  Following the HOT approach, 
planning behavior is framed as stochastic optimization, 
which is reduced to a open-loop control problem.  The 
initial results suggest promise for the HOT-inspired 
framework in helping to understand how to improve the 
systems engineering process, but more exploratory work 
is needed, including work on relating actual systems 
engineering experience to the models. 
 
INTRODUCTION 
 
Many large-scale, complex systems engineering projects 
have been problematic.  A few examples are listed below 
(Bar-Yam, 2003 and Cullen, 2004), and many others 
have been late, well over budget, or have failed: 
 

• Hilton/Marriott/American Airlines system for 
hotel reservations and flights; 1988-1992; $125 
million; “scrapped” 

• Federal Aviation Administration Advanced 
Automation System; 1982-1994; $3+ billion; 
“scrapped” 

• Internal Revenue Service tax system 
modernization; 1989-1987; $4 billion; 
“scrapped” 

• Boston “Big Dig” highway infrastructure 
project; $14 billion; $10 billion over budget 
and late.   

 

This paper focuses on software and technology-intensive 
systems engineering projects, like the first three 
examples above, but the methodology may be applicable 
to other types of large projects, like the Boston “Big 
Dig,” as well as other transportation and energy 
infrastructure projects. 
 
Models of the systems engineering process may be 
useful to understanding how to improve it, for several 
reasons.  First, a model can test and sharpen our 
understanding of potential improvements to systems 
engineering.  If we really understand a concept for 
improving the process, then we should be able to 
construct a model of the improvement and show how 
benefits accrue in the model.  If we cannot model an 
improvement, then it is legitimate to question whether 
we truly understand the improvement and its impact.  
Second, a model can be a basis for achieving 
understanding and consensus among different people 
with different perspectives.  Modeling requires precise 
and explicit formulation of issues and tradeoffs, usually 
in quantitative terms, and the process of developing and 
using a model can help clarify different perspectives and 
make differences between these perspectives more 
explicit.  Third, a model may produce otherwise 
overlooked or unexpected behavior, and thus serve as an 
“intuition pump” for deeper understanding of the systems 
engineering process. 
 
In order to take advantage of the potential of modeling to 
help improve systems engineering, a model framework is 
needed that adequately represents the essential features 
of large-scale complex systems engineering.  One 
possible modeling approach, which has been applied to 
complex adaptive systems in other domains, is agent-
based modeling (ABM).  An important strength of ABM 
is that it models decision making distributed across 
multiple decision makers with local outlooks and 
concerns, which is an important aspect of complex 
systems engineering.  However, ABM is limited for 
modeling the systems engineering process because ABM 
by itself does not lend itself easily to modeling long-term 
planning, which is another important component of 
systems engineering.  This led us to explore other 
methodologies for modeling the systems engineering 
process, which might eventually be combined with ABM 
to encompass all essential features of the systems 
engineering process.      
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TRADITIONAL AND NON-TRADITIONAL 
SYSTEMS ENGINEERING 
 
The traditional approach to systems engineering is 
expressed well by the International Council on Systems 
Engineering (INCOSE, 2004): 
 
“Systems Engineering is an interdisciplinary approach 
and means to enable the realization of successful 
systems. It focuses on defining customer needs and 
required functionality early in the development cycle, 
documenting requirements, then proceeding with design 
synthesis and system validation while considering the 
complete problem: 

• Operations  
• Performance  
• Test  
• Manufacturing  
• Cost & Schedule  
• Training & Support  
• Disposal  

Systems Engineering integrates all the disciplines and 
specialty groups into a team effort forming a structured 
development process that proceeds from concept to 
production to operation. Systems Engineering considers 
both the business and the technical needs of all 
customers with the goal of providing a quality product 
that meets the user needs.” 
 
Traditional systems engineering (TSE), (Norman, 2004) 
defines a step-by-step planned approach to systems 
engineering, which has proven effective across many 
systems engineering efforts.  However, some systems 
engineering efforts defy the TSE process, due to various 
complexity-related factors along a set of dimensions 
which include (Hoffman, 2004): 
 

• Enterprise scope 
• Geographical scope 
• Mission type 
• Organization 
• Acquisition strategy 
• System and technology maturity 
• Stakeholders 

 
Complexity along any of these dimensions can 
potentially confound the TSE process and lead to severe 
cost and time overruns, or failure. 
 
In some domains, TSE has been extended to incorporate 
such means as incremental development and 
experimentation as part of the systems engineering 
process.  For example, following the Federal Aviation 
Administration’s Advanced Automation System failure 

in the 1990s, much more emphasis was placed on a 
“build-a-little-test-a-little” approach, using trained 
operators and real system users, in the systems 
engineering process for air traffic management systems 
in the United States (U.S.).  In the military operations 
domain, it has been suggested that more emphasis be 
placed on building infrastructure, onto which 
applications can be built that better meet mission needs 
(Norman, 2004). 
 
A fundamental question remains, though, regarding what 
are the bounds of TSE, and when and how it should be 
extended.  The degree of long-range planning implied by 
TSE may be inappropriate when complexity demands 
adaptation and fluidity, but some level of planning is still 
prudent, and government or other budget cycles may 
demand it. 
 
THE CONTEXT FOR SYSTEMS ENGINEERING 
 
Large-scale systems engineering typically happens in the 
context of systems operations and systems investment.  
For example, systems engineering with respect to civil 
air traffic management (ATM) is concurrent with daily 
air traffic control (ATC) and traffic flow management 
(TFM) operations.  Here, ATC refers to the process of 
keeping aircraft safely separated and other tactical ATM 
functions, and TFM refers to the more strategic process 
of managing demand to respond to resource capacity 
changes, typically due to bad weather.  In the U.S., ATM 
is a Federal Aviation Administration (FAA) function, 
and multiple organizations within the FAA are concerned 
with ATM systems engineering and operations.   The 
FAA also generates a set of investments to maintain and 
improve ATM, and these investments interact with 
systems engineering and operations. 
 
Stevens (2004) has emphasized the importance of 
pluralistic decision making among multiple stakeholders, 
each with their own local concerns, in systems 
engineering.  To continue the FAA example, not only are 
multiple organizations within the FAA concerned with 
ATM investments, engineering and operations, each with 
its own local perspective, so are many other 
stakeholders.  These include U.S. and foreign airlines, 
general aviation and military aviation organizations, 
airport authorities across many municipalities, the U.S. 
Congress, various lobbying groups, the air traffic 
controllers’ and pilots’ labor unions, other countries that 
interact with the ATM system, and a diverse “flying 
public.”  Each of these stakeholders may be involved in 
its own system investment and engineering processes, as 
well as participate in operations, and these interact to 
greater or lesser degrees with ATM investments, 
engineering and operations.  Sometimes there is explicit 
collaboration between the stakeholders:  for example, the 
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Operational Evolution Plan (OEP) is an extensive ten-
year plan for improving the U.S. aviation system across 
many dimensions.  The OEP is heavily funded by the 
federal government, but includes wide participation 
across many stakeholders.  The whole system is made 
even more complex because of ongoing business and 
technology changes in aviation, as traditional airlines are 
supplanted by or forced to change in response to low-
cost carriers, and as new technology such as low-cost jets 
becomes available for aviation operations.   Stakeholder 
decision making may be driven by short-term needs, e.g., 
survival in the case of airlines in a highly competitive 
market system, rather than a long-term outlook. 
 
A RELATIVELY SIMPLE MODEL IS NEEDED 
 
The question of whether and how to extend TSE in the 
face of such complexity needs to be addressed in ways 
that help us not get lost in the trees of the complexity 
itself.  In this paper, we present a modeling framework 
that attempts to capture the essential features of 
complexity in systems investment, engineering and 
operations, but is relatively simple and abstract.  In this 
first modeling attempt, we do not emphasize solving the 
problem completely or even correctly in many respects, 
but try to suggest an approach which can be improved 
upon incrementally.  Inspiration for this outlook came 
from the Santa Fe Institute (SFI) 2004 Complex Systems 
Summer School (CSSS) discussions of mathematical 
models of complex fluid flows and natural ecologies.  
These models are often not “correct,” but they provide a 
means for making gradual progress towards 
understanding these complex systems.  Similarly, we 
would like to provide a means for gradually developing a 
deeper understanding of how to deal with the complexity 
of systems investments, engineering and operations 
involving multiple stakeholders.  We begin with a 
relatively simple modeling framework. 
 
The essential features we wish to capture in the modeling 
framework are: 
 

• Stakeholder interactions, including different 
look-ahead times for decision making 

• External sources of uncertainty, e.g., 
macroeconomic, political, or technological 

• Tradeoffs that are inherent in system 
investments, engineering and operations 

• A planning process that may look years into 
the future 

 
There is a tension among this set of essential features, 
because a planning process looking years into the future 
demands predictability, whereas stakeholders with a 
short-term outlook and other external sources of 

uncertainty imply unpredictability.  It is precisely this 
tension that underlies the fundamental TSE versus non-
TSE issue, and that we seek to model explicitly. 
 
Although the model developed here focused on systems 
engineering, it is expected that such models could also be 
applied, at least at a high level, to systems investment 
and operations as well.  Perhaps such models could be 
extended to apply to the entire ecology of investment, 
engineering and operations across multiple stakeholders.  
The model described below is only a starting point; 
further research is needed to extend the approach to a 
broader domain.   
 
A HIGHLY OPTIMIZED TOLERANCE (HOT) 
MODEL   
 
Highly optimized tolerance (HOT) is a framework for 
understanding certain aspects of complexity in designed 
or engineered systems.  Carlson and Doyle (1999) 
originally developed the HOT concept and applied it to 
forest fire management.  They showed how power laws 
in event size emerge from minimization of expected cost 
in the face of design tradeoffs.  Since then, HOT has 
been associated with tradeoff analyses in such systems as 
internet architecture (Alderson, et al., 2004).  HOT is 
identified with power laws, but in this paper we apply the 
HOT methodology without necessarily finding power 
laws as a result; for that reason, it may be more correct to 
call this a HOT-inspired model, rather than a HOT 
model. 
 
The HOT-inspired approach we take here is to create a 
model of the system tradeoffs taking into account 
uncertainty, then to assume the system is optimized on 
average, and finally to examine the consequences of the 
optimization.  In the case of modeling the systems 
engineering process with stakeholder interactions, a 
game theoretic framework might be appropriate to 
capture the effects of different goals, information, and 
look-ahead times for decision making.  Appendix A 
shows one example of such a game representing 
stakeholder interactions in a specific systems engineering 
context.  However, we take a different approach here in 
order to generalize to all types of stakeholder interactions 
in an approximate way. 
 
Figure 1 shows a timeline for the systems engineering 
process, including a period for base system development 
starting at time 0, and a subsequent period for system 
operations, until the system is retired at time TF.  An 
optional parameter, T0, is a cut-off time for base system 
development, i.e., it is the time after which there is no 
more development of the base system.  In the simple 
model presented here, stakeholder interactions are 
modeled as random events that affect the cost incurred 
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by the system throughout its lifetime.  Thus, some 
interactions may affect cost during the base development 
time and others during the period of system operations.  
Similarly, all external sources of uncertainty are rolled 
up into random events during the lifetime of the system. 
 

 
Figure 1.  Timeline for the Systems Engineering 

Process 
 
Tradeoffs among economic, political, technical and other 
factors are represented with a cost function over the 
lifetime of the system.  The planning aspect of systems 
engineering is represented by optimization of the cost 
function over the system lifetime, with respect to a 
control function corresponding to a plan for building the 
base system.  For simplicity, the plan is represented by a 
single function of time, r(t), which is the instantaneous 
rate at which the system is built.  We define the control 
function s(t) to be a measure of how much of the system 
is completed at time t: 
 

∫=
t

dttrts
0
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And, s(t) is assumed to start at zero at time zero, and to 
be bounded by 1; i.e., the base system is completed when 
s(t) = 1.  Finally, s(t) is assumed to never decrease.  
Therefore, the constraints on s(t) and the first derivative 
s'(t) are: 
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The cost density function is given by: 
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In this cost density function, A, B, D and τ  are 
constants, and random variable  )(tpδ  is a delta 
function with probability density p.  The parameter p is 
assumed to be a constant.  The first term of the equation 
for c(t) models the pressure to finish the base system, 

whether from actual system needs or other sources like 
political pressure.  The second term represents the cost 
incurred from random events that change how the system 
will be used relative to the base system capabilities.  This 
term incorporates stakeholder interactions as well as 
other external events.  The second term is proportional to 
s(t), which represents greater impact on a system that is 
closer to completion.  The cost of actually building the 
system is modeled by the third term, which is non-linear 
in s'(t).  The non-linearity models the relative difficulty 
of building the system in a short time compared to a 
longer time. 
 
Then, the expected cost over the lifetime of the system 
is: 
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Substituting into the equation for expected cost, adding 
Lagrange multiplier terms for the inequality constraints, 
then taking differentials and integrating by parts (see 
Bryson and Ho, 1975), a necessary condition for 
minimization of expected cost is: 
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In equation (1), the Lagrange multipliers )(1 tλ  and 

)(2 tλ correspond to the upper and lower bounds on s(t) 

and the Lagrange multiplier )(3 tλ  corresponds to the 

lower bound on s'(t).1  And, since s(0) = 0, 0)( sδ  = 0. 
 

                                                           
1  The lower bound on s(t) is actually redundant, since 

s(0) = 0 and s’(t) is never negative. 
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RESULTS 
 
In general, equation (1) must be solved numerically by 
piecing together solutions across regimes where either no 
constraints apply or one or more constraints apply.  
Where the constraints are slack, Lagrange’s equation 
holds: 
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which yields a second-order differential equation in s(t) 
that can be integrated to obtain:  
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where s0 and s'0 are constants corresponding to s(0) and 
s'(0) if the function s(t) were evaluated at the origin.  (Of 
course, this solution may not apply at the origin because 
of constraints on s(t) and s'(t).)  In the results shown 
below, these constants were found by piecing together 
the slack solution with solutions meeting the constraints, 
and numerically minimizing the expected value of total 
cost by varying the values of the constants. 
 
For the special case where the inequality constraints are 
slack for all t from 0 to TF, (i.e., the Lagrange multipliers 
are zero everywhere), the optimal s(t) can be expressed 
analytically: 
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For some parameter values, this analytic solution s(t) can 
be less than 1 at time TF, i.e., the base system is never 
completed.  
 
Figure 2 shows numerical solutions for a range of values 
of the constant product, Bp, which is a measure of the 
impact of uncertainty on the system.  The other 
parameters have the following values: 
 
A = 1 
τ  = 10 
D = 10 
T0 = 100 
TF = 100. 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

time

s(
t)

Bp=0
Bp=0.5
Bp=0.9
Bp=0.95
Bp=1

 
Figure 2.  Optimum s(t) with D = 10 

 
For small values of the expected impact of stochastic 
events (Bp) compared to pressure to complete the base 
system (A), the best course of action is to build up the 
system rapidly; this can be termed the “TSE limit.”  
When Bp is at least as large as A, the best course is to 
not build the base system at all and respond to stochastic 
events as they occur; this can be called the “reactive 
limit.”  And, the optimum s(t) shows increasing 
sensitivity to Bp, as Bp approaches A.  This is a kind of 
“critical regime” where small changes in the estimate of 
Bp can radically change the optimum plan for 
completing the base system.  Note also that, as Bp 
approaches A, the optimum s(t) shows a lag before 
beginning any work on the base system.  The lag 
corresponds to a kind of “strategic pause” to resolve 
some of the uncertainty before beginning to build the 
system.  
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Figure 3. Expected Cost Sensitivity with D = 10 

 
Figure 3 shows how expected cost changes with the 
parameter of variation, s'0.  In this example, the value of 
s0 at optimum was approximately zero in all cases.  
Changing the value of s'0 from -1 to 1 generates 
considerable change in the function s(t) from 0 to TF.  
Note that as Bp approaches A, cost is relatively 
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insensitive to s'0.  Hence, in the critical regime, it may 
appear that, in terms of expected cost, it doesn’t matter 
much what is done, from building up the system quickly 
to doing nothing at all on the base system.  And this may 
suggest a conservative approach to minimize risk of 
large costs, which would be not building the base system 
at all. 
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Figure 4. Optimum s(t) with D = 100 
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Figure 5. Expected Cost Sensitivity with D = 100 

 
Figure 4 shows another set of optimal s(t) curves, with 
parameters A, τ , T0, and TF the same as before, but D = 
100 instead of 10.  A larger value of D means that the 
system is more costly to build quickly, which is likely to 
be the case if the development is more complicated.  
These curves are qualitatively different from the curves 
with D = 10; note that the behavior of s(t) tends towards 
an incomplete system rather than a lagged start.  Also, 
the position of the critical regime, where s(t) is sensitive 
to the value of Bp, shifts to smaller values of Bp and 
appears to be broader with respect to Bp.  (More work is 
needed for this case; the optimum curves are very 
sensitive to the parameters of variation and the 
sensitivity has not been thoroughly explored.) 
 

Figure 5 shows the sensitivity of expected cost to the 
parameter of variation, s'0.  As before, the value of s0 is 
near 0 at the optimum across all cases in Figure 4.  As 
Bp approaches 90% of the value of A, there is 
insensitivity to the value of s'0 to the left (i.e., in the 
direction of not building the system at all), but strong 
sensitivity to the right.  Even more so than when D = 10, 
it may appear best to avoid risk and not build at all. 
 
CONCLUSIONS 
 
The model illustrates a TSE limit, for which the pressure 
to build a system greatly exceeds the ambient uncertainty 
(A>> Bp), as well as a reactive limit (A<<Bp), for which 
there is incentive to not build the base system at all and 
simply respond to stochastic events as they occur.    In 
the TSE limit, cost and time over-runs can arise from 
stochastic events such as stakeholder interactions.  The 
model suggests that there is a critical regime in which the 
optimum course of action is very sensitive to perceived 
conditions but the expected cost is relatively insensitive 
to these conditions, at least over a range.  In the critical 
regime it may appear that, in terms of expected total cost, 
it does not matter much what is done.  A direction for 
future research is to understand the characteristics of the 
regime between the TSE and reactive limits for less 
simplistic models of systems engineering, and to 
understand if this regime is where “complexity” arises in 
systems engineering.  
 
Behavior in the critical regime, as it manifests in this 
simple model, is similar to an effect observed in aviation 
traffic flow management (TFM) operations (rather than 
systems engineering), for which a Bayesian network 
analysis of experience in past events revealed no 
correlation between actions taken and the result (Pepper, 
Mills, Wojcik, 2003).  TFM is characterized by 
considerable uncertainty and decision-making 
interactions across multiple airlines and FAA 
organizations.  More work is needed to explore this 
possible relationship of the model to operational 
experience, and to attempt to determine if such 
relationships exist in systems engineering and 
investments. 
 
The systems engineering model presented here shows 
some level of qualitatively different behavior when the 
level of uncertainty (Bp) is changed by an order of 
magnitude, but more exploration of this effect is needed. 
 
In addition to calculating optimal functions s(t) and 
sensitivity to integration constants, another type of 
analysis that could be done is to simulate the randomly 
produced stakeholder interactions and other effects to 
generate a probability distribution for cost.  This follows 
the basic HOT methodology of Carlson and Doyle 
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(1999).  For the model presented here, in the limit as TF 
is large compared to system development time, this 
distribution is Poisson, and the variance due to stochastic 
events equals the mean.  Thus, we would not expect 
power laws to emerge in cost, but variance can be fairly 
wide nevertheless. 
 
Next steps should also include relating the model to 
actual systems engineering experience.  Possible case 
studies for comparison might include the FAA Advanced 
Automation System program in the aviation domain, or a 
well-documented case like the Space Shuttle safety 
program.  It may be possible to interpret such programs 
in light of modeling of the type suggested in this paper.  
There is a precedent for relating theory to experience in 
complex systems involving human decision-making 
interactions, and potentially much to draw upon from the 
field of organizational science (e.g., Simon, 1976). 
 
Further model development could be in the direction of 
extending the model to encompass systems investment 
and operations more explicitly.  A hybrid of HOT and 
agent-based modeling might be appropriate for this.  
Another area for modeling exploration is attitude towards 
risk on the part of planners; as they become more risk 
averse or risk seeking, their plans are expected to shift 
accordingly (Raiffa, 1976). 
 
APPENDIX A: A SIMPLE GAME OF 
STAKEHOLDER INTERACTIONS 
 
To cite an example of stakeholder interactions in the 
systems engineering process, we take the example of air-
to-ground data link communication for civil aviation.  
After decades of research and development, the 
controller-pilot data link communications (CPDLC) 
system came into daily operational use at one Federal 
Aviation Administration (FAA) en-route air traffic 
control center in late 2002 (Federal Aviation 
Administration, 2003) but the FAA decided to slow 
down further development of the system because of 
reluctance of many airlines to equip with avionics to take 
advantage of CPDLC infrastructure and applications 
(Steenblick and Wiley, 2003).  In Europe, where similar 
issues exist, the data link program approach includes 
subsidies for airlines to equip with data link avionics 
(Eurocontrol, 2003).  A reasonable explanation for why 
many airlines may not readily equip without incentives 
such as subsidies is that, in an extremely competitive 
industry with low or no profits for many airlines, airlines 
do not want to take on expenditures in equipment that 
promise long-term net benefit but short-term net cost. 
 
However, even if airlines take a longer term view, they 
still may not wish to invest in avionics for CPDLC, 
because the decision must be weighed against other 

possible investments including, for example, investment 
in additional aircraft to increase their long-term 
competitiveness against other airlines (Morser, 2004).  
Table 1 shows a simple game matrix for a hypothetical 
symmetric game in which each of two airlines chooses 
between investing in avionics and investing in aircraft.  
Airline 1’s choices are along the vertical axis and airline 
2’s choices are along the horizontal axis.  Long-term 
payoffs to airlines 1 and 2 are in parentheses for each 
pair of choices by the two airlines.  The game payoffs are 
expressed in terms of these parameters: 
 
E = benefit from one airline’s investing in avionics, 
F = synergistic benefit from both airlines investing in 
avionics, 
G = benefit of increased competitiveness if one airline 
invests in aircraft, 
H = negative benefit of mutual competitiveness 
 

Table 1.  Game Matrix for Two Airlines 
 

 Invest in avionics 
(airline 2) 

Invest in 
aircraft 
(airline 2) 

 
Invest in 
avionics 
(airline 1) 
 

 
(E+F,E+F) 

 
(E-G,G) 

 
Invest in aircraft 
(airline 1) 
 

 
(G,E-G) 

 
(-H,-H) 

 
Depending on the values of these parameters, the game 
can be a Prisoner’s Dilemma (PD) (Luce and Raiffa, 
1957).  One set of parameters giving rise to a PD is E = 
2, F = 1, G = 6, H = 2.  In a PD, the equilibrium for a 
single play of the game is where both players invest in 
aircraft, even though both would do better if they both 
invested in avionics.  Thus, each airline among a set of 
pairwise-competitive rational airlines may decide not to 
invest in avionics, even though it is better for each one if 
they all did.  With incentives, payoffs for investing in 
avionics increase and if large enough, they can shift the 
equilibrium to where each airline finds the long-term 
benefit of investing in data link avionics greater than 
investing in aircraft. 
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NOTICE 
 
The contents of this document reflect the views of the 
author and The MITRE Corporation and do not 
necessarily reflect the views of the FAA or the DOT.  
Neither the Federal Aviation Administration nor the 
Department of Transportation makes any warranty or 
guarantee, expressed or implied, concerning the content 
or accuracy of these views. 
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