
MTR 04B0000036

MITRE TECHNICAL REPORT

Architecture Development Lessons-Learned:

A Three-Year Retrospective

Jan 2004

Carlos Troche
Gerald F. Eiden Jr.
Frederick C. Potts

Sponsor: Col Bruce R. Sturk Contract No.: FA8721-04-C-0001
Dept. No.: D440 Project No.: 03046970CX

 Approved for Public Release; Distribution Unlimited

Case #04-0828

©2003 The MITRE Corporation. All Rights Reserved.

Corporate Headquarters
McLean, Virginia

SBORG
Text Box
Approved for Public Release; Distribution UnlimitedCase # 04-0828

"But what ... is it good for?"

– Engineer at the Advanced Computing
Systems Division of IBM, 1968, commenting

on the MICROCHIP.

Architecture provides vision, roadmap and control
mechanisms – the basis for strategic planning in
any enterprise.
– John J. Colligan, Project Leader, rendering the AFC2ISRC/CXCQ Architecture Mission

Abstract
This is a retrospective synthesis of three years of experience developing detailed
architectural views in compliance with the Command, Control, Communications,
Computers Intelligence, Surveillance, and Reconnaissance (C4ISR) Architecture
Framework, the DoD guidance that implemented the statutory requirements of the
Clinger-Cohen Act of 1997. It represents the collective judgment of nine professionals,
all of whom had Air Force operational, and/or, system development; and, experience, or
both; were formally trained in architecture development; and, have been dedicated to the
development of these architecture views almost exclusively. After more than three years
of developing architectures, all these lessons-learned point to one basic conclusion:
architectures are developed to be used. Thus it is incumbent upon the architecture
developer to work with the user to create something that has practical and immediate
application to that user’s needs. Everything else – development process, tools, methods,
etc. – should be subordinated to this utility. We take the point of view in this report of an
action or mid-level staff officer who has just been tasked with developing an architecture.
We try to provide a minimum set of "rules of the road" lessons learned to assist in
architecture development its tools. Two appendices detail our experiences with SA
(Popkin Software’s System Architect) and our analysis of the impacts of the new security
policy imposed by the Office of Management and Budget on architecture information.

Keywords: architecture, lessons learned, architecture tools.

 iii

Table of Contents
Abstract iii

Table of Contents iv

1 Executive Summary 1-1

2 Architecture Development Process 2-1

3 Architecture Development Tools 3-1

4 Appendix A

5 Appendix B

 iv

1 Executive Summary
This is a retrospective synthesis of three years of experience developing detailed
architectural views in compliance with the Command, Control, Communications,
Computers Intelligence, Surveillance, and Reconnaissance (C4ISR) Architecture
Framework, the DoD guidance that implemented the statutory requirements of the
Clinger-Cohen Act of 1997. It represents the collective judgment of nine
professionals, all of whom had Air Force operational, and/or, system
development; experience, or both; were formally trained in architecture
development; and, have been dedicated to the development of several of these
architecture views almost exclusively. After more than three years of developing
architectures, all these lessons-learned point to one basic conclusion:
architectures are developed to be used. Thus it is incumbent upon the architecture
developer to work with the user to create something that has practical and
immediate application to that user’s needs. Everything else – development
process, tools, methods, etc. – should be subordinated to this utility.

This report is neither exhaustive nor prescriptive. It represents but one set of
experiences that may or may not be applicable in other settings. We mention
organizations deliberately to maintain the proper perspective and context on the
experiences related.

We take the point of view in this report of an action or mid-level staff officer who
has just been tasked with developing an architecture. We try to provide a
minimum set of "rules of the road" lessons learned to assist in architecture
development and its tools. Two appendices detail our experiences with SA
(Popkin Software’s System Architect) and our analysis of the impacts of the new
security policy imposed by the Office of Management and Budget on architecture
information.

• Lessons dealing with the architecture development process focus on the
most critical preparatory aspects, because, it is in this stage where – in our
experience – the future success or failure of the architecture is sealed.

• Our overarching conclusion is that an architecture is complicated and
resource-intensive enough that it should be managed as if it were a
program, with a clear purpose and, scope and clear lines of
responsibility. Because the Air Force, by definition, made architecture
development a collaborative process (see AFI 33-124), we further
strongly recommend documenting the degree of collaboration and
interaction among all players in an architecture, and appointing a Chief
Architect vested with directive authority to maintain accountability of
the partners.

• Across our three-year journey we have also found that people with
certain experience or backgrounds make for better candidate architects
than others. Professionals with diverse operational and long-term
planning experience, and a clear predilection for jobs that deal with

 1-1

complexity and seeking solutions among competing alternatives
clearly make the best candidates to learn the architecture trade. As
with any collaboration, these skills cannot be effectively employed
unless there is a strong policy framework that protects the integrity of
what they develop, both from accidental errors and from unauthorized
disclosures. Thus we recommend establishing strong configuration
and security management policies that are enforced by everyone, but
particularly by a single person charged with their daily management
within the architecture development organization. We go as far as
recommending that architecture development not start until these
policies and procedures are clearly established, especially in light of
the new Office of Management and Budget policy that requires
protecting architecture data and tools as "mission critical" systems (see
the detailed discussion of the policy and its impacts in Appendix B).

• The complexity of developing architectures is managed through formal
methods e.g., structured analysis, object-oriented, that often bring their
own language and notation. Hence, architecture proponents suggest
that senior-level sponsors of architectures should be strongly
encouraged to focus more on the results of applying the architecture
and less on the details within it. In our experience, the investment in
architectures is such that sponsors cannot be dissuaded from "looking
under the hood," often being repelled by what they see or becoming
blind advocates of the one method they learned. We strongly
recommend actively engaging the sponsors throughout the
development, placing these development details in the proper
framework of utility, and engaging other potential users of the
architecture early on to serve as spokespersons for the architecture.

• In the C4ISR community, integration is an unquestioned goal of most
efforts. Thus, architecture sponsors should count on an effort to
"integrate" their architecture with other projects. Because
"integration" is in the "eye of the beholder," we strongly recommend
taking the time early on to define the degree of integration with the
same zeal used to define a purpose, scope, context, and scenario for
the architecture.

• Lessons dealing with architecture development tools focus on our
experiences with a variety of tools ranging from Microsoft Office, netViz,
and Macromedia Flash to formal modeling tools like Popkin Software's
System Architect (SA). Overall, we believe that any candidate tool should
have a proven record of being able to support, secure and clearly present
an architecture similar to the one being contemplated. Unfortunately, the
likelihood of meeting such a standard today with a single tool is very low.
Therefore, we are convinced that only using a variety of tools will provide
the best results.

 1-2

• Standard office automation tools (e.g., Microsoft Office) store and
present large amounts of information quickly and efficiently. Because
these are also pervasive throughout the using communities, office
automation tools enable quick penetration of the architecture into daily
use. Unfortunately, standard office automation programs lack the
controls of formal methods and modeling languages and are unable to
display dependencies and parallelisms among activities, processes, and
supporting technologies – relationships that are essential to analyze the
behavior of the system the architecture depicts.

• Modeling tools (e.g., System Architect, Rational Rose) implement
formal modeling methods used across industry. They are generally
well suited to illustrating dependencies and parallelisms, but often
their ability to handle large data stores with multiple relationships is
limited. We suspect we have run into these limitations with System
Architect because the tool's behavior became increasingly erratic as
the data and relationships increased.

• None of the formal modeling methods fully meets the requirements of
the C4ISR Framework, and most must often be "extended" when used.
What is an allowable "extension" is, again, in the "eye of the
beholder." Hence, one should employ these tools with the
understanding that a bias will be needed to "extend" them to meet the
requirements of the Framework and, that this bias needs to be decided
early on in the development process, should be applied uniformly, and
will be the subject of disagreements with those outside the team. In
some cases, the tools are "extended" to meet the C4ISR Framework
requirements. In our experience with System Architect, this extension
(the C4ISR "Overlay") was based on erroneous interpretations of the
Framework that required extensive workarounds. The XI-supported
extension attempted to corrected System Architect's problems but
created some of its own. In addition to the background section,
Appendix A details our experience with System Architect and its XI-
supported extension.

• None of the modeling tools we evaluated implemented configuration
or security management features that adequately protected the data
collected within it. For most vendors, these features were considered
"external" to the tool, a situation that almost guarantees the loss of or
unauthorized disclosure of the information. Even the nominal "check
in/check out" feature in System Architect that permits the selective,
read-only extraction of part of the data can be easily thwarted to enable
changes to the extracted data.

Overall, we strongly recommend thorough testing or review of customer experiences
before designating any tool a "preferred" one. On the specific case of the HQ USAF/XI
preferred tool – SA and its XI-developed extension –, we recommend developing a new

 1-3

strategy for using SA in its native form without any modification, and using SA within
the context of a suite of tools and for a scale appropriate to its capabilities.

 1-4

2 Architecture Development Process
Background

The Clinger-Cohen Act (CCA) of 1997 required the development and
implementation of a series of management tools – among which were
architectures – to guide the investment in information technologies (IT) within
the Federal bureaucracy. Provisions of the CCA accounted for and impacted
automated information and embedded systems. The Office of Management and
Budget’s (OMB’s) A-130 circular and later Office of the Secretary of Defense
policy further reaffirmed this mandate and provided additional guidance for its
execution. Ultimately the DoD translated the CCA and OMB guidance into the
C4ISR Framework, a standard that defines the minimum ways of depicting an
architecture to be fully described by three "views": operational, system, and
technical.

The Air Force, in the meantime, established the Air Force Command, Control,
and Intelligence, Surveillance, and Reconnaissance Center (AFC2ISRC) and
charged it with – among other missions – developing and maintaining"...near-
term and long-term operational architectures for AF/XO...integrate[ing]
MAJCOM/FOA inputs in design and management of C2ISR system-of-
systems architecture in conjunction with the acquisition community..." AFI
33-124 institutionalized this role by assigning the development of the
operational "views" to the AFC2ISRC for the C2 & ISR mission areas. Some of
the staff elements consolidated into the AFC2ISRC had been modeling
operational processes for at least three years prior to CCA, and they brought that
experience and those results with them into the AFC2ISRC. The AFC2ISRC
organized a dedicated architecture team and published its first major
architecture in 2000. The team varied some, but it generally consisted of the
same nine professionals – multi-disciplined, with varying operational,
engineering, and other technical backgrounds – attempting to describe Air Force
roles in C2 & ISR within and outside of a major theater war context, in the near,
mid, and far terms. Generally all released products described Air Force
operations within the theater context; the Air Force's role in theater/reachback
support was developed but never officially released. In 2002, control of the
AFC2ISRC was transferred from the Air Combat Command (ACC) to a new
organization in the Headquarters USAF staff, the Deputy Chief of Staff for
Warfighter Integration (HQ USAF/XI). HQ USAF/XI has continued to ask for
the same type of products that were delivered before to the AFC2ISRC
leadership though they have established new rules governing the tools used to
develop them.

 2-1

Lesson #P-1: Understand what you are getting into before
proceeding.

An architecture is a model of a complex system, a detailed description of the
systems' components and the relationships among those components developed
to evaluate the systems behavior and performance. It is not a set of C4ISR
Framework products. Because an architecture is detailed, it takes significant
amount of time (weeks, months), resources (persons, tools), and commitment
(yours and your leadership). Disabuse yourself of the notion that this is a brief,
quick and easy project. At best, this is your legacy to those who will come after
you. Your professional reward (and that of your sponsors as well) will be the
stewardship of this investment as it grows from concept to reality. If you are
the (un) lucky one "stuck" with an architecture tasker, time spent understanding
what an architecture is could save you orders of magnitude of time and
aggravation trying to organize and conduct an architecture development effort
or convincing your leadership that one isn't needed.

Metrics & Mitigation: If you are tasked to build an architecture, call on
experienced architects and seek their advice on the purpose, scope, and
commitment required for your "tasker." Evaluate your boss' understanding of
architectures and commitment to them, as measured by his or her attention span
when you mention architectures. Ensure that the leader understands the
commitment architecture development represents, including the fact that
anything that temporarily prevents you from being totally dedicated to the
architecture (e.g., routine staff taskers) will likely impose a penalty on the
architecture development of twice the amount of time to recover for every day
spent off task. Make sure both you and your leadership understand that
architectures must be managed as a program, with clear leadership and
single-mindedness of purpose. Architectures represent such a significant
investment that any hint of a "box checking" motivation or an unwillingness to
carve out time to understand and actively guide the development of the effort
should raise a cautionary flag against attempting the development. If this initial
research reveals major mismatches between what you are being asked to do,
your resources, and, especially, your leadership's commitment, attempt to delay
or "kill" the tasker.

Lesson #P-2: Architectures must have a specific purpose (at least
one) and should not be developed until there is at least one agreed-
upon, purpose (and "because the CCA says we need one" is not a
purpose!).

Just as there is no such thing as a "generic" weapons system, there is little sense
in a "generic" architecture. Weapons systems are built for specific purposes –
interdiction, counter air, airlift, command and control, reconnaissance, counter
space, et al. Equally, an architecture must have at least one purpose that guides
its scope, development, and use. In the case of multiple sponsors, different
views are likely as to what that purpose should be. Sometimes these differing
views cannot be reconciled in a way that results in a clear unambiguous

 2-2

statement to guide the development of the architecture. In such cases, the
standard reaction is to continue negotiating until agreement is reached.
Generally this results in a purpose statement so generic and ambiguous that
although it satisfies every sponsor's (different) interpretation of the purpose, it
provides little guidance to the architecture developers. This approach
guarantees that the resulting architecture will not satisfy anyone's individual
expectations.

Metrics & Mitigation: Spend some time discussing with your leaders the
purpose of the architecture. Frame it in very practical terms: At the end of what
could be a considerable period, what would they expect to find or get from the
architecture? Encourage a very parochial, selfish approach so you can get their
actual views and desires. In the end, you may find you have incompatible
objectives, a clear indicator that you need more than one architecture. This may
turn out to be a preferred option, because each architecture would be more
specific and thus more relevant to the sponsor's needs. Consider using "canned"
purpose statements to "prime the pump" in your discussions, "The purpose of
the architecture is to..."

• Visualize a problem and its impacts.

• Understand the impacts of specific investment decisions.

• Understand where and how performance may be best improved.

• Optimize investment decisions by evaluating its impacts across the larger
context where the investment takes place.

• Understand the impacts of procedural changes and new technologies.

Lesson #P-3: Manage an architecture as a development program
with a clear, unambiguous Chief Architect, and a detailed written
charter for the architecture that is approved by your leadership.

An architecture requires such a single-mindedness of purpose and dedication
that it must be managed as a program with clear lines of authority and
responsibility vested in a Chief Architect. By the way, the old saying of "where
there's more than one in charge, no one is in charge" applies in architecture
development as in other projects. This administrative structure, essential for
architecture development, needs to be clearly documented and agreed-upon by
the sponsors of the architecture.

Metrics & Mitigation: Just as you would in any situation where your
personal fortunes are at stake, zealously document the agreements with your
leadership. Ensure that the document clearly shows who the Chief Architect
will be, and avoid the bureaucratic euphemisms that tend to dilute authority and
diffuse the directive and advocacy responsibilities of that position. Exploit the
flexibility inherent in the Framework's All Views (AV)-1 product to document
all taskings and obtain approval. Ensure that major sponsors physically sign
this "charter;" there's hardly a better way of reminding them of their

 2-3

accountability in this process. As you conduct progress reviews, lead in with
the signed "charter," as the guiding light for your development.

Lesson #P-4: A stated purpose must be bound by a statement of
scope, point of view, and a scenario as context for the architecture.

Scoping and committing to a point of view adds reality to the purpose of the
architecture. It also serves to ensure that the architecture sponsor understands
the effort and commitment. A scope statement should be developed in both the
positive and the negative cases. That is, there should be little doubt as to what
will be included and excluded by the boundaries of the architecture. A point
of view helps further hone the scope by determining what areas within the scope
will be emphasized. Both scope and point of view should be discussed in terms
understandable to all participants. Choosing a scenario helps scope the scale of
the architecture development effort. This scale, in turn, is one of the key drivers
of the level of effort and investment required to complete the architecture. For
instance, an architecture that describes all air operations in a theater war
scenario is of a larger scale and will take a larger effort than one focused on
search and rescue of a downed airman within a particular sector of enemy
territory. Discussions that devolve into arguments over Framework products
e.g., AV-1, OV-1, should be quickly steered back to the substance of the subject
that created the need for the architecture to begin with.

Metrics & Mitigation: Test the commitment to a scope by discussing those
areas that would be "out of scope" by the selected scope statement and point of
view within the agreed-upon scenario. The more disagreements the discussion
engenders, the more concerned you should be that the architecture and its
purpose are not understood. The degree of disagreement is an early indication
of the architecture's potential to fail to meet expectations. If the discussion
begins to center on Framework products, you will need to quickly refocus it on
the content of the prospective architecture. If necessary, be zealous and
overbearing! Like the "mission creep" that impacts many operations, scope
tends to "creep" in an architecture, especially as those involved at the beginning
quickly forget the limitations imposed on the scope to make the architecture
realizable and begin to get creative.

Lesson #P-5: Architecture development requires collaboration.
Ensure your collaborators are equally committed to the same effort
as your organization.

The Air Force decided in AFI 33-124 to make architecture development a
collaborative, decentralized effort among, – for example, – operators
(AFC2ISRC) and system developers (ESC and AFCA). By definition, then, any
architecture developed in the Air Force will require collaboration across very
different organizations, each with its own agenda and priorities. So, in addition
to having to deal with the challenges of developing the product, someone tasked
to develop an architecture must also succeed in convincing other organizations
to support their project at the level of effort required to complete it on time. In

 2-4

this day of netted staffs, advocating and communicating are not a problem, but
what continues to be critical challenges are the leadership and accountability
required to maintain an equal level of commitment across organizations.

Metrics & Mitigation: Test your partners' level of organizational
commitment early and often. Any wavering, – for example, an inability to
obtain their leadership commitment to the priority, purpose, scope, scenario, and
viewpoint of the architecture – should be a warning signal. In such cases, limit
the scope of the collaboration to that which can be realistically achieved. If
commitment and support evaporate altogether, ensure that you inform your
sponsors early in the process that your efforts will be hampered by the absence
of collaboration.

Lesson #P-6: How to develop architectures can be learned; however,
certain backgrounds facilitate learning.

At its core, architecture development demands analytic and engineering skill
sets. This does not mean, however, that only professional systems analysts and
engineers can be good architects, but that the further away the experiences of a
candidate architect are from the outlooks of analysts and engineers, the steeper
(longer) the learning curve will be. Generally, a candidate whose background
demonstrates a clear preference and ability to deal with complexity and an
ability to wrestle it into practical, actionable results within a specified period of
time, is a good candidate to become an architect.

Metrics & Mitigation: If you are empowered to do so, evaluate the
background of candidate architects and consider the following experience or
backgrounds (in addition to domain expertise) as indicators of good future
potential to easily train as architects:

• Prior "Architects" (C4ISR Framework-experienced)

• Systems Engineering

• Software Engineering

• Computer Scientists (especially with embedded, real-time, development
experience)

• Mechanical/Control Engineering

• Systems Analysis

• Doctrine & Procedure development

• Standardization & Evaluation

• Long-term planners

• Project Management (Defense Systems Management College-certified)

• Training Management

 2-5

• Implementation Management (installation, cutover, and operations
management)

• Electrical/Electronic Engineering

Seek to balance your team skills, if possible. Avoid overspecialization.
Additionally, any candidate who cannot articulate his or her understanding of
analysis, architectures, or immediately retorts with the "Keep-It-Simple-Stupid"
principle during an interview should not be favorably considered because their
bias is to reject complexity outright and thus lose the power of architectures to
address the sponsor's purpose.

Lesson #P-7: Besides domain expertise, the most important skill to
have in an architecture development team is Configuration
Management (CM). Without CM you run the risk of losing the
architecture work, having it misquoted and misused. In some cases,
this can have legal consequences. Do not start developing an
architecture without agreed-upon CM policies.

Assuming that a prospective architecture development will require the talents of
more than one person, it is fair to also assume that you will need a governance
structure (e.g., process, procedure, policies) to prevent the work of one architect
from being corrupted, overwritten, or otherwise misused by another architect or
a party outside your team. In turn, this governance structure needs to be flexible
enough to allow the architecture to be exposed, vetted, and ultimately used by
those you authorize, all without corrupting it or using the information out of the
intended context. The collection of policies and procedures that governs the
management of all this data is generally known as CM.1 The sponsors as well
as the team must adopt and adhere to CM early in the architecture development
effort. Significant resistance is common: CM often sounds Byzantine;
however, you should insist on the protections it offers and have someone
designated to be your primary Configuration Manager (CMgr).

Metrics & Mitigation: How do you know if you have the right person for
CM? You are on the right track the candidate CMgr is able to propose policies
and procedures – e.g., he or she describes how to ensure you that the right data
and products are maintained and disseminated – without degenerating into a
discussion of automated tools for configuration management and how they
would be employed. If your team members have no clue what CM is, seek
assistance. Above all, do not ignore this critical area; you are risking, at worse,
the entire viability of the architecture; at best, a lot of "redo" you will not have
time to undertake. No CM policy, little understanding of the subject, or a

1 CM is a discipline applying administrative and technical direction and surveillance to: identifying,
documenting the physical, functional, and performance characteristics of items; baselining, controlling
changes to, providing status on, and conducting audits on those characteristics. References: Incervic, E.
L., Configuration Management: A Software Acquisition Guidebook, TRW Software Series, November
1978; and, Capability Maturity Model Integration, Version 1.1, Software Engineering Institute, December
2001.

 2-6

penchant for describing it in terms of automated tools should raise a warning
flag concerning the team's ability to handle the scale and protection of the
architecture adequately.

Lesson #P-8: Because architectures take a long time to develop,
count on the architecture sponsors’ losing interest and, enthusiasm,
or radically after changing their outlook on what they want within the
first 3-4 weeks after starting the development. Prepare to
continuously "promote" your architecture and to highlight its
importance to the mission.

Attention span is a precious commodity; so much so that medical science
recognizes that attention deficits are serious conditions requiring treatment not
only in the young but in adults as well (see adultadd.com). This, coupled with
the nature of staff work where issues are never fully resolved but repeatedly
reengaged, increases the number of issues a leader has to deal with, shortening
the amount of time any one issue is considered in full. The shorter this period
becomes, the more difficult it becomes to recall it in detail in the future,
especially for complicated issues like architectures. A week in the architecture
sponsor's schedule is often a long time; a month, an eternity. So, you should
expect your architecture sponsor(s) to quickly lose interest or feel completely
lost as to the motivation for the enormous investment in something like an
architecture that takes dedicated work and a long time to bear fruit. Many
respond to this simple limitation of human nature by attempting to flood the
sponsor with information about the architecture and its progress. In today's
netted environment, this is relatively easy, but it just adds more e-mail to a
growing stack of unread or belatedly read missives in the sponsor's mailbox.
Readers learn to quickly scan at subject lines and relegate those e-mails that
require the most pondering (like architectures) to the very last, "if-I-get-to-it,"
pile. In one stark example, the architecture sponsor reached into his desk,
pulled out a jar of aspirin and took two before he would consider discussing the
subject.

Metrics & Mitigation: Understand that it is inevitable for the sponsor's
interest to wane in long, complex projects, often regressing through three stages:
zealous interest and advocacy of the need for an architecture; sober realization
of the complexity and enormity of the task; and, "grudging" acceptance and
disillusionment with the entire idea. Your mitigation strategy should seek to
keep your sponsor's interest somewhere between the first and second stages, and
away from the last one, by always providing "fresh" outlooks on the utility and
application of what your team is doing with what is being developed, even
before the final product is ready for release.

The suggested mitigation strategy requires two components: a communications
plan and the opportunity to promote the use of the architecture as it is being
developed (i.e., a partial architecture) by its prospective user(s) so they can
become, in turn, the architecture's endorsers. This two-pronged approach is

 2-7

analogous to that used by weapons systems under development, where
sometimes the horizon to operations is a decade or more away.

• The communications plan is nothing more than a means of organizing
how you are going to publicize the architecture, its progress, and its
benefits to your sponsors and ultimate users succinctly without being
overbearing. A wry observer once commented that a new program
initially does not need great accomplishments, just a logo, a coffee mug,
a T-shirt, a web page, and a few promotional trinkets to give it a distinct
identity and promise, all while teasing the users' interests. Similarly,
your communications plan should create an identity for the architecture
while attempting to entice interest in its promised benefits. One of many
components of your communication strategy could be an advanced
schedule of periodic meetings to brief the status of the architecture
development and focus attention on the task.

• The second element is a little harder to manage but of potentially greater
benefit to the architecture and to its utility. The sponsor provides
executive supervision over the development of the architecture, but the
actual architecture users are often others. Empowering your team to
interact with these users early and often during the architecture
development could create a pool of goodwill and open–mindedness that
would enable greater acceptance of and curiosity about the architecture
once delivered, especially if the interaction results in adjustments and
tailoring of the end-product to those users' needs. Using this strategy,
those users interacting positively with the architecture development team
become spokespersons for the use of the architecture in their operation.
Instead of boring the sponsor with constant architecture information
from the development team, these users would rekindle his or her
interest in the subject more frequently by addressing it from the users'
individual perspectives. However, realizing the benefits of this
interaction requires the sponsor's initial recognition and acceptance that
the architecture and its views are only useful if they are applied; that
they can only be applied if they are tailored to the needs of the user; and,
that this tailoring must be led by someone who is interested in applying
the architecture and who thoroughly understands it and the user's needs
(i.e., the architect, not the user). It also requires careful scheduling and
resource management so that architecture development effort is not
delayed or derailed under the influence of a particularly capricious user.

Lesson #P-9: Develop and enforce a set of security policies and
procedures to govern the control and release of architecture
information.

The OMB directed all Chief Information Officers in January 2003 to treat
architecture information as mission critical to be secured in accordance with the
standards of the Federal Information Security Management Act (FISMA). The
OMB policy and FISMA require the establishment of a risk-based security

 2-8

management program to protect every mission-critical system and application
(e.g., architectures by OMB's designation) and an annual evaluation of the
information security management program protecting these mission-critical
systems. FISMA further requires that the security status of mission-critical
systems and information be reported to Congress periodically. To date, detailed
guidelines for implementing this new policy and the FISMA requirements on
architectures have not been issued, although we have verified that the policy
mandate has not been reduced, removed, or otherwise modified. The impact of
this mandate on architecture development is detailed in Appendix B to this
report.

Metrics & Mitigation: While we await further guidance, be sure that you
keep written records of who is issued architecture data, when and for what
purpose. Issue the data in formats that can't be easily altered, unless you have
willfully authorized the recipient to reuse and alter the data. Ensure that your
data is clearly labeled as to its availability for public release (i.e., use For
Official Use Only) in the case of unclassified information, and ensure that you
have approved methods and systems for secure information processing in the
case of classified information. Periodically audit your records and determine
the disposition of the internal and external distribution (e.g., whether the
information still exists, whether the recipient still possesses the information, and
what its time/date of destruction is).

Lesson #P-10: Architecture sponsors should only be interested in
the results of applying the architecture, not in how it was developed
or what the Framework products look like. If your sponsors,
however, do want to view the architectures in detail, prepare to
educate them on the design methodology and the modeling
language used. More important, be ready to defend your choices.

Architectures are developed using a design methodology, often instantiated by a
modeling language. There are several design methodologies and modeling
languages, all stemming from individual sectors of industry or academia. The
two most common ones used in developing C4ISR Framework products are
Structured Analysis Design Technique (SADT) and Object-Oriented Analysis
and Design (OOAD). SADT has a long history in major projects like the space
missions. SADT models are often documented with modeling languages like
IDEF0.2 OOAD is more modern and stems from software development. It is

2 For those unfamiliar with the Integration Definition for Function Modeling (IDEF0) language, Federal
Information Processing Standard 183, it is a set of rules that define how functions and their
interrelationships may be depicted. Two key IDEF0 principles are inheritance and node or actor
indifference. You start IDEF0 models at the very top with a "context" diagram, which is a single statement
of the function you will decompose and assign it inputs, outputs, controls (guidance), and mechanisms
(systems). Under inheritance, functions in IDEF0 are broken down into their component subfunctions.
Functions decomposed into subfunctions bequeath unto their children all inputs, outputs, controls and
mechanisms (ICOMs) that affect the parent; and, vice versa, all subfunction inputs, outputs, controls, and
mechanisms are inherited "upwards" into the parent. Depending on the complexity of the model, this can
be a very large number of ICOMs, rendering the diagrams at the top unreadable. Artifacts within the

 2-9

often documented with modeling languages like the Unified Modeling
Language (UML). A good rule-of-thumb is that OOAD/UML is far superior to
other methods for the design of software-intensive systems. A whole cottage
industry has developed around the use and advocacy of SADT/IDEF0 versus
OOAD/UML, especially as it pertains to the C4ISR Framework products. So, it
is likely that your sponsors have heard about "use cases," "objects," "functions,"
"inputs," "outputs," and so forth and feel comfortable enough with this
deceptively simple vocabulary to demand that OOAD/UML or SADT/IDEF0 be
the norm for your architecture. Furthermore, it is very likely that they have
reached this conclusion after one presentation from an advocate of either
"religious" camp.

Metrics & Mitigation: You will need to select a design methodology and
modeling language to develop your architecture. Obtain the advise of seasoned
architects when making your selection. Ultimately, however, both OOAD and
SADT will produce the same results, but they will require entirely different skill
sets to understand them. It won't be obvious to any but a trained eye that an
OOAD and SADT architecture refer to exactly the "same" reality.3 Thus you
need to obtain a detailed understanding of each methodology and be ready to
defend your choice, ensuring that you frame your argument within the purpose,
scope, point of view, and scenario of your architecture. This is probably the
only way you can prevent your development from being engulfed in what is
ultimately an endless discussion of nothing more substantive than individual
preferences.4

Lesson #P-11: Lead your architecture development with the same
zeal and practices you would use for a major program.

You have zealously developed and obtained the approval of your architecture's
purpose and scope; carefully selected and trained your development team
members (if possible); and, you are ready to begin development, but realize that
everyone on your team has a slightly different idea of the architecture and its
bounds.

modeling language like tunneling enable the modeler to limit the number of ICOMs that inherit "upward"
without losing fidelity. The IDEF0 methodology closely resembles the outlining methods we all learned in
secondary education as a way to understand the components of a major concept and their relationships.
Node or actor indifference refers to the assumption made at the very beginning of an IDEF0 model that the
human, machine, or process interacting with the functions in the model is either a single entity or it is
otherwise irrelevant to the context of the model because the model is focused on what is being done,
independently of who is doing it.
3 The argument among the adherents of both techniques often becomes so intense that it overshadows the
real purpose of their use: enhancing combat capability. Beware, then, of critics who often base their
comments, not on the substance of what you are depicting, but on the technique you used.
4 As of this writing, OOAD and SADT are the two big "camps" promoting their "truth as the only one."
But, stay tuned; Aspect-Oriented Programming (AOP, some say a modality of object-oriented
programming) is making its debut, so you shouldn't be surprised if, by the time you read this, AOP's design
technique has joined this fray as the technique du jour for C4ISR architectures.

 2-10

Metrics & Mitigation: Just as we recommend having a strategy for
communicating to outside organizations (see lesson #P-8), we strongly
recommend having an equally organized approach to internal communications.
The objective of internal communications is to ensure that all team members
understands what is expected of them, in exactly the same form and level of
detail as you have tasked them. There's probably no better way of making this
happen than by jointly developing a detailed internal schedule for the
development of the architecture, a step-by-step plan to build the architecture and
everyone's role in that process. This is both time consuming and exasperatingly
laborious because you are dealing with how humans (mis)understand one
another. Remember that this is not just making sure everyone "gets the word,"
but rather guaranteeing that everyone internalizes the purpose and spirit of the
task. If part of your team is not collocated with you, it will be that much harder
as you deal with the logistics of transportation and scheduling available time.
His process has no shortcuts. You should count on repeating it often during the
first 30 – 45 days of development until you can be reasonably assured that
enough of a "mind meld" has occurred among your team members that
everyone is building the same architecture.

Lesson #P-12: Get ready to "integrate" your architecture.

You will not develop your architecture in a vacuum. More than likely, you will
be asked to be "integrate" with other architectures. And, as we mentioned
before (lesson #P-2), your architecture is bound to have a unique purpose,
scope, point of view, context, and scenario, all likely to be different than those
of the architecture you are being asked to integrate with. Also, "integration"
seems to be one of those terms of art that is left deliberately vague so it can be
used indiscriminately without attribution. So, it is absolutely essential that you
pin down what your sponsors mean when they ask you to "integrate" your
architecture and that you plan for, and implement it early in your development.

Metrics & Mitigation: Ensure that your sponsors understand that
architectures are not "self-integrating," if nothing else because you must ensure
a degree of commonality that is likely not to exist between any two
architectures.5 At best, integration is a matter of degree: the higher the degree
of integration, the higher the degree of commonality of purpose, scope, point of
view, context, and scenario between the integrating architectures. The converse
is also true. We recommend spending some of the time allocated to defining the
purpose, scope, point of view, context and scenario of the architecture in
defining the degree of integration you are willing to invest in. You may be
asked to integrate your architecture with one that is so radically different that it
will be nearly impossible to show except in the most contrived way. In such
cases, when the commonality is not there, you may suggest a mapping
document that shows how your architecture's context and other elements "map"
to, match, the others (where they, in fact, do). On the other hand, yours may

5 Some architecture experts firmly believe architectures can never be integrated, just compared.

 2-11

simply be a detailed version of a portion of a higher-level architecture. In
which case, your "integration" would simply be an extension of the higher-level
architecture into a more detailed area. In both cases, mapping or extension, you
should plan for the time and logistics of making this happen because it will
involve your entire team and likely those individuals who developed the
architecture you are integrating into. Count on integration taking long
negotiating sessions that should be tried out early in the development so that the
teams get used to working together.

 2-12

3 Architecture Development Tools
This section summarizes our collective experiences with tools for architecture
development. Do not skip reading the Background and the two
Appendices because you will miss the entire context of the lessons learned
that have been derived from our experiences.

• The Background addresses our experiences with tools since we started
developing architectures as a dedicated team. Most of this information
however, is focused on our latest experience with a formal modeling tool
called Systems Architect (SA).

• Appendix A provides a detailed chronology of the efforts made to deal
with SA's limitations within our context and will give you an
appreciation of the level of difficulty of the challenge and the
importance of CM.

• Appendix B details the impact of security policies on the future
selection and use of architecture development tools and the features you
should keep in mind when evaluating prospective tools.

Background
Winter 2000 – Fall 2002

We used a variety of tools to develop operational views. Until late 2002, the
tools used were Microsoft Access, Excel, Word, PowerPoint (the MS-Office
Professional suite), and netViz. Architecture data was captured in an MS
Access database, and netViz provided a method of diagramming architecture
products that were connected to the database. Supplemental tools were used to
enable a more user-friendly presentation of the architecture, e.g., Microsoft
FrontPage, Adobe Photoshop, Premier, and Acrobat. Macromedia Flash was
also used to enhance, by way of multimedia presentation, animation, and
interactive menus, the navigation to MS Office, Adobe Acrobat, and Hyper Text
Markup Language (HTML) products delivered on compact disc (CD) for
distribution to the user community. The use of MS-Office as a core application
made the architecture universally accessible since MS-Office was pervasive
throughout the users' community.

We held strongly to this universality of application as a design principle because
it was extremely successful in cheaply introducing large organizations to the
concepts of architectures and convincing at least that initial generation that an
architecture was a detailed description predominantly of data, not just a bunch
of "cartoons." Because a premium was placed on accessibility and usability, the
product design was deliberately loosely coupled with architecture development
activities e.g., information gathering, association, and analysis was the first
phase, product release creation the second. Large quantities of data were
collected, some of it as "placeholders" for future development, others for
publication and use in the next release. This loose-coupling enabled great

 3-1

flexibility because at the time that a product was scheduled for release, a
determination was made with the primary sponsor as to which information
would be in the release; however, the database was not purged of important
leads or other information we had not had the time to fully develop. Within this
initial phase, we were also able to maintain a degree of loose-coupling that
allowed parallel development using the Replication & Synchronization features
in MS Access. Unfortunately, as the data grew in quantity and complexity, we
ran into some data integrity problems with these features, e.g., data flagged to
be overwritten wasn't, while data flagged to remain was changed.

Early in the development effort, rendering Architecture data for distribution was
accomplished via HTML output from netViz, made "user friendly" by adding a
navigation “front-end” in HTML that linked to integrated architecture products.
netViz is an affordable tool solution that combines a powerful graphics capability
with the ability to create “data enriched” content by connecting the graphical objects
to a data source. However, we found significant limitations with netViz in the
display of descriptive text and problems with refreshing data as changed in the
source MS Access database. Additionally, the hierarchical structure of netViz
HTML output was not intuitive, requiring users to maneuver up and down menu
levels and multiple screens. We addressed some of these limitations by distributing
a "viewer" tool that provided the netViz interface for those without the software.
However, distributing a "viewer" tool shifted part of the workload (installation and
use) to the user, thus limiting some the ease of use and accessibility to the
information. In light of these limitations and changes imposed on the users, we
abandoned netViz, finding it not suitable to our increasingly detailed and complex
data. Our data remained in MS Access enabling other options in how it could be
rendered for distribution to the user community.

By late November 2002, we changed our release design to a simpler structure of
menus linking to product reports. So, instead of requiring the user to navigate
across several screens to view information, basic menus provided quick links to
database reports provided in Adobe Acrobat or MS Office formats for viewing
or printing. Our navigation front-end was created using Macromedia Flash.
This tool provided the capability to create a multimedia-enhanced navigation
interface that did not depend on the HTML conversion solutions or limited
presentation capabilities we encountered using netViz. The results were
significant: the product worked better, the multimedia front-end helped "shore-
up" the natural limitations of flat data and, overall, the CD product was better
received. The combination of Macromedia Flash, MS Access, and Adobe
Acrobat provided the most usable and user-friendly architecture product we had
developed so far.

Still in all, the overall limitation of this approach specifically the use of MS
Office generic tools as the core of the architecture was that it did not enable the
display of activities and information exchanges in a way that highlighted their
interdependencies or showed which activities occurred in series and which
others in parallel. Being able to show dependencies and parallelism becomes

 3-2

crucial if the architecture is to fulfill its potential as an analytical tool, enabling
the user to evaluate options, “what if” scenarios, etc. Also, the tools, by their
sheer flexibility, lacked the rule framework to ensure that the resulting models
not only depicted the operational reality, but also depicted it in a fairly
universally recognizable way that would allow their reuse. Although we yet had
to be tasked to apply the architectures, in any formal way, we believed that the
limitations of our approach would have ultimately eroded the credibility of the
overall product if there was a call for the formal, repeatable, and comparable
application of the architecture.

Fall 2002 – Present
After the Air Staff's Deputy Chief of Staff for Warfighter Integration (HQ
USAF/XI) began its operations in the fall of 2002, it established a series of
architecture "integration" councils to - among other tasks - bring the different air
and space operational communities to adopt architectures and govern their use.
At the top of this mission-focused governance structure, XI and the Air Force
CIO established an executive level council to coordinate the operation of the
lower level councils. This executive level council established Popkin
Software's System Architect, with its C4ISR Framework Overlay front end, as
the "preferred" tool for architecture development.

Systems Architect (SA) is a formal modeling tool, automating the creation of
models and associated information objects in a variety of modeling languages.
To capture the growing C4ISR Framework market, Popkin developed a front-
end application, the C4ISR Framework Overlay, that enables the user to use the
underlying methodologies in the SA tool with additional Overlay-specific
routines to build the Framework products (both operational and systems views).
The formality embedded in the modeling language rules, the use of automated
rule checkers, plus the addition of Overlay-specific automated routines held the
great promise of quality, reusable products that showed parallelism and
dependencies, while realizing high productivity in architecture production. For
instance, the user would develop a comprehensive activity model (OV-5), and
the Overlay would automatically generate the node connectivity description
(OV-2) and information exchange matrix (OV-3) with relatively little user
intervention. Although all data was stored in dBase III compatible formats, the
user would not fully appreciate the relationship among the data objects outside
of the diagrams. The information in SA definitions and diagrams could be
output to hard copy and, in some cases, to fairly-universal comma-separated-
value files or to hyper text markup language (HTML) for distribution and
viewing with a web browser.

SA stored all data used in the models as "definitions" and related all definitions
through a drawing interface. From the perspective of the operational views, the
relevant data objects were activities; nodes; the activities' inputs, outputs,
controls, and mechanisms (ICOM); information exchanges and, their attributes,

 3-3

processes, and rules. Nodes performed activities, and activities depended on
one another by either generating or consuming information "exchanges"
generated by other activities, described in the drawings as ICOM arrows
between activity boxes. The designers of the SA Overlay, however, seem to
have misinterpreted the Framework requirement for information exchanges.
Under the Framework, information elements (e.g., Air Tasking Order, mission
reports) are exchanged among activities depending on scenario-specific
attributes. So, for example the same report may be exchanged under two
separate scenarios, one routine, and the other emergency, each representing a
different exchange requirement. What makes the exchange different in this case
is not the information element (the report) but the conditions or attributes under
which it is exchanged. By contrast, SA associated each information element to
its attributes, "hardwiring" scenario and other situational attributes into each
element. By extension, this meant that you could no longer have, for instance,
one ATO broadcasted out because the conditions under which that ATO was
sent out (the attributes) had to be exactly the same for all receivers; otherwise,
the exchange would not be valid.

HQ USAF/XI tasked the AFC2ISRC, ESC, and AFCA with the development of
the Command and Control (C2) Constellation Architecture operational, systems,
and technical views, respectively, in three timeframes, all using the new tool.
Later, we found that the tool had not been tested in projects of the scale we were
dealing with, and, effectively, we had been tasked to develop a large-scale
architecture while testing a new tool, all within a tight schedule.

The remainder of this section and our lessons learned are based strictly on the
use of SA and it's Overlay (both terms used interchangeably throughout) to
develop the operational views, specifically those requiring data and the
depiction of the data in drawings.6

The tool (version 8.18, fully patched and updated) and a separate license
manager were installed in every architect's desktop system. Instead of
competing for licenses from a network server, this enabled off-network
development. Generally we found this to be the best option because the tool's
network performance and responsiveness were measured sometimes in tens of
minutes (vice seconds).7 As with past tools, CM was key, so very strict
procedures were established that enabled maximum autonomy for each architect
while protecting the integrity of the data.8

6 Graphical products like the OV-1 and SV-1 can be developed in SA. However, SA is not a drawing or
presentation tool so it allows for these products to be developed in another application (PowerPoint, Adobe
Photoshop, et al.) and pasted into SA. Generally this was a routine, non-controversial interface.
7 We were also aware of the difficulties that the AOC Weapons System Architecture Team had run into
when attempting to manage SA information over a network.
8 We found that SA provided very limited configuration management capabilities. A much-touted "check-
in/check-out" tool that enabled selective extractions of information for off-net development, SA performed
erratically and caused major tool crashes. We abandoned its use and also verified that it had been a major
trouble spot for other teams.

 3-4

The Constellation Architecture was based on the Monitor, Assess, Plan, and
Execute paradigm. Accordingly, one architect each was charged with
developing the model for each "branch" (M, A, P, and E) in a separate SA
model, or encyclopedia, to allow maximum flexibility. Other architects assisted
these branch architects with the contents of each branch and in reviewing the
overall consistency of the resulting integrated model.

Each branch architect was responsible for modeling the activity sequences
according to the agreed-upon context and rules, including inputs, outputs, and
controls; for following all IDEF0 rules (the modeling language used in the tool
for OV-5); and, for providing the CMgr with all the inputs, outputs, and controls
to be shown at the very top of the model. The inputs, outputs, and controls
(mechanisms were not modeled because they were to be designed by ESC),
represented information elements (IE) on a one-for-one basis. ICOMs and IEs
were reused throughout the model, reflecting the operational reality that most
exchanges of information among activities are a finite set that vary mostly in
their source and specific values at the time of the exchange. For instance, a
number of activity sequences would produce mission reports (MISREPs). It
would not have been faithful to the operational reality and the ultimate users of
the architecture if the model made an artificial distinction between the MISREP
filed by a sensing mission vice a bombing mission. When you do that, the
number of ICOMs and IEs balloons artificially and you are unable to illustrate
that common information is being exchanged by multiple activities. To cope
with the tool's apparent design flaw of tying scenario specifics to the
information elements, we decided not to complete the attribute-related
information with each element.

At the call of the CMgr, modeling of the branch activity sequence diagrams (the
"branch" OV-5s) would cease, and the branch models would be merged and
integrated at the two top levels. Once this was completed, the architects would
match previously defined operational nodes to the specific activities as the
executors of those actions. Because the OV-5 was focused on what was being
done, not who did it, it was quite possible that more than one actor performed a
sequence. Just as it is reasonable for an operational commander to have more
than one asset to interdict a target, it is equally reasonable to expect that a model
of that operational reality depict more than one actor for each activity sequence
where there's more than one asset that can perform it. Further, maintaining
fidelity to the operational reality ensured a common mission context that
enabled the architecture user to evaluate areas of duplication, commonality, or
collaboration among those actors.

The plan was that once the node assignments had been completed for an activity
sequence diagram at a particular timeframe, the branch architects would proceed
to develop the next timeframe's activity sequence diagram, while the CMgr
would concentrate on developing the node connectivity (OV-2) and information
exchange matrix (OV-3) for that timeframe using the tool's automated routines.
Here, unfortunately, the plan did not survive its contact with the vagaries of the

 3-5

tool. Refer to Appendix A for a detailed chronology of the
challenges encountered, which we will summarize below.

Assigning nodes to activity sequences is a feature of the Overlay in SA but it is
otherwise not found in IDEF0 (the tool's modeling language for OV-5s) because
the language focuses on functions, not on who performs them. The Overlay
matches nodes to activities as a way of creating the information exchanges
between nodes, exchanges that are assigned to needlines for the node
connectivity diagrams (OV-2) and the information exchange matrix (OV-3).

The Overlay's assignment of nodes was fairly basic: you assigned the node to
the activity and the tool assumed that all ICOMs impacting that activity
sequence were used by every single operational node/actor (CAOC, ASOC,
SPACE AOC, et al)9 chosen. For instance, if an activity had three inputs, two
outputs, and two nodes/actors performing it, the tool created a total of 12 unique
combinations of inputs, outputs, and nodes (3X2X2). The operational reality,
however, is more nuanced. Although multiple nodes may perform the same
sequence of activities, not all nodes will use all individual ICOMs to perform
those activities. In short, the totality of all ICOMs in the activity sequence
represented the superset of that used by all activities and associated nodes, not
necessarily what is used by a particular node-activity combination within it. If
the outputs of these 12 combinations were then the inputs to an additional 12
combinations of another activity, the Overlay would produce 144 (12X12)
information exchange combinations, each of which had to be manually
reviewed and validated. Further, if those 144 combinations were activities with
parent activities that in turn had a node assigned as well, the node-activity-
ICOM combinations resulting from ICOMs being "inherited" upward to the
parent would be added to the total number of node-activity combinations at the
parent, once again increasing the number of different combinations that had to
be reviewed and validated manually. In short, the Overlay did not seem to have
an automated feature to assign each node-activity to their relevant ICOMs as
you developed them; and it did not regulate the applicability of IDEF0 rules
(e.g., inheritance) to those features not supported by the language (e.g., node
assignment and its consequences in the presence of IDEF0 inheritance).

We also observed two problematic tool behaviors when generating the
information exchange requirements in those cases where the same information
was broadcasted from one activity to multiple receiving activities; and, where
the same ICOM/IE was reused throughout the model. In the case of
broadcasted information (e.g., ATO, ACO, STO),10 the tool would build an OV-
3 that listed the correct generating activity, node, and IE, but repeated the
receiving activities irrespective of the different receiving nodes. In the case of
reused IEs, the behavior was more erratic. The tool (SA & its Overlay) would

9 CAOC=Combined Air Operations Center, ASOC=Air Support Operations Center, SPACE AOC= Air
Force Space Command Aerospace Operations Center
10 ATO=Air Tasking Order, ACO=Airspace Control Order, STO=Space Tasking Order

 3-6

create information exchanges that were never shown or documented in the
drawings, often quintuplicating the number of exchanges. It would also create
needline relationships in the OV-2 that were not supported by the OV-5.
Finally, it would also document all the exchanges in the OV-3 without regard to
the specific sending and receiving activity pair, repeating every single sending
and receiving activity that exchanged a particular element, regardless of sending
or receiving node.

This is by no means a complete catalog of the tool or its limitations, just the
behaviors we were able to discover and work-around. Appendix A details our
efforts to work out solutions with Popkin and with the designer of the Overlay.
In general, we found that the Overlay treated information exchange
requirements (IER) not as a unique combination of sending node and activity,
receiving node and activity, and information element and attributes; but as a set
of combinations built "on the fly" by the tool through the association of all
activities inputting or outputting common information elements, with the nodes
added as associated data to the activities, not as potential determinants of the
uniqueness of the IER.

As the Constellation model grew, the sheer size and complexity of the model
combined with the tool's shortcomings nearly became showstoppers. This was
largely because the output of the tool could not be trusted, and there was so
much data to cull through and validate that all the productivity gains promised
by the tool were lost in the manual workarounds. What's more, the problems we
noted were widespread in other architectures published using this tool. We also
noted that the tool responded erratically when trying to develop an OV-5 Node
Tree diagram that approaches its maximum drawing area. The tool displays no
indication of drawing size and allows the user to work and save large diagrams.
However, if somehow this maximum size has been exceeded, the tool truncates
the "node tree," only displaying the top-level, context activity, and there is no
way of recovering the remaining activity tree. Reports to Popkin revealed this to
be a known bug for which the only solution is to purchase the upgraded version
of SA.

XI responded to some of these problems by developing an "extension" (add-on)
that attempted to overcome the limitations of the Overlay by establishing a new
information object called IEX that instantiated the correct interpretation of
information exchange requirements, i.e., a unique combination of sending node,
sending activity, receiving node, receiving activity, information element, and
situational attributes (criticality, timeliness, etc.), creating an unambiguous OV-
3 that nevertheless had to be validated because, – as said before, – not all nodes
assigned to an activity used all ICOMs. The extension had the additional
advantage of a set of reports that facilitated validating the information. It also
produced the information in a format that could be imported into a database and
analyzed with the ease of MS Access.

The extension could not make up for the limitations of the original tool.
Though the extension tried to create unique exchanges, several of the exchanges

 3-7

reported were not supported by the OV-5 (i.e., the tool got "creative") largely
because the extension could not address the internal workings of SA and its
Overlay where the relationships were built. We also found the extension
created or discovered additional limitations.

First, the extension seems to have "broken" the relationship between certain
operational and system views, limiting the tool's utility for integrated
development of the architectures. One of the touted advantages of using SA and
its Overlay was that the systems views could be built and associated with the
operational view objects within the same tool, ensuring integration and data
integrity. The extension, however, did away with the Overlay's incorrect design
of the IE, creating instead a new object called an IEX. IEXs did not have an
equivalent in the system view portions within the tool. This meant that system
information like that in the SV-6 that needed to be associated with an IE to
show its operational relevance no longer had a linking object in the operational
views.

Second, the extension may have discovered or added another inherent limitation
in terms of the overall amount of data that any SA/Overlay entity can store. The
underlying database in SA and, by implication, its Overlay does not seem to
store all information objects in a way that will facilitate their minute recall.
Each individual node is a separate record, but each activity performed by that
node is not. Instead, the activities are shown as a stack of textual values
assigned en masse to a particular node, unable to be individually queried. Each
operational activity may be individually queried in its own table, but not the
activity-node combination. In the case of activity values, each activity is listed
separately, but all nodes performing it are textual values, literally stacked within
the same field. The same situation is repeated with needlines, IEXs, and so
forth. The use of this technique of stacking associated values as text strings
instead of as separate records seems to run against an overall limit on the
number of characters that can be stored in any one text field (about 32KB).
Once you try to exceed this limit, the tool is unable to handle any more
information for that particular definition. With IEXs being the unique
combination of five values (sending node and activity, receiving node and
activity, and information element), the total number of IEXs that could be
supported without exceeding this 32KB character limit hovers around 400.
Although that number seems large, for a model as large as the Constellation,
this was modest at best and left hardly any room for growth. Without all IEXs
in the model, the OV-2 cannot be fully developed and the OV-3 can only be
developed and maintained manually. With a model the size of the Constellation
(information exchange requirements numbering in the thousands), these are
neither efficient nor effective options.

The extension also exhibited some erratic behaviors in the pairing of nodes to
activities. After nodes had been assigned to activities, the tool reported a
different set of activities per node than nodes per activities (instead of one being
the mirror of the other). To date, this behavior remains unexplained. Originally

 3-8

we thought we had been able to work around this problem by only allowing one
individual to assign all nodes to activities and manually verifying the results
afterwards. Once again, however, the workaround further drained productivity
from the overall development effort, eroding what little schedule was available
and, trading off the quality of the product for the schedule. Recently, however,
we have discovered that even when little or no work has been done recently on
the activity-to-node assignments, the tool somehow loses activity-to-node
pairings, apparently randomly.

To address some of these behaviors and limitations, the extension developer
recommended limiting node assignments to the "leaf node" within the OV-5 as
a way of reducing the number of information exchange requirements that had to
be validated and published in the OV-2 and OV-3. "Leaf node" is an IDEF0
artifact that refers to an activity that cannot be decomposed any further.
However, "leaf node" assignments, although indeed reducing the number of
information exchange requirements documented in OV-2s and OV-3s, lose all
semantic context because an activity that requires no further decomposition
("leaf node") is not generally descriptive enough to make the information
exchange requirement intelligible. For instance, if a parent activity is made of
three subactivities (the "leaf node" activities) that are not decomposed further,
it is reasonable to expect that each subactivity's content will only address one
component of the parent activity. Standing alone, each of these components
would seem like disconnected threads, missing a context. The OV-3 reports
exchanges between "stand-alone" activities; the OV-2 summarizes these
exchanges into needlines. Hence, if the activity is but a component of a larger
one, a node assigned to that activity under the "leaf node" principle would create
information exchange requirements that, - in the aggregate, - would make little
operational or semantic sense. Assigning operational nodes only to "leaf node"
activities is analogous to solving a sensor's processing limitations by
deliberately curtailing its field of view and range. In the presence of limited
input, the sensor's processor is able to cope, the processing problem is
mitigated, but so is the military utility of the sensor itself. Similarly, with the
architecture, the "leaf node" assignment does limit the number of invalid
information exchange requirements, but in the process limits the utility of the
architecture itself.

Lesson #T-1: Research tools' reputation with projects of your size
and complexity before spending funds or schedule on them.

No single tool is either perfect or fully able to comply with the C4ISR
Framework largely because many of the architecture products in the Framework
cut across modeling language lines and scopes. Modeling also tends to be
limited in scope and scale, so it will not be easy to find strong analogs to any of
the defense domains.

Metrics & Mitigation: Ensure that you are empowered to engage the tool
vendors directly. Ask for references that you can engage. Shy away from
vendors who push more their consulting services than their tool. Also, shy

 3-9

away from vendors who are unwilling to share valued references. If you have
the time and the information, seek references in the defense environment.
Absent a defense or aerospace customer, seek customer references in the supply
and financial industries (large-scale exemplars) as both tend to have the
diversity, scale, and sensitivity requirements that mimic the defense domain.
Take the time to interview those customers. Think broadly! You may have to
apply what you learn by analogy to your architecture's purpose and scope. Do
not think in terms of one tool for all your needs – none exists.
Consider, instead a suite of tools that will enable you to complete the project
quickly and cost-effectively.

Lesson #T-2: Choose a bias in your modeling and stick with it.

As mentioned before, no single modeling language will satisfy the requirements
of the C4ISR Framework. In fact, SA directs the C4ISR architecture developer
to use "all methodologies" (see tool browser). You are, in fact, extending the
language rules to serve the particular purpose of creating a Framework product.
Once you leave the bounds of the modeling language rules, there are few rules
to serve as a common reference; hence, you need to make some of your own.

Metrics & Mitigation: We strongly recommend that your first rule should be
to set a bias in your modeling and stick to it, similar to the "bias" you create
when you choose a certain a scope. You will run into situations where the
"rules" of the modeling language or methodology conflict with what you are
trying to model (see the previous "leaf node" discussion). In such cases, you
will need to decide what is more important, those modeling rules or the scope of
your architecture. Choose carefully and consistently because, unfortunately,
you will find the architecture judged not only on its operational fidelity and
value, but also on your adherence to the modeling language and methodology,
especially by those who do not have any inkling of the operational environment
you are modeling but must nevertheless express an opinion on the quality of the
model. In the case of the C2 Constellation, we chose to maintain close fidelity
to the operational "reality" we were trying to model, and to do so often in spite
of the limits of the modeling language. In short, we were willing to trade the
endorsement of modeling "experts" for that of the operator who may ultimately
be the architecture user.

Lesson #T-3: Get ready for the "experts" and their "assistance."

Once you begin developing the architecture, you will be offered more "advice"
and "assistance" than the President in picking a Cabinet. With "advice" and
"assistance" comes influence, which may add to or erode from your
architecture's purpose and scope. Deciding whether the assistance is useful takes
time, time your schedule may not permit. The situation is very similar to the
quandary of software reuse: advocates believe it actually saves time to use
someone else's developed and tested code; detractors, on the other hand, assert
that the time saved in coding is more than outweighed by the time spent finding
out if the "borrowed" code can be reused.

 3-10

Metrics & Mitigation: Be ready and receptive to advice and assistance;
however, ask for the help to be matched by a willingness and ability to work to
implement the advice. Ensure that your communications plan promoting the
architecture highlights your openness and willingness to listen to expert advice,
and your offer of a partnership with those experts to work together on – not
merely pontificate about – the architecture and its development. Beware of
those who try to reinterpret (change) your architecture's purpose and scope to fit
their advice.

Lesson #T-4: Apply strong configuration management.

Just as strong CM is necessary to maintain the integrity of the data making the
architecture, CM is also essential to properly applying any tools used to develop
the architecture. CM is necessary to ensure that all architects maintain the same
version of the tool, to exchange any data in the same and controlled manner (to
avoid overwrites) and to maintain a minute watch on the schedule and
workload.

Metrics & Mitigation: See lesson #P-7. Also, ensure that the person you
designate to be your CMgr:

• Is formally trained on CM.

• Obtains any advanced training on the tool you are using before anyone
else in your team so he or she can guide the team in the most efficient use
of the tool.

• Becomes the tester of any new version or patches on the tool prior to
anyone else in the team.

• Maintains an active exchange and, – if possible, – personal contact with
the tool's vendor, its developers, and other project CMgrs, contacts that
may help the architecture team avoid the pitfalls others discover in their
projects.

Lesson #T-5: Few, if any, architecture development tools consider or
contain security features. Seek tools and vendors that implement
security. If the vendor does not directly implement security as a part
of the tool, determine the compatibility of third-party security tools,
such as encryption engines and access control tools. Barring that,
develop a set of security practices for tool use that protect the
resulting data.

Out of our contacts with tool vendors an interesting pattern emerged: – none of
the tools had any security features and the toolmakers considered security an
external, environmental requirement independent of their tool. We believe this
is bound to change in the future as the business sector continues to realize the
importance of protecting its data from unauthorized access if nothing else from
a business intelligence perspective. The national security community cannot
wait, especially because of OMB policy and the statutory requirements of the

 3-11

FISMA. In the meantime, however, we have found SA is not compatible with
third-party access control tools, and is also incompatible with any third-party
encryption engines. We also suspect that the version of SA we used (V8.18)
will not allow data to be encrypted in-residence and is not compatible with
“encrypt-decrypt on the fly” schemes that would help shore up any access
weaknesses.

Metrics & Mitigation: As an integral part of the architecture project
planning, develop a set of project-specific security policies and practices that
include tool use and protection of the resulting data. For instance, control
access to the architecture information by knowing who is seeking access and
deliberately granting access to the information. Ensure that all those granted
access understand the security rules you have established for data development,
release, copying, and so on. Other policies should control distribution, control,
and audit of the information. (See Appendix B)

Lesson #T-6: Generally, architecture tool outputs have very poor
presentation quality and lack the information to place the depictions
within a larger context understandable by the uninitiated. Therefore,
plan on having more than one tool to develop and present your
architecture. Also, plan on supplementing the architecture outputs
with a "front-end" presentation that introduces the architecture.

Ideally sponsors and users should not be concerned with the internals of the
architecture, its detailed views and data. Their focus should be on application
of the architecture and its results within the architecture's purpose.
Unfortunately architecture development represents such an investment that no
sponsor is willing to limit itself to results and not "look under the hood" (see
lesson #P-10). Generally, when a sponsor is exposed to the details of
architecting and its outputs –what some call "sausage making"– they are
repelled by the need to learn a new language and symbology, all while
evaluating the substance of what is being modeled. Hence, the quandary:
sponsors wanting to look and understand the details, but refusing to be bothered
with learning the new language that enables that understanding.

Metrics & Mitigation: Plan on having a variety of tools for architecture
development – at the very least two – one to develop, the other to present the
architecture. Also, develop a strategy to bridge the conflicting demands of the
sponsor, i.e., wanting to look into the architecture and immediately
understanding its contents without learning the details of the language.
Consider developing a front-end program to unify the presentation of your
architecture models. This front-end program supplements terse models with
textual explanations and builds an understandable context that enables the user
or sponsor to gain an appreciation for what the models depict and its
complexity. The front end could also be useful to place the architecture within
the larger context of other efforts to enhance combat capabilities as well as a
means of introducing the architecture with a presentation from the sponsor.
Regardless of the strategy chosen, however, count on the fact that the innards of

 3-12

an architecture will look unintelligible to your sponsor unless you do something
extra to place them in context. And, often, that "extra" requires a separate set of
tools because the architecture development tools are extremely poor at
presenting the information.

Appendices:

A. Chronology of Problems with SA

B. Protection of Enterprise Architecture Tools and Dat

 3-13

	Executive Summary
	Architecture Development Process
	Architecture Development Tools

