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ABSTRACT: Many applications of mobile ad hoc 
networks require real-time data consistency among the 
moving nodes within a geographical area of interest to 
function correctly, e.g., battlefield command and control 
applications. While it is operationally desirable to 
maintain data consistency among nodes within a large 
geographical area, the time required to propagate state 
changes to all mobile nodes in that geographical area 
limits its size. This paper investigates the notion of 
location-based data consistency in mobile ad hoc 
networks, and analyzes the tradeoff between data 
consistency and timeliness of data exchange among nodes 
within a location-based group in a geographical area of 
interest. By utilizing a Petri net performance model, we 
analyze performance characteristics of location-based 
data consistency maintenance algorithms and identify 
design conditions under which the system can best 
tradeoff consistency for timeliness (reflecting the time to 
propagate a state change) while satisfying the imposed 
data consistency requirement, when given a set of 
parameters characterizing the application in the 
underlying mobile ad hoc network environment.  

1. Introduction 

Many applications operate in mobile ad hoc networking 
environments with no fixed infrastructure connecting 
mobile nodes in the field. Many of these applications 
require that nodes have some degree of data consistency 
within a community of interest for them to function 
correctly. An example is a battlefield application in which 
nodes within a geographical area of interest must have 
consistent data structures that contain kinematic and other 
characteristic state data that describes friendly, enemy, 
and neutral aerospace objects to satisfy the command and 
control functionality requirements. Such an ad hoc 
environment is characterized by mobile nodes, multi-hop 
routing, planned and unplanned node disconnection, node 
failure, relatively low communication system throughput, 
and unreliable communication. Node mobility is a 
particular challenge because mobility translates into 
multi-hop network topology changes, which are reflected 

in frequent packet route changes and network partitions. 
The physical environment exacerbates the challenges 
caused by node mobility; by nature of their mobility, 
nodes can be expected to exploit cultural and natural 
features of the physical environment (e.g., taking shelter 
in buildings, maneuvering around hills) that will have a 
deleterious effect on communication. 

The problem we are addressing in this paper is analyzing 
performance characteristics of algorithms for maintaining 
“location-based data consistency” among a group of 
nodes in a mobile ad hoc environment for applications 
that require location-based data consistency, e.g., the 
DoD Single Air Integrated Picture (SIAP) project that 
requires all mobile nodes to maintain a consistent view of 
tracked objects for combat missions [2]. It is well known 
that the problem of reaching an agreement (“consensus”) 
among all nodes in asynchronous distributed systems in 
the presence of failures is deterministically non-solvable 
even if communication is reliable and at most one peer 
may crash [3]. A less constrained problem, known as the 
group membership consistency for maintaining a “single 
agreed view” of the group membership among all peers, 
was also shown to be non-solvable in asynchronous 
distributed systems where communication is reliable and 
at most one peer may crash [1]. The notion of location-
based data consistency considered in the paper does not 
require a “single agreed view” to be maintained (for 
which there is no solution). Rather, it allows mobile nodes 
to join and leave location-based groups, allowing multiple 
data views to coexist in different location-based groups as 
long as nodes within the same group have the same view 
of data. This requirement, although less strong in data 
consistency, is very useful for battlefield applications 
where data carry geographical meanings, e.g., tracking 
friend or foe objects entering, traveling and leaving a 
geographical area by all units in the area. 

The general problem of group communication in mobile 
ad hoc wireless networks to maintain consistent group 
membership and, as an extension, to maintain data 
consistency among members of a group is a relatively 
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new research area. Killijian et al. [5] introduced the 
definition of proximity group communication in which 
group membership depends on location. They associated 
each proximity group with a static or mobile area of 
interest within which the group members should be 
located. They gave a sketch of using a partition 
anticipator executed on every node to detect suspicious 
partitioning events of a proximity group due to node and 
link failures in order to take preventive actions for 
consistency group membership maintenance. However, 
no concrete mechanisms were given by which the 
partition anticipator may be implemented. Roman et al. 
[4, 7] use the idea of safe distance for implementing 
consistent group membership wherein membership is 
based on the location information of mobile nodes. The 
basic idea is to group nodes logically connected within a 
safe distance ("close enough") in a geographic area and to 
perform membership-change operations atomically as 
nodes move in and out of the geographic area. Physical 
connections that are susceptible to disconnection are 
considered as announced disconnections so the system 
can perform membership change in one indivisible 
operation to ensure group membership consistency. In this 
way, a group expands and contracts atomically, 
preserving consistent group membership. However, their 
safe distance-based algorithm is based on the somewhat 
unrealistic assumption that disconnections are only caused 
by node movements, so the algorithm breaks when 
disconnections are caused by node failures.  

In this paper, we utilize the concept of partitionable group 
membership for achieving location-based data 
consistency in ad hoc systems so that each member in a 
location-based group has knowledge of other members in 
its group and that such knowledge would be consistent 
across the entire group [4, 7]. However, instead of 
maintaining membership consistency all the time by using 
the concept of safe distance, we allow temporary 
inconsistency to exist during membership changes to 
tradeoff consistency for timeliness. The degree of 
inconsistency is bounded by the way we check and 
perform membership changes as a result of nodes leaving 
and joining location-based groups, the rate of which can 
be adjusted to satisfy the data consistency requirement of 
the application.  

One key design issue for maintaining location-based data 
consistency within a geographical community of interest 
is to determine the “logical size” of each geographical 
area. The size directly impacts the time taken for 
achieving data consistency among members within a 
geographical area, thus reflecting the bound on data 
consistency. The optimal size is affected by 
environmental conditions characterized by mobility rate 
(for mobile units in and out of an area), node failure rate, 
membership-change detection rate, data change rate (e.g., 

for tracking objects entering, traversing and exiting the 
area), etc. A smaller area incurs a lower latency for 
message transfer because fewer hops are required but 
incurs a higher overhead for membership change 
operations because of a higher rate of members leaving 
and joining geographically smaller areas. Thus when 
mobile hosts have low mobility rates, it may dictate a 
smaller geographical area. On the other hand, a larger 
area incurs a higher latency for data change operations 
because of more hops in the larger geographical area but 
incurs a lower overhead for operations associated with 
consistent group membership maintenance due to node 
mobility/failure events. Thus there exists an optimal size, 
when given a set of parameters characterizing the mobile 
application in the underlying ad hoc network 
environment. In this paper, we aim to analyze 
performance characteristics of location-based data 
consistency maintenance algorithms in terms of the 
optimal size that can best tradeoff consistency for 
timeliness (reflecting the time to propagate a state change) 
while satisfying the imposed data consistency 
requirement.  

2. System Model 
We assume a mobile ad hoc network consisting of one or 
more peers. The network is heterogeneous, with peers in 
the system having greatly different capabilities. For a 
battlefield application, for example, one end of the 
capability spectrum is represented by large command and 
control nodes (mobile or fixed), such as an aircraft carrier 
or fixed surface-to-air missile site. At the other end of the 
spectrum we find human-portable devices or pilot-less 
vehicles with more modest command and control 
capabilities. Each peer has one or more communication 
devices and may have organic sensors whose data is 
shared with other peers in the distributed system. 
Additionally, each peer has one database in which sensor 
and other state data is stored.  

2.1 Geographical Community of Interest  

The notion of location-based data consistency considered 
in this work is based on the concept of a geographical 
community of interest. This concept allows us to move 
from a requirement for data consistency among all peers 
in the system (which is not achievable) to a requirement 
for data consistency only among peers who belong to the 
same geographical community of interest. We also note 
that in battlefield applications, as in any other problem-
solving, team-oriented application, it is more important 
(in most cases) to have greater consistency with nearby 
peers than with ones farther away. In this paper we will 
use the terms “geographical community of interest” and 
“location-based group” (or just “group” for short) 
interchangeably.  



The state of the mobile application is characterized by the 
values of state variables (e.g., track objects in the example 
battlefield application) maintained by peers in the system. 
The location-based data consistency requirement means 
that all the peers within the same geographical community 
of interest will have the same values for state variables.  

The area of a geographical community of interest can be 
modeled many ways. We can divide the terrain into 
geometric shapes like squares or hexagons. Figure 1 is a 
coverage model showing three possible ring sizes for 
modeling a geographical community of interest based on 
hexagons, i.e., covering 1, 7 and 19 hexagons, 
respectively by ring 0, ring 1 and ring 2. The size of each 
geographical community of interest may vary depending 
on the operating conditions. For example, if the mobility 
rate is low for most mobile hosts, then the size can be 
small to optimize the performance.  

 

Figure 1: A Representation of a Geographical Area 
based on a Hexagonal Coverage Model. 

2.2 Location-based Group Membership and Data 
Consistency Algorithm 

We assume that each mobile host has a unique host 
identifier and is equipped with location sensing devices 
such as a Global Positioning System (GPS) receiver, so it 
can determine its own location as well as reason about its 
location relative to the locations of its neighbors within 
radio range. For a geographical community of interest 
identified by a group identifier, if the cardinality of the 
membership set (containing members that are connected 
in the ad hoc environment) is not zero, the mobile host 
with the smallest host identifier will be elected as the 
leader. The leader broadcasts its presence within the 
community of interest periodically. Should the leader fail, 
the failure event will be detected and a re-election 
protocol will be followed to select a new leader. If two or 
more leaders announce their presence, the leader with the 
smallest host identifier wins and the rest will relinquish 
their roles.The group discovery protocol is location-based. 
When a mobile host moves out of a geographical 
community of interest, it voluntarily informs the group 

leader of its departure, who in turn will perform a 
membership change operation to exclude the host in the 
group. Conversely, when a mobile host enters a new 
geographical area of interest, it broadcasts a hello 
message containing its location information and host 
identifier to discover the new location-based group to 
join. When a host, say A, receives a hello message from 
host B, it informs the corresponding group leader which 
in turn will perform a membership change operation to 
include B in the group. If the leader receives multiple 
messages regarding B’s new membership, it accepts the 
first and ignores the rest.  

Each mobile host also periodically sends an update 
message to the leader regarding its location and identifier 
so the leader is aware of who are still within the 
community of interest. When the leader detects that a 
member mobile host has not sent its update message, it 
assumes that the member has been disconnected either 
due to mobility or failure and will remove the mobile host 
from the group membership. A mobile host can always 
send a hello message to request for membership 
reinstatement if it suspects that it has been removed from 
the group membership by the leader. This periodic 
maintenance event thus allows the leader to actively 
gather information regarding new and missing members 
to maintain consistent group membership. 

Within a geographical community of interest, if there is a 
state change detected by any member in the group (e.g., a 
hostile object approaching), the member will send a 
message to the leader which in turn will forward the 
message to all members in the group. A multicast tree is 
built dynamically to permit the leader to reach all 
members more efficiently, reliably, and securely. 

2.3. Traffic Model and Performance Metric 

We assume that each mobile host has its own distinct 
mobility rate in and out of geographical communities 
(groups) of interest. For example, helicopters move faster 
than tanks which in turn move faster than human beings 
in general. We assume that the terrain is virtually 
partitioned into equal-area regions (e.g., hexagons) for 
ease of analysis and presentation as shown in Figure 1. 
Let the mobility rate of mobile host i be σι moving in and 
out these regions. Each mobile host also has its own 
distinct failure rate. Let the failure rate of mobile host i be 
φι. Following the group membership protocol described 
earlier, let T be the time period between which each 
mobile host sends its location information and identifier 
to the leader in an update message. The time required for 
the leader to perform a membership change operation 
depends on the size of the geographical area. Let µmc(n) be 
the rate at which a membership change operation is 
executed in a geographical community of interest with a 



ring size of n (see Figure 1 for illustration), including the 
time to rebuild a multicast tree by the leader. Similarly the 
time required for the leader to perform a state update 
operation also depends on the size of the geographical 
area. Let µu(n) be the rate at which the leader can 
propagate an update to members within a geographical 
community of interest of size n where n is the ring size of 
the geographical community of interest. Finally, as a 
larger geographical community of interest is likely to 
maintain a larger set of state variables (e.g., sensor data in 
the example battlefield application), let δ(n) be this 
sensor-update rate with n again the ring size of the 
geographical community of interest. This data update rate 
also depends on the objects to be tracked, for example, the 
data update rate to track a theater ballistic missile is 
generally different than that required to track an air-
breathing missile or aircraft. Later in the paper we will 
show how these parameters can be parameterized (i.e., be 
given values) properly reflecting the design choice such 
as the size of a geographical area of interest.  

Our performance metrics of interest would measure 
“timeliness” and “consistency” of state information 
distributed to members within the geographical 
community of interest. The timeliness metric is measured 
by the response time R required to achieve data 
consistency whenever there is a state change detected by 
any member within a geographical area of interest. On the 
other hand, the consistency metric is measured by the 
proportion of time the system is in a consistent state, 
which can be broken up into two measures. The first 
measure PTm  is the proportion of time the group 
membership is consistent, while the second measure PTmd 
is the proportion of time both membership and state data 
are consistent among the node members of a location-
based group. Our goal is to satisfy the response time 
requirement while making the consistency measures as 
high as possible. When there is a constraint in the 
consistency requirement, the goal is to minimize the 
response time measure by identifying the best 
geographical community of interest area size while 
satisfying the imposed consistency requirement, when 
given a set of model parameters identified and 
parameterized characterizing the operational conditions of 
the mobile application in ad hoc networking 
environments.  

3. Performance Model 

In this Section, we develop a Stochastic Petri net (SPN) 
performance model to describe the behavior of a mobile 
application operating under the location-based data 
consistency algorithm described earlier in Section 2. Later 
in Section 4 we will utilize this performance model to 
calculate the timeliness and data consistency metrics to 

analyze the tradeoff between data consistency and 
timeliness, given a set of parameter values characterizing 
a given mobile ad hoc environment.  

 

Figure 2: Petri Net Model for Location-Based Data 
Consistency Algorithm. 

Figure 2 shows an SPN model for describing the behavior 
of the system operating under the location-based 
membership and data consistency protocol within a 
geographical area of interest of size n. The SPN model 
can be viewed as a continuous-time finite state machine 
which reacts to system events that occur in the system. 
There are 3 places in the Petri net model, with “C” 
standing for the state in which the system is consistent in 
membership, “IC” standing the state in which the system 
is inconsistent in membership due to nodes moving in and 
out of the geographical area of interest, and “ICf” 
standing for the state in which the system is inconsistent 
in membership due to unannounced node failures or 
disconnections. Initially the system is in a consistent state, 
represented by having a token deposited in place “C”. We 
use the place at which the token resides to represent the 
current state of the system as time progresses, so the 
initial state is “C” as the token is initially placed there. 

Whenever there is a membership change due to arrivals 
and departures of mobile nodes in and out of the 
geographical area of interest of size n with rate µ mc(n), 
the system migrates from state “C” and state “IC”. Our 
algorithm requires mobile hosts to inform the leader of 
the membership changes when they move in and out of 
the location-based group of size n, the discovery rate of 
which is µmc(n). After a membership change detection 
event occurs, the leader then sends a membership update 
operation to all members in the location-based group, the 
rate of which is the same as that for the state-update 
operation, i.e., µu(n). These behaviors are captured by the 
two transitions in the upper part of the SPN model with 
rates µmc(n) and µu(n), respectively. Note that the token 
flows from state “C” to state “IC” and then to state “C” 
again, reflecting that a membership update event is taken 

IC 

λf (n) 

ICf 

C 
µ u (n) 

1/Τ 
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sequentially following a membership change detection 
event. 

Whenever there is a membership change due to 
unannounced failure or disconnection of mobile nodes 
with rate λf (n), the system migrates from state “C” to 
state “ICf”. This event is modeled by a lower right 
transition in the SPN model with rate λf (n). Periodically, 
the leader will collect and analyze beacon messages sent 
from mobile members of the location-based group and 
detect if any member needs to be removed from the 
membership because of unannounced failure or 
disconnection events. Consequently, any unannounced 
failure or disconnection will be detected by the system 
after a period of time T has elapsed. This detection event 
is modeled by the lower left transition with a 
deterministic time period T. Afterward the token flows to 
place “IC” in which the system performs a membership 
change operation with rate µu(n) again to bring the group 
membership consistent. The last event is modeled by 
having the token flow from place “IC” to place “C” 
through a transition with rate µu(n) to inform all members 
of the membership change.  

Note that “ data change” events are not modeled in the 
SPN model as one can image emanating from each state, 
whenever there is a state change due to sensor detection 
with rate δ(n), the system will migrate to another state in 
which the system will propagate the data update from the 
mobile user detecting the data change (through sensors 
presumably) to the leader and then from the leader to all 
mobile nodes in the location-based group using the 
multicast tree maintained by the leader with the rate of 
data propagation being µ u(n). To avoid clutter, we do not 
explicitly model this behavior in the SPN model and 
instead will consider it through probabilistic arguments 
when we later derive expressions for computing the 
consistency and timeliness performance metrics.  

The system evolves over three states, namely, “C”, “IC” 
and “ICf”, as time progresses. Thus, there exists a steady-
state probability that the system can be found in one of 
the three states. Let PC, PIC, PICf be the steady state 
probabilities of states “C”, “IC”, and “ICf” respectively, 
which can be obtained by evaluating the SPN model 
constructed after model parameters are parameterized 
(i.e., given specific values) characterizing environment- 
and application-specific operating conditions. Then we 
can calculate consistency metrics, i.e., PTm  and PTmd, as 
follows: 

PTm = PC    (1) 

PTmd  = µ u(n) PC  / (µ u(n) +δ(n))  (2) 

Equation (1) above gives the proportion of time the 
system is consistent in membership, which is exactly the 
same as the equilibrium probability that the system is 
found in state “C”. Equation (2) gives the proportion of 
time the system is consistent in both data and 
membership, which is equal to the equilibrium probability 
that the system is found in state “C” multiplied with the 
probability that the system is consistent in data, given that 
the system is consistent in membership. This can be 
reasoned by considering splitting state “C” into two states 
“C1” and “C2” such that “C1” is a state that is consistent 
in both membership and data while state “C2” is a state 
that is consistent in membership only because a data 
update propagation operation is still taking place. If one 
draws a two-state model with “C1” and “C2” such that the 
rate from “C1” to “C2” is δ(n) for the data-change 
transition (due to sensing) while the rate from “C2” to 
“C1” is µu(n) for the data-update transition (for 
propagating updated data to members), then one will see 
that the probability that the system is consistent in both 
membership and data, i.e., in state “C1”, given that it is in 
state “C”, is equal to µ u(n) / (µ u(n) +δ(n)). 

The timeliness metric can be calculated by the average of 
the response times obtained in various states weighted by 
their respective state probabilities, i.e., 

R = (PC  + PICf )/µ u(n) +  PIC (1/µ u(n) + 1/µ u(n)) (3) 

Here the first term accounts for the response time when 
the system is in either state “C” or state “ICf”, which 
incurs an average update propagation time of 1/µu(n), 
while the second term accounts for the response time 
when the system is in state “IC” which incurs a waiting 
time of 1/µu(n) to account for the extra time required to 
process the membership change operation before taking 
another 1/µu(n) time to process the data propagation 
operation by the system (leader). Here we note that while 
the system is in state “ICf”, the leader will only propagate 
data to members inconsistently since in state “ICf” the 
system is in a state in which the leader is not aware of the 
fact that the group membership is inconsistent. Contrarily, 
the system is fully aware of its membership inconsistency 
in state “IC”, in which case the leader is in the process of 
performing a membership change operation, so a data 
propagation operation newly arriving must wait for the 
membership operation to execute to completion before 
being processed by the leader, thus incurring a waiting 
time to the response time.  

We also note that when T is small, the probability of the 
system found in state “ICf” will be small since the 
moment the system is in state “ICf” it will transit to state 
“IC” quickly in which a membership change operation 
will be executed to maintain membership consistency. 



Thus a small T improves membership and data 
consistency while compromising the response time 
performance metric, and vice versa, and there exists a 
tradeoff between the consistency metrics (as given by 
Equations (1) ad (2)) and the timeliness metric (as given 
by Equation (3)). 

4. Analysis 

4.1 Parameterization 

Consider a mobile ad hoc network modeled by a 
hexagonal network coverage model as illustrated in 
Figure 1 with the center region in ring 0. Also consider a 
location-based group with a geographical area of interest 
of size n covering ring 0 through ring n-1. For a mobile 
node, say, node i,  in the area, let λn

i be the “outward” 
mobility rate of mobile node i to go out of ring n into ring 
n+1 and µn

i be the “inward” mobility rate of the mobile 
node to go out of ring n into ring n-1.  

The specific values of λn
i and µn

i for mobile node i 
depend on the semantics of the mobile applications and 
the mobility model of the mobile node. As an example, 
consider the node follows a random walk mobility model. 
It can be shown that [6] when a mobile node is in ring n, 
the probabilities of the mobile node with random walk 
moving outward to ring n+1, moving inward to ring n-1, 
and staying within ring n, upon a movement out of a 
hexagon region, denoted by Pomove, Pimove and Psmove, 
respectively, are given by:  
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Let σι represent the user mobility rate of mobile node i 
moving across hexagonal areas. Again let λn

i be the 
outward mobility rate of mobile node i to go out of ring n 
into ring n+1 and µn

i be the inward mobility rate of the 
mobile node to go out of ring n into ring n-1. Then, 

⎪⎩

⎪
⎨
⎧

−
=

=

⎪⎩

⎪
⎨
⎧

+
=

=

otherwise
n

n
nif

otherwise
n

n
nif

i

n
i

i

i
n
i

σµ

σ

σ
λ

6
12

00
6

12
0

  (5) 

Now consider that the mobile ad hoc network is 
populated with mobile nodes with an average density of 
Mi users per hexagonal area located at ring i. For the 
uniform density case, all Mi‘s are the same, say, equal to 
M0. The more reasonable case is that there are more 
mobile nodes close to the center of the geographical area 
(since they are interested in the area and are members of 
the location-based group) and less nodes as we move 
further away from the center of the geographical area. 
This inhomogeneous density distribution can be modeled 
by a population function with an exponential decay 
behavior. Let M0 be the density of the center hexagon in a 
geographical area of interest, then Mi is given by: 

ii b
M

M 0=     (6) 

Here b is the population decay parameter whose 
magnitude represents how fast the population density 
decays as we move away from the center of attention in 
the geographical area, with the special case b=1 being the 
uniform density case. Since a geographical area of interest 
of size n contains 3n2 – 3n + 1 hexagons, so there are 
(3(n+1)2 – 3(n+1) + 1) – (3n2 – 3n + 1) = 6n hexagons 
in ring n, with n>0. For example, ring 0 contains 1, ring 1 
contains 6 and ring 2 contains 12 hexagons, and so on. 
Since only nodes in ring n moving inward to ring n-1 and 
nodes in ring n-1 moving outward to ring n will trigger a 
location-based membership change operation, the overall 
rate at which all the mobile nodes will trigger a 
membership change for a geographical area of interest of 
size n (consisting of ring 0 to ring n-1) due to mobility, 
defined as µ,mc(n), is given by: 

n
n

n
nmc nMMnn µλµ 6)1(6)( 1

1 +−= −
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Here the first term accounts for the rate at which mobile 
nodes move out of the geographical area of interest of size 
n, and the second term accounts for the rate at which 
mobile nodes move into the area, both triggering a 
membership change operation. Note that we have dropped 
the subscript i from λn

i and µn
i to refer to the fact we have 

considered all mobile nodes in Equation (6). 

Since a geographical area of interest of size n on average 
will contain M0+6M1+12M2+ … + 6(n-1)Mn-1 mobile 
nodes, the rate at which mobile users within a 
geographical area of interest of size n fail or disconnect 
unannounced, λf (n), is given by: 
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The time for a leader to propagate a state-update 
operation or a membership change operation to all 
members in the geographical area depends on if the 
propagation method is broadcast-based or multicast-
based. Suppose that we adopt multicast-based for the sake 
of security. Then the propagation time depends on the 
number of members in the group and the way the leader 
builds the multicast tree to reach all members. Assume a 
perfect balance tree. Then on average it takes 
log2 )6(

1

1
0 j

n

j

jMM ∑
−

=

+ hops to reach all members and the 

communication time per hop is τ  depending on the 
underlying communication technology deployed in the ad 
hoc network. Consequently, the rate at which the leader 
performs a state-update operation to all members in the 
location-based group of size n, µu(n),  is given by: 
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Equations (5), (6), (7), (8) and (9) thus parameterize 
model parameters µmc(n), λf (n) and µu(n) once we are 
given values of basic parameters M0 and b (density of 
mobile nodes), σ (mobility rate per node), φ (failure rate 
per mobile node) and τ (communication delay per hop) 
characterizing the network and application operating 
conditions. 

4.2 Numerical Data  

Here we present numerical data obtained from evaluating 
the Petri net model developed using SPNP [8] based on 
Equation (1), (2) and (3) to show design tradeoffs 
between the timeliness (R) and consistency metrics (PTm  
and  PTmd) obtained, as a result of applying our location-
based data consistency algorithm in mobile ad hoc 
networking environments. The set of parameters 
characterizing the mobile application in the underlying ad 
hoc network environment is given by τ=1, M0=2, b=4, 
δ(n)=0.01, σ=0.05, φ=0.001, T=5. These parameters are 
normalized with respect to τ=1 (hop-by-hop delay) for 
ease of presenatation, e.g., φ=0.001 means that the failure 
rate on average is once per 1000τ, and T=5 means that the 
periodic check is about once every 5τ  period. We will 
analyze the effects of some of these parameters in the 
paper by changing their values to observe their impacts on 
R, PTm  and  PTmd obtained. Figures 3 and 4 show the 
consistency metrics PTm  and PTmd verse the size of 
geographical area of a location-based group. Unlike the 
timeliness metric which monotonically increases with n, 
we observe that there exists an optimal n, say, nopt, at 
which the consistency metric is maximized. For example, 

when b=1 or 2, nopt=2, when b=4, nopt=4 and when b=8 or 
16, nopt,=3 in both Figures 3 and 4.  
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Figure 3: Membership Consistency (PTm ) vs. 
Geographical Area Size (n).  
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Figure 4: Membership and Data Consistency (PTmd ) 
vs. Geographical Area Size (n).  

The reason that an optimal area size exists for maximizing 
membership and data consistency is that membership 
inconsistency is attributed to the system being in state 
“IC” due to mobility events for nodes in and out of the 
group, and also in state “ICf” due to failure events for 
member nodes. The rate of node failure events is directly 
proportional to the number of member nodes in the 
location-based group. Thus, as n increases, more failure 
events are likely to occur as there are more member nodes 
in the group. On the other hand, the rate at which mobility 
events occur due to nodes moving into and out of the 
geographical area is not necessarily proportional to n. For 
the inhomogeneous population model defined by 
Equation (5), the rate of membership changes induced by 
user mobility actually decreases as n increases when b>2, 
because there are fewer nodes residing at the outer 
hexagons (due to exponential population decay) as we 
move away from the center hexagon of the location-based 
group, so most nodes in the group are likely to be 
contained within the area when n is large. These two 
effects counterbalance each other, thus resulting in an 



optimal area size that maximizes the membership and data 
consistency metrics. 
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Figure 5:  Effect of T on Membership Consistency 
(PTm ) and Optimal nopt. 

At a large group size (i.e., a large n) we can expect that 
practically there will be little mobility-induced 
membership changes since all mobile nodes would be 
reasonably contained within the area most of the time if 
b>2. Most membership change operations incurred in this 
case would be due to node failures whose rate increases as 
n increases. Figure 5 shows the effect of T on the optimal 
size nopt for membership consistency. (The graph for the 
effect of T on the optimal size nopt for both membership 
and data consistency exhibits the same trend and is not 
shown to avoid clutter.) We see that for the same 
operational condition (b=4 is chosen as the example), as T 
decreases nopt increases, e.g., nopt goes from 1 to 4 as T 
goes from 10τ to τ, because with a smaller T, membership 
changes due to node failures can be performed more 
rapidly, thus favoring a larger area for which membership 
changes are mostly due to node failures.  
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Figure 6: Pronounced Adverse Effect of T on R at 
High Failure Rate (φ). 

With the above analysis, we know that we could achieve 
reasonably high membership consistency with a large 
geographical area size n, and a small T. Unfortunately, 
both a large n and a small T adversely degrade the 

response time metric. A more frequent periodic detection 
activity (i.e., a smaller T) degrades the response time 
metric more because more time will be spent by the leader 
to do membership maintenance induced by node failures, 
thus causing any concurrent state-change operation to be 
delayed. Isolating out n=3 as a case study, Figure 6 shows 
that the adverse effect of T on R is especially pronounced 
when the failure rate (φ) is high at which the leader must 
perform failure-induced membership change operations 
very frequently in order to maintain membership 
consistency, thus causing a high delay in the response 
time per state-change operation. Whether we should select 
a short T and a large area size n to yield high consistency 
at the expense of timeliness, or vice versa, depends on the 
application’s QoS requirements in consistency and 
timeliness. 
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