
l~pproved for Public Release: Distribution Unlimited
tse # 03-0023

Toward Scalable Exchange of Security Information
Arnon Rosenthal

The MITRE Corporation arnie @ rnitre.org

Abstract
One way to simplify distributed systems security is to have a unified interface for
requesting attributes that security policies need. We explore requirements for getting
attributes, and examine issues of federated data, trust, and confidentiality. Our goal is to
insulate most participants from exactly how and where these attributes are accessed, and
to encourage implementation of each feature at the appropriate level of generality.

Introduction
Today's systems were designed to apply security policies in a relatively fixed, well known
environment. In many government systems, policies are executed by what we call policy
deciders, which get security-relevant information (attributes of the user request) from multiple
providers. For example, authenticated user identity and submission site might be in the request
object, submission time come from an application server, clearances from a directory, approval
signatures on individual requests from an approvals database. Furthermore, each decider partners
with systems it knows well, so it can rely on their veracity and confidentiality. The tight coupling
inhibits scalability and change. It becomes very hard to accept requests from other application
servers, or access new attributes, or switch an attribute (e.g., clearance) from on-demand to "as
part of the request message".

Our contribution is to identify requirements and opportunities for general solutions, especially in
areas where individual communities (e.g., PKI) are exploring narrower services. Specifically:

We point out the benefits of passing all needed attributes through a single interface, and how
we now fall short.

e We propose a simple, decentralized, way to manage an extensible set of attribute types.
We suggest that trust and confidentiality services apply comprehensively, but be modularized
(at least from the administrators' viewpoint).

The basic functionality for getting attributes exists today - split among several interfaces. The
policy decider software (and policy writers) should see a unified interface for getting arbitrary
attributes, insulating them from how these attributes are provided. This interface should also hide
whether an attribute was predefined in a standard, or belongs to one provider's extension. In
essence, we want a comprehensive virtual federated directory.

For concreteness, imagine a command get(requestObject, ~ttribset)'. The figure below contains
an architecture sketch.

We next discuss management requirements for a federation. Afterwards, we seek simpler policy
specification, by pushing attribute trust and confidentiality issues away from administrators. Our
goal is to encourage developers to use simple techniques more broadly and modularly, rather than
to propose great novelties.

Federation Issues: We need a stable structure for organizing the attribute set, so providers can
describe what they offer and deciders can describe what they need. Yet every participant must be

' LDAP and S A M L both offer commands to get a list of attributes. LDAP seems a good choice for
exploiting existing skills, and within an enclave where the decider trusts all attributes reported by servers.

ltoland
Text Box
Approved for Public Release: Distribution Unlimited
Case # 03-0214

able to extend the set of attribute types - otherwise deciders will need separate mechanisms for
accessing standard versus nonstandard ones. We propose a simple compromise between static
versus chaotic. Take a "standard" logical partition of the attribute space, and within each locality
provide a "free" space to which anyone can add (as described below).

Locks denote "apply Trust: Estimate belief
release control policy" in the assertion

One might initially simplify the system move code that understands the providers from deciders
to a hard coded federator. Federated directories would enable new attribute types to simply be
registered, without changing code. Eventually, federated database query processors may provide
powerful, self-managing optimization.

Example Implementation Approach for Managing the Attribute Types: Use a labeled tree of
types, as in LDAP (or XML), to be instantiated as a tree. Nonterminals will be called folders. For
example, the top level Request might have child types describing the request's User, Submission,
and Approvals. Request.User.Clearance is a terminal, which takes on a value for each request. As
in LDAP, the folder tree describes logical relationships. Physical layout will be beyond our scope;
a wide variety of techniques are available.

To balance control and chaos, let every folder type include a distinguished subfolder, denoted
Freespace, where any stakeholder can insert new child types (and become that child type's
default administrator). This removes the temptation to go outside the system. It also avoids
creating a single giant uncontrolled area. It encourages putting new nodes in roughly the right
place, and scanning what's already there to see if it can be r e ~ s e d . ~ Occasionally, "standard" node
administrators may promote definitions from Freespace.

Trust and Confidentiality for Security Information: This section discusses opportunities
to make (at least some) approaches in the literature more modular and more comprehensive.

Modularity: We should seize the opportunity to simplify policy specification by insulating
subject matter experts from issues of system trustworthiness. An ethicist who judges
appropriateness of researchers seeing medical data should not be concerned with trustworthiness

2 Note that only those interested in the new type will instantiate it in their folder instances. For now, we
assume each type appears once; a fuller facility might provide templates or crosslinks.

of different PKI roots, or legitimacy of delegation steps. Put another way, the ethicist's policy
should see attribute assertions and an estimate of their trustworthiness; trust arbiters are separate
from substantive policy. (We optimized for the normal, simple case; more detail can always be
provided as additional attributes).

Splitting trust (i.e., attribute belief estimates) from substantive policy offers other benefits. By
omitting path-tracing (recursion), one may be able to give most users a simpler policy language.
Also, a single trust estimator is likely to be used by many objects' policies. Finally, estimation of
believability will not be confined to security-relevant assertions; for example, an intelligence-
evaluation system might also use it. One can argue that modularity is surface, not foundational,
but so are a building's doors and windows.

Comprehensiveness: Trust management, negotiation, and confidentiality go beyond just
authentication, to all security information, and beyond. Attribute Based Access Control
formalisms described in [Se, WL] allow the desired breadth. Their release policy frameworks
seems to apply to all data - it is only the decision about the next step that seems specifically about
negotiations and security information3.

We will mention two challenges. First, the "objects" of a policy negotiation tend to be fine
grained - release of a string, or of an (object, attribute, value) triple. This is a poor match for
servers that protect tables, files, or methods, or documents. Second, release policies must be
applied after the Federator has identified the attribute source.

Final Comments: We identified opportunities to exchange security metadata more flexibly.
We discussed the need to insulate each player from the others, in terms of attribute sets, trust, andl
confidentiality. We want to be comprehensive: to cover all the attributes needed, not separately
for directories, application servers, request objects, nonstandard attributes, etc.

Our hope is to improve this aspect of large government systems - incrementally, by developers,
without giant initiatives or committees of agency heads. We hope to structure incentives (e.g.,
documentation and interface requirements) to make it cheaper for a decider to go to the
getAttributes interface than to all providers individually. Initial steps may be within single trust
domains (i.e., all servers are trusted). Trust policies would then be added modularly.

References
[Ro94] A. Rosenthal, J. Williams, W. Herndon, B. Thuraisingham, "A Fine-Grained Access
Control Model for Object-oriented DBMSs", IFIP 11.3 Conf on Database Security, 1994.

[SeOl] K. Seamons et. al., "Requirements for Policy Languages for Trust Negotiation", IEEE
Workshop on Policies for Distributed Systems and Networks, 2001. pp 68-79

[WLOl), W. Winsborough, N. Li, "Towards Practical Automated Trust Negotiation", IEEE
Workshop on Policies for Distributed Systems and Networks, 2001. pp 92-103

Attribute acknowledgement policy7' constructs may be unneeded, since secure database models (e.g.,
[Ro]) give unauthorized users no hint about an object's existence. [WL] explores undesired inference;
however, attribute negotiations may not justify an industrial-strength solution to this notorious problem.

