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Abstract. 67 new cubature rules are found for three standard multi-dimensional integrals with spherically 
symmetric regions and weight functions using direct search with a numerical zero-fnder. 63 of the new rules have 
fewer integration points than known rules of the same degree, and 20 are within three points of Möller’s lower bound. 
Most have all positive coeffcients, and most have some symmetry, including some supported by one or two concentric 
spheres. They include degree-7 formulas for the integration over the sphere and Gaussian-weighted integrals over the 
entire space, each in 6 and 7 dimensions, with 127 and 183 points, respectively. 
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1. Introduction. We are concerned with estimating multi-dimensional integrals of the 
form 

(1.1) 

 

Z 
w(x)f(x) dx, 

where · · · T 
x = [x1 x2  xn] , for the integration regions 
 and weighting functions w(x) given 

in Table 1.1. Applications of (1.1) include the evaluation of quantum-mechanical matrix 
elements with Gaussian wave functions in atomic physics [33], nuclear physics [18], and 
particle physics [19]. For applications in statistics, particularly Bayesian inference, see [11]. 
For applications in target tracking, see [2, 21]. 

We approximate these integrals using cubature formulas or integration rules of the form 

N 
X

(1.2) Wif(xi), 
i=1 

where the weights Wi and nodes or points xi are independent of the function f . 

In the following, we use the notation 
2 

Gn, Er , Er 
n n , and Sn for the integrals defned 

in Table 1.1. The frst two integrals in the table are of course closely related. Given an 
approximation of Gn of the form (1.2), we can construct an equivalent approximation r 2En 
P

 N 
=1 B f(bi i i) 

≈
where b xi = i/ 2 , 

√
and B n/2 

i = ˇ W i. In this paper we address Er 2 

n 

following the numerical analysis convention. However, in the supplemental material we quote 
the parameters for the corresponding Gn formulas for the convenience of researchers using 
another commonly used convention. 

If an integration rule is exact for all polynomials up to and including degree d but not for 
some polynomial of degree d + 1, then we say the rule has algebraic degree of exactness (or 
simply degree) d. 

One can construct cubature formulas being exact for a space of polynomials by solving 
the large system of polynomial equations associated with it. In describing this method, Cools 
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TABLE 1.1 
Integrals studied. 

Name Region Ω Weight Function w(x) 

Gn entire space n 
R (2π)−n/2 e−x

T 
x/2 

2 

Er 
n entire space n 

R 
T

e−x x

Er 
n entire space n 

R e− 
√ 
x
T 
x 

Sn unit n-sphere T 
x x ≤ 1 1 

stated that “it is essential to restrict the search to cubature formulas with a certain structure” [8]. 
For example, in [1, “CUT4” formulas], points were assumed to take the form

(0, 0, · · · 0, 0) W0 1, 
(±η, 0, · · · 0, 0)S W1 2n, 
(±ν, ±ν, · · · ±ν, ±ν) W2 2n , 

where the notation (· · · )S indicates that all points obtained from these by permutation of 
coordinates are included and are assigned the same weight. The last column gives the number 
of points. This point set is fully symmetric, i.e., closed under all coordinate permutations and 
sign changes. However, relaxing this symmetry requirement may allow us to find formulas 
with fewer points [26, 43]. For example (as shown in Figure 6.1) in two dimensions, there is a 
formula of degree five with points at the vertices of a regular hexagon [40, formula V], which 
is closed under sign permutations but not coordinate permutations. There is also a formula of 
degree 4 with points at the vertices of a regular pentagon which is closed under sign changes 
in x1 but not x2, i.e., with bilateral symmetry. 

The objective of this work was to test whether the continuing improvements in computer 
processing have made it feasible to find interesting new cubature rules by the “brute force” 
approach—using a numerical zero-finder to solve the moment constraint equations directly. 
We find that, for rules with up to approximately 3000 free parameters1, it is no longer 
necessary to assume at the outset that the points have a particular structure. Relieving those 
assumptions has made it possible to discover rules with fewer points than known rules of the 
same degree, including twenty rules that come within three points of the lower bound found 
by Möller [25, 31]. 

Section 2 describes our search method, including several procedures that can improve 
a rule with negative weights or with little or no symmetry. Section 3 describes how the 
description of a rule can be simplified by orienting it to take best advantage of any symmetries 
and by finding closed-form expressions for point coordinates and weights. Sections 4–9 
present the new rules that have significant symmetry. Section 10 lists and discusses all the new 
rules including those with little or no symmetry. The supplemental material2 includes tables in 
double and quad precision of all the new rules.
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2. Searching. An approximation is exact for all polynomials with degree ≤ d if it is
exact for all monomials

f(x) = x1
α1x2

α2 xn
αn , 0 α1 + + αn d,· · · ≤ · · · ≤

where the αi are all nonnegative integers. If any of the αi are odd, then the monomial
integral is zero for any of our problems. Let α = [α1 α2 · · ·αn]

T , where all αi are even, and

1Each of the N points has n coordinates and a weight, so a rule has (n+ 1)N free parameters.
2The supplemental material is available at

http://etna.ricam.oeaw.ac.at/volumes/2011-2020/vol51/addition/files.zip.

http://etna.ricam.oeaw.ac.at/volumes/2011-2020/vol51/addition/files.zip
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βi = (αi + 1)/2. Then the monomial integral is [13, 39, 40]

∫

I(α) ≡ w(x)x1 
α1 x2 

α2 · · ·xn 
αn dx1 dx2 · · · dxn 

Ω 

= 









 









 

for Er2 

n ,Γ(β1)Γ(β2) · · ·Γ(βn) 

2(α1 + · · · + αn + n− 1)! 
Γ(β1 + · · · + βn) 

Γ(β1)Γ(β2) · · ·Γ(βn) for Er 
n, 

1 
Γ(β1 + · · · + βn + 1) 

Γ(β1)Γ(β2) · · ·Γ(βn) for Sn. 

 

For example, a rule of degree 4 for 
2 

Er 
2 must satisfy the following 15 constraints, where xij is 

the jth coordinate of the ith point and each sum is over i = 1 . . . N : 
Σ

W π i =
Σ

W x i i1 = 0
Σ

2 
W x 

π 
i i = 1 2

3 
Σ

Wixi = 01

4 3 
Σ 

Wix 
π 

=i1 4 

 
 

Σ
Wixi2 = 0 
 Σ

Wixi1xi2 = 0
2

Σ
Wixi xi2 = 0 1

3 
Σ

Wixi x1 i2 = 0  
  

Σ
2

Wix 
π

i = 2 2

2
Σ 

Wixi1xi = 0 2

2 2 
Σ

Wixi x 
π 

1 i =2 4 

 
Σ

3
Wixi = 0 2

3 
Σ

W xi i1xi = 02 

 
Σ

4 3 
Wix 

π 

i =2 4 

The number of constraints increases rapidly with n and d. The rules in Section 7.2 of 
dimension and degree 7 satisfy 3432 constraints. 

We initialized each search with normally distributed points, assigning initial weights of 

x Wi = e− 
√ 

T 

i 
xi 

but then normalized them so that they sum up to V ,











 









 

πn/2 for Er , 

V ≡
∫

Ω 

w(x) dx1 dx2 · · · dxn = 

n 

2(n− 1)!πn/2 

Γ(n/2) 
for Er 

n, 

2πn/2 
for Sn, nΓ(n/2) 

2 

thus the zeroth-degree constraint was satisfied exactly. 
The points were then linearly scaled so that the second-degree constraints involving only 

one coordinate were also satisfied. For example for 
 r 2En , we want the points to satisfy 

N
∑

i=1 

Wixi 
2 
1 = I([2 0 . . . 0]T ) = Γ(3/2)Γ(1/2)n−1 = 

πn/2 

2 
· 

We can achieve this by calculating a scaling factor 

k = 
πn/2/2

∑N 
i=1 Wixi 

2 
1 

√ 

and making the replacement xi1  kxi1← . Other coordinates of the points were scaled similarly. 
Stroud [35] showed that if there is an N point formula in n dimensions of degree d, then 

(2.1) N ≥ n + ⌊d/2⌋ 
⌊d/2⌋ ,

( )
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where ⌊x⌋ is the largest integer less than or equal to x. Möller improved this bound for odd 
degrees [25, 31]. Let d = 2s− 1. Then, the Möller lower bound, NMLB , is given by 

(2.2) N ≥ NMLB ≡
{(

n+s−1 
n

)

+
∑n−1 

k=1 2
k−n

(

k+s−1 
k

)

s even,
(

n+s−1 
n

)

+
∑n−1 

k=1(1− 2k−n )
(

k+s−2 
k

)

s odd. 

However, a formula satisfying the bound exactly may not exist. We searched for the rule 
of a given degree with the fewest points using a binary search between Möller’s lower bound 
and the number of points in a known formula of the given degree or of the next higher degree. 

In most cases, the number of equations and unknowns were unequal (with almost all 
problems becoming over-determined before N reached Möller’s lower bound), so many of the 
methods developed for solving nonlinear equations could not be applied. We used fsolve 
from the MATLAB Optimization Toolbox [6, 15, 29] or 3UDL by Simonis [34]. 

Parameters of all searches were logged along with the results of all successful searches, 
hence the results of a lucky random starting point would not be lost. After a failure, the search 
was restarted with a new set of randomly distributed points. Some searches identified a valid 
rule with most points arranged symmetrically and with only a few distinct weight values and 
with the weights on the remaining points reduced to zero. Other searches finished with a valid 
rule but with no apparent pattern in point locations or weights. 

A rule could sometimes be improved by projecting the innermost or outermost few 
points to (or toward) the same radius, giving them all the same weight and using that revised 
configuration to start a new search. In a few cases, this enabled us to eliminate negative 
weights or drop some points. 

Some rules could be improved by restarting the search after dropping low-weight points, 
combining points with very near neighbors, adding moment constraints of the next higher 
degree of the form 

N
∑

i=1 

Wixi 
d 
j 
+1 = I([d + 1 0 . . . 0]T ), 

for 1 ≤ j  n≤ , or by imposing symmetry as follows: We reoriented the rule so that the 
eigenvectors of the covariance of the unweighted points were aligned with the coordinate 
axes. We then tested whether the rule was close to bilaterally symmetric with respect to any 
of the axes. If so, we searched for a similar symmetric rule. The association of the original 
and reflected points was treated as a gated linear assignment problem and solved with the 
Jonker-Volgenant-Castanon (JVC) assignment algorithm [22, 28]. Each assigned point was 
moved to midway between its original location and that of its assigned reflection. If a point 
were assigned to its own reflection, then its adjusted position would automatically be on the 
symmetry plane. If a point was unassigned, then its reflection was added to the set (thereby 
increasing the number of points). 

After finding a rule for one of the integrals, we also searched for similar rules for each of 
the other integrals starting with the same point layout and relative weights but normalizing 
the weights and scaling those points so that its zeroth- and second-degree constraints were 
satisfied exactly. 

3 We revised UDL by adding a stopping criterion: If, after any seven consecutive steps, the norm of the residual 
has decreased by less than seven percent, then the search is deemed a failure.
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3. Presentation. 

3.1. Rotations. If a rule is symmetric, as evidenced by several points at the same radius 
and with equal weights, then it is desirable to determine its structure and, if possible, to express 
it in a simple form. Any orthogonal transformation of a set of points yields an equivalent set 
of points, and any orthogonal transformation can be expressed in terms of a skew-symmetric 
matrix via the Cayley transform [5]. Thus, for a rule in n dimensions there are n(n − 1)/2 
free parameters that can be used to orient it. 

One approach is to concentrate on the sphere supporting the fewest points. Conceptually, 
we rotate to put one of those points on the first coordinate axis. Choosing points in that shell in 
order by increasing angular distance from that first point, we then rotate to put a second point 
in the plane defined by the first two axes, then a third point in the subspace defined by the first 
three axes, etc. We call this “aligning the axes” to the chosen points. It can be accomplished 
as follows: 

Assume we have chosen n points. Reorder the rows of the point matrix so that those rows 
appear in order at the top forming an n× n submatrix which we call A. The remainder of the 
rows form a submatrix which we call B. Use the QR decomposition to factor the transpose of 
A so that 

AT = RU, 

where R is orthogonal and U is upper triangular. Taking the transpose of both sides, we have 

A = (RU)T = UT RT . 

Right multiplying by R, we have 

AR = UT RT R = UT . 

Thus, right multiplying our original point matrix by R gives us
[

A
]

R =

[

UT
]

, 
B C 

where UT is lower triangular. In its first row, only the first element is nonzero, so it represents 
a point along the first coordinate. The second row represents a point in the plane defined by 
the first two coordinates, etc. This satisfies the requirements set out above. 

If a rule in n dimensions has n + 1 points at the same radius (such as the 6 inner points in 
the 5-dimensional rules of Section 4.4), then they typically appear at the vertices of a regular n 
simplex. In that case, a simple description can be found by rotating one point to be equidistant 
from all coordinate axes with each of the other n points in the plane defined by that first point 
and one of the coordinate axes. 

For example, the well-known second-degree rules have n + 1 points at the vertices of an 
n simplex. They are often presented in a form like this for Gn [23, 42]: 

χ = 
√
n + 1 



























 

1·2 2·3 3·4 · · · n(n+1) 

−
√

1 
1·2 

√

1 

√

2·3 

√

1 
3·4 · · · 

√ 
1 

n(n+1) 

0 − 2 
3 

√

1 
3·4 · · · 

√ 
1 

n(n+1) 

0 0 −
√

3 
4 

√ 
1 

n(n+1) 

... 
... 

... 

· · · 
. . . 

√ 
1 

n(n+1) 

0 0 0 · · · −
√ 

n 
n+1 



























 

, 

 √
1 

√

1 
√

1 
√ 

1 
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where each row represents a point and the weight for each point is 1/(n + 1). Fan and You 
noticed that in three dimensions, the points can be expressed in the much simpler form [12] 

χ = 

 





 

1 1 1 
1 
−1 1 

−1 −1 
1 

−1 −1 
− 
1 

 







. 

This can be generalized to other dimensions yielding the set of points 

χ = 















 

1 1 1 · · · 
b 
1 

a b b 
b a b 

· · · 
b 

b b a · 
. 
· · 
· · · 

b 
... 

... 
... . . 

... 
b b b · · · a 















 

  

with the two solutions 

, ,a = 
−1 + (n− 1) 

√
n + 1 

n 
b = 
−1−

√
n + 1 

n 

or 

a = 
−1− (n − 1) 

√
n + 1 

n 
, b = 

−1 +
√
n + 1 

n 
. 

When a rule has n + 1 points at the vertices of a regular simplex, it can be rotated into one of 
these orientations. 

3.2. Closed-form expressions. If a rule has enough symmetry, then we attempt to 
express its points and weights in closed form. In some cases they are integers, simple fractions, 
or square roots of simple fractions, which can be identified by converting them to a simple 
continued fraction and looking for a repeating pattern [4]. To guard against accepting a 
solution that merely minimizes the residuals, or a mathematical coincidence (a closed form 
that only approximates the actual solution), our next step is to use Maxima [24, 41] to confirm 
that the resulting rule satisfies the moment constraint equations exactly or (if no closed-form 
solution was identified) with absolute error less than 10−55. 

4. Degree-4 rules. 

4.1. Degree 4, dimension 3, 10-point rules. The points in these new formulas for Er2 

3 

and S3 are closed with respect to sign changes along two of the three coordinates. The points 
form two pyramids with one offset and rotated from the other as illustrated in Figure 4.1. 
The configuration is given in Table 4.1. The Maxima program m3_10_4.mac verifying the 
correctness of these rules is provided in Figure 4.1. The supplemental material includes similar 
programs for the other new rules. 

Becker found an 11-point cubature formula of degree 4 for S3 [3], but we are not aware 
of any previous formulas of degree 4 for 

2

Er 
3 

 

. 

4.2. Degree 4, dimension 3, 11-point rule. We were unable to find a 10-point rule for 
Er 

3 , but we did find the 11-point rule given in Table 4.2. This rule has at least one remaining 
degree of freedom as the x3.coordinate in the fourth line of the table need not be zero. An 
example with a nonzero value appears in the supplemental material.
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-2  0  2 -4
 0

 4
-2

 0

 2 
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y 

z 

F IG. 4.1. Configuration of the 10 points for the rule of degree 4 for . 
2

Er 

3 

4.3. Degree 4, dimension 4, 16-point rules. We found two sets of 16-point rules. Those 
in the first set have a central point, one shell of 10 points, and another shell of 5 points as 
shown in Table 4.3. The formula for S4 has five points outside the region and one with a 
negative weight. 

Each rule in the second set has a central point, a shell of 6 points, and another shell of 9 
points as displayed in Table 4.4. The second formula for S4 has zero weight on the central 
point making it a 15-point formula with all positive weights and nine points on the boundary. 

Both of these formulas for S4 are distinct from the 16-point formula found by Mysovskih [7 
32 

, 
], which has positive weights and seven points on the boundary. We are not aware of previous 

degree-4 formulas for the other integrals. 

4.4. Degree 4, dimension 5, 22-point rules. Each of these new formulas has a central 
point and two shells. We can describe the points using five generators as given in Table 4.5. 
The six points with weight W0 are at the vertices of a regular 5-simplex. The 15 points with 
weight W1 are the vertices of a rectified 5-simplex, i.e., each vertex being at the center of an 
edge of a regular 5-simplex. A MATLAB program to generate these rules (c5_22_4.m) is 
included in the supplemental materials. 

4.5. Degree 4, dimension 6, 28-point rules. Each of these new formulas has a central 
point and 27 points all at the same radius. The rule is given in Table 4.6. Each point on the 
shell has 16 near neighbors (76 degrees away) and 10 more distant neighbors (120 degrees). 
This configuration is suggested in Figure 4.3, which displays the points in terms of their 
angular distance from a chosen point, though of course their distances from each other cannot 
be displayed realistically. 
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4.6. Degree 4, dimension 7, 38-point rules. We found 38-point rules for Er2 

7 and S7 

each with two negative weights. A standard measure of the stability of an integration rule is 
the sum of the absolute value of the weights divided by the sum of the weights, which is a 
worst-case round-off error magnification factor [14]. These rules have stability factors of 7.18 
for 

2

Er 
7 

 

and 8.55 for S7. They have some symmetry with the center point, a centered shell of 
21 points, and two offset irregular 7-simplices. The configuration of the points with respect to 
one of the negative weight points is suggested in Figure 4.4. The rules are given in Table 4.7.
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TABLE 4.1
2

Er 

3 

 

10-point rules of degree 4 for and S3. 

x1 x2 x3 Weight # Points 

g 0 0 W3 1 
a (±c 0)S W2 4 
−b 0 0 W1 1 
−e ±f ±f W4 4 

2 

Er 
3 S3 

a (
√
3− 1)/2

√ √
(2 3− 1)/ 77 

b 
√
( 7− 1)/2 (2

√
203−

√
77)/35 

c
√ √
3 3−

√ √
(48 8 3)/77− 

e 
√
3 + 1)/2( (2

√
3 + 1)/

√
77 

f
√

(3 +
√
3)/2

√

(24 + 4
√
3)/77 

g (
√
7 + 1)/2 (2

√
203 +

√
77)/35 

W1 π3/2 (7 + 2
√
7)/42 π(841 + 32

√
11
√
29)/5220 

W2 π3/2 (2 +
√
3)/24 7π(13 + 4

√
3)/720 

W3 π3/2 (7− 2
√
7)/42 π(841 32 11 2

√ √ 
9)/5220 

W4 
3/2 

√
π (2− 3)/24 7π(13− 4

√
3)/720 

−

TABLE 4.2 
11-point rule of degree 4 for Er 

3
. 

x1 x2 x3 Weight 

±5.123512671436 4.925613098468 0.000000000000 0.379658096396 
±4.102816292737 -1.218122471265 1.544992698170 1.815112382679 
±3.636092685910 -1.218122471265 -4.843920857272 0.737101279022 

0.000000000000 -1.836923221948 0.000000000000 8.813498359176 
0.000000000000 -12.639707409137 -3.423767380484 0.036648025338 
0.000000000000 1.948389609086 -1.422580596634 7.054048788228 
0.000000000000 1.703608086180 3.398957047139 3.331366718822 
0.000000000000 -8.635010968135 11.051160549267 0.033435820963 

5. Degree-5 rules. 

5.1. Degree 5, dimension 4, 23-point rules. This new family of degree-5 rules is pro-
vided in Table 5.1. Other than the central point, all points are at the same radius. However, 
two of those points have smaller weight than the others. The rule for 5Er has fewer points as 
the known rules. A 22-point rule of degree 5 was known for Sn [39, Sn:5-1]. 

5.2. Degree 5, dimension 6, 44-point rule. This new rule has points supported by two 
spheres as given in Table 5.2. 

6. Degree-6 rules. 

6.1. Degree 6, dimension 2, 10-point rule. A rule was found for Er2

2 

 

with 10 points 
achieving Stroud’s lower bound (2.1). This rule was known but unpublished [9, 20]. The 
points and weights are displayed in Table 6.1. The point layout is similar to that in the 10-point 
rule for S2 by Wissmann and Becker [43, S2:6-1]. The points are displayed in Figure 6.1,



  
 

ETNA 
Kent State University and 

Johann Radon Institute (RICAM) 

EFFICIENT CUBATURE RULES 227 

TABLE 4.3 
16-point rules of degree 4 in 4 dimensions (group 1). 

x1 x2 x3 x4 Weight Radius # Points 

0 0 0 0 W0 0 1 
(c c −b −b)S W1 r1 6 

(−e −a − a − a)S W1 r1 4 
f f f f W2 r2 1 
(g −e −e −e)S W2 r2 4 

Er 2 

4

3 

Er 
4 S4 

a 
 

(3
√

 
√
− 15)/12 

   
(3
√
42 

√
− 210)/12    (3

√
3  
√

− 15)/24  
b ( 

√
15 

√
− 3)/6  ( 

√
210  

√
− 42)/6  ( 

√
15  

√
− 3)/12   

c ( 
√
15 + 

√
3)/6  ( 

√
210 + 

√
42)/6  ( 

√
√ √15 + 

√
3)/12  

e ( 
√
15 + 

√
3)/4 ( 

√
210 + 

√
42)/4 ( 15 + 3)/8  

f 
√
3
 √

42
 √

3/2       
g (3 

√
15 

√
− 3)/4 (3 

√
210 

√
− 42)/4 (3 

√
15 

√
− 3)/8 

W0 ˇ 2 /12 29ˇ 2 /7 −ˇ 2 /9 
W1 9ˇ2 /100 27ˇ2 /35 3ˇ2 /50 
W2 ˇ2 /300 

 

ˇ2 /35 ˇ2 /450 

r1 
√
2

√
28
 p

1/2

r2 
√
12 

√
168 
  √

3 

TABLE 4.4 
16- or 15-point rules of degree 4 in 4 dimensions (group 2). 

x1 x2 x3 x4 Weight Radius # Points 

0 0 0 0 W0 0 1 
0 0 0 −c W1 r1 1 
0 0 c 0 W1 r1 1 
±b 0 −a 0 W1 r1 2 

0 ±b 0 a W1 r1 2 
±b ± b a −a W2 r2 4 

0 ±b −c − a W2 r2 2 
±b 0 a c W2 r2 2 

0 0 −c c W2 r2 1 

r 2 E4 Er 
4 S4 

a 
p

1/2 
√
7 

p

1/8 

b 
p

3/2 
√
21 

p

3/8 

c 
√
2 

√
28 

p

1/2 
W0 ˇ2 /4 39ˇ2 /7 0 
W1 ˇ2 /12 5ˇ2 /7 ˇ2 /18 
W2 ˇ2 /36 5ˇ2 /21 ˇ2 /54 

c = r1 

 

√
2 
 

 
 
 

√
28 
 p

1/2  
r2 2 

√
56 1 
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rule:"3_10_4"; 
n:3; /* 3 dimensions */ 
N:10; /* 10 points */ 
deg:4; /* degree 4 */ 
/* G_n E_n^{r^2} S_n */ 
a_vals:[(sqrt(6)-sqrt(2))/2 ,(sqrt(6)-sqrt(2))/sqrt(8) ,0,(2*sqrt(3)-1)/sqrt(77) ]; 
b_vals:[(sqrt(14)-sqrt(2))/2,(sqrt(14)-sqrt(2))/sqrt(8),0,(2*sqrt(203)-sqrt(77))/35 ]; 
c_vals:[sqrt(6 - 2*sqrt(3)) ,sqrt((6 - 2*sqrt(3))/2) ,0,sqrt((48-8*sqrt(3))/77) ]; 
e_vals:[(sqrt(6)+sqrt(2))/2 ,(1+sqrt(3))/2 ,0,(2*sqrt(3)+1)/sqrt(77) ]; 
f_vals:[sqrt(sqrt(3)+3) ,sqrt((sqrt(3)+3)/2) ,0,sqrt((24+4*sqrt(3))/77) ]; 
g_vals:[(1+sqrt(7))/sqrt(2) ,(1+sqrt(7))/2 ,0,(2*sqrt(203)+sqrt(77))/35 ]; 
w1vals:[(7+2*sqrt(7))/42,%pi^(3/2)*(2*sqrt(7)+7)/42,0,%pi*(841+32*sqrt(11)*sqrt(29))/5220]; 
w2vals:[(sqrt(3)+2)/24 ,%pi^(3/2)*(sqrt(3)+2)/24 ,0,%pi*(13+4*sqrt(3))*7/720 ]; 
w3vals:[(7-2*sqrt(7))/42,%pi^(3/2)*(7-2*sqrt(7))/42,0,%pi*(841-32*sqrt(11)*sqrt(29))/5220]; 
w4vals:[(2-sqrt(3))/24 ,%pi^(3/2)*(2-sqrt(3))/24 ,0,%pi*(13-4*sqrt(3))*7/720 ]; 
plabel:[" Gn","E_n^{r^2}"," E_n"," Sn"]; 
for problem in [1,2,4] do block( 
a: a_vals[problem], 
b: b_vals[problem], 
c: c_vals[problem], 
e: e_vals[problem], 
f: f_vals[problem], 
g: g_vals[problem], 
w1:w1vals[problem], 
w2:w2vals[problem], 
w3:w3vals[problem], 
w4:w4vals[problem], 
x:matrix([ g, 0, 0, w3], 

[ a, c, 0, w2], 
[ a,-c, 0, w2], 
[ a, 0, c, w2], 
[ a, 0,-c, w2], 
[-b, 0, 0, w1], 
[-e, f, f, w4], 
[-e, f,-f, w4], 
[-e,-f, f, w4], 
[-e,-f,-f, w4]), 

ex(a,p) := if p=0 then 1 else a^p, 
alpha : makelist(0,i,n), 
pass : true, 
for i1 : 0 thru deg do 
(alpha[1] : i1, 
for i2 : 0 thru deg-i1 do 
(alpha[2] : i2, 
for i3 : 0 thru deg-i1-i2 do 
(alpha[3] : i3, 
if sum(alpha[i],i,1,n)<=deg then 
(beta : (alpha+makelist(1,i,n))/2, 
odd : false, for i : 1 thru n do odd : odd or oddp(alpha[i]), 

m : if odd then 0 else 
if problem=1 then 2^sum(beta[ii],ii,1,n)*product(gamma(beta[ii]),ii,1,n) 
/(2*%pi)^(n/2) else 

if problem=2 then product(gamma(beta[ii]),ii,1,n) else 
if problem=3 then 2*gamma(sum(alpha[ii],ii,1,n)+n) 
*product(gamma(beta[ii]),ii,1,n)/gamma(sum(beta[ii],ii,1,n)) else 

if problem=4 then product(gamma(beta[ii]),ii,1,n)/sum(beta[ii],ii,1,n) 
/gamma(sum(beta[ii],ii,1, else 

if problem=5 then 2*product(gamma(beta[ii]),ii,1,n) 
/gamma(sum(beta[ii],ii,1,n)), 
value : radcan(sum(product(ex(x[i,j],alpha[j]),j,1,n)*x[i,n+1],i,1,N)), 
subtest : value=m, /* test one constraint */ 
pass : pass and subtest)))), 

print(plabel[problem],":",rule,"...", if pass then "pass" else "FAIL" ))$ 

FIG. 4.2. The Maxima program (m3_10_4.mac) verifying the correctness of the rules of degree 4 in 3 

dimensions. 

along with those for known formulas of degree 3, 4, 5, and 7, and the new formula of degree 8 
discussed below. Note that in the fgure, the rules of odd degree have central symmetry (for 
every point x there is also a point −x with the same weight), while those of even degree are 
only bilaterally symmetric. 

6.2. Degree 6, dimension 2, 11-point rule. This new rule for Er 
2 has 11 points with 

bilateral symmetry. The points and weights are given in Table 6.2. This rule come close to 
pentagonal symmetry, but we were unable to adjust it for pentagonal symmetry. 

7. Degree-7 rules. We found four rules of degree 7 with fewer points than previously 
reported. 

7.1. Degree 7, dimension 6, 127-point rules. Each of these new rules has a central 
point and two shells. The inner shell has 54 points. Each of those has 10 nearest neighbors in 
that shell (60 degrees away) and 16, 16, 10, and 1 successively further away. The outer shell 
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120 deg 

76 deg 

FIG. 4.3. Configuration of the 27 non-central points for the rules of degree 4 in 6 dimensions. 

90 deg 

135 deg 

41 deg 

FIG. 4.4. Configuration of the 37 non-central points for the rules of degree 4 in 7 dimensions. 

−3 

−2 

−1 

0 
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2 

3 

4 points, degree 3 6 points, degree 4 7 points, degree 5 

−4 −3 −2 −1 0 1 2 3 4 

−3 

−2 

−1 

0 

1 

2 

3 

10 points, degree 6 

−4 −3 −2 −1 0 1 2 3 4 

12 points, degree 7 

−4 −3 −2 −1 0 1 2 3 4 

17 points, degree 8 

FIG. 6.1. Points for 
2

Er 

2 

 

rules. The rule of degree 8 is new.
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TABLE 4.5 
22-point rules of degree 4 in 5 dimensions. 

x1 x2 x3 x4 x5 Weight # Points 
0 0 0 0 0 W0 1 
c c c c c W1 1 

(−h a a a a)S W1 5 
(−b −b −b g g)S W2 10 
(e −f −f −f −f)S W2 5 

2 

Er 
5 Er 

5 S5 

a 
√ √

(2 3− /102)
√ √

( 4 3− 2 2)/5 
√

( 6− 1)/15 
b

√ √
(2 3 − 2)/5

√ √
( 8 3− 4 2)/5 

√
(2 6 − 2)/15 

c
√

1/2
√
8 1/3 

e 
√ √

(4 3 − 2 2)/5
√ √

(16 3 − 8 2)/5
√

(4 6− 4)/15 
f ( 

√
3 + 2

√
2)/5

√ √
( 4 3 + 8 2)/5 

√
( 6 + 4)/15 

g
√ √

(3 3 + 2)/5
√ √

(12 3 + 4 2)/5
√

(3 6 + 2)/15 

h
√ √

(8 3 + 2)/10
√ √

(16 3 + 2 2)/5
√

(4 6 + 1)/15 
W0 π5/2 /4 28π2 2π2 /105 
W1 π5/2 /18 8π2 /3 4π2 /105 
W2 π5/2 /36 4π2 /3 2π2 /105

r1 
√

5/2
√
40

√
5/3

r2 2 8
√
8/3 

has 72 points. Each of those has 20 nearest neighbors and 30, 20, and 1 successively further 
away. The configuration of points is displayed in Table 7.1. 

7.2. Degree 7, dimension 7, 183-point rules. In this case, we initialized a search with 
226 points, and this new rule was found—the weights on the remaining 43 points having been 
driven to zero. It does not quite attain Möller’s lower bound of N = n/3(n2 + 3n + 8) = 182 
for a degree-seven formula [25, 31]. 

The rule has a central point, one shell of 56 points, and a second shell of 126 points. 
The inner shell is laid out the same way as for the 57-point formula of degree 5 by Stroud 
[39, n

2 

Er :5-1]. The points on the outer shell have vertex symmetry, but we have been unable to 
relate them to a known polytope. 

The points are given in Table 7.2. We found closed-form expressions for the points on 
the outer shell and for the radius r1 of the inner shell directly from their simple continued 
fractions. We were then able to find expressions for the ratios of the remaining coordinates 
to r1. Maxima was then able to solve for the coordinates using the expressions for the points 
and three of the moment constraint equations. 

8. Degree-8 rules. 

230

8.1. Degree 8, dimension 2, 17-point rule. We found 17-point rules of degree 8 for 
all three integrals with all positive weights and bilateral symmetry. For details, see the 
supplemental material. A 16-point rule of degree 8 for S2 was found by Wissmann and 
Becker [43]. We were unable, even using variations of that rule as starting guesses, to find a 
similar rule for Er 

2 or r2E2 

 

.
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TABLE 4.6 
28-point rules of degree 4 in 6 dimensions. 

x1 x2 x3 x4 x5 x6 Weight Radius # Points 

0 0 0 0 0 0 W0 0 1 
−c ±e 0 0 0 0 W1 r 2 
−c 0 ±(b b b −b)S W1 r 8 
a −b ±(b b b b ) W1 r 2 
a −b (b b −b −b)S W1 r 6 
f 0 0 0 0 0 W1 r 1 
a b ±(e 0 0 0)S W1 r 8 

2 

Er 
6 Er 

6 S6 

a 1/2
√

9/2
√

1/20 

b
√

3/4
√

27/2
√

3/20 

c 1
√
18

√

1/5 

e
√
3

√
54

√

3/5 

f = r 2
√
72

√

4/5 
W0 π3 /4 50π3 π3 /96 
W1 π3 /36 70π3 /27 5π3 /864 

TABLE 4.7 
38-point rules of degree 4 in 7 dimensions. 

x1 x2 x3 x4 x5 x6 x7 Weight # Points 

0 0 0 0 0 0 0 W0 1 
c c c c c c c −W2 1 
−b −b −b −b −b −b −b −W1 1 
( f −e −e −e −e −e −e)S W3 7 
( h a a a a a a)S W4 7 
(−i −i g g g g g)S W5 21 

2 r E7 S7 

a 0.2286166663871 0.0974824740891 
b 0.2590817563916 0.1104728321147 
c 0.3117777721419 0.1329424887288 
e 0.4422503418055 0.1885761793629 
f 0.4505846393780 0.1921299357884 
g 0.7531484451994 0.3211435760773 
h 1.0981884332902 0.4682691213418 
i 1.8927504201541 0.8070714909185 

W0 59.8014451908073 5.2337832579847 
W1 89.9014937680773 9.4465413692728 
W2 79.9432767398149 8.4001659957515 
W3 11.6616239025637 1.2253635397056 
W4 11.0688850060780 1.1630805645052 
W5 0.2803313076587 0.0294562546617
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TABLE 5.1 
23-point rules of degree 5 in 4 dimensions. 

x1 x2 x3 x4 Weight Radius # Points 

0 0 0 0 W0 0 1 
±h 0 0 0 W2 r 2 

0 ±h 0 0 W1 r 2 
±c ±(b −a) ±c W1 r 8 
±c ±(b e) 0 W1 r 4 

0 ±(a −g) 0 W1 r 2 
0 ±(a b) ±f W1 r 4 

2 

Er 
4 Er 

4 S4 

a
√

1/3
√

14/3
√

1/12 

b
√

2/3
√

28/3
√

1/6 

c 1
√
14

√

1/4 

e
√

4/3
√

56/3
√

1/3 

f
√
2

√
28

√

1/2 

g
√

8/3
√

112/3
√

2/3 

h = r 
√
3

√
42

√

3/4 
W0 π2 /3 44π2 /7 π2 /18 
W1 π2 /32 15π2 /56 π2 /48 
W2 π2 /48 5π2 /28 π2 /72 

TABLE 5.2 
44-point rule of degree 5 for Er 

6
. 

x1 x2 x3 x4 x5 x6 Weight Radius # Points 

(0 0 0 0 0 ±b)S W1 r1 12 
(a a a a a −a)S W2 r2 6 
(a a a −a −a −a)S W2 r2 20 
(a −a −a −a −a −a)S W2 r2 6 

Er 
6 

a 4.84099298434420 
b = r1 5.40578920173885 
W1 274.495347525855 
W2 13.3377822289287 
r2 11.8579626600364 

TABLE 6.1
10-point rule of degree 6 for 

2

Er 

2 

 

. 

x1 x2 Weight Radius 

±3.314013565941806 2.014171295633760 0.000757833922865 3.87809 
±1.411670545911536 -0.242569904073576 0.236161927729435 1.43236 
±0.713033732783175 -1.432390280414699 0.146082553662775 1.60005 
±0.691608815107559 0.877693534044218 0.485399260031153 1.11744 

0.000000000000000 -0.261367769356158 1.387418367858287 0.26137 
0.000000000000000 2.335832264987514 0.017371135039050 2.33583



ETNA
Kent State University and

Johann Radon Institute (RICAM)

EFFICIENT CUBATURE RULES

TABLE 6.2 
11-point rule of degree 6 for Er 

2
. 

233

x1 x2 Weight Radius 

0.000000000000000 0.000000000000000 3.927702275194840 0.00000 
0.000000000000000 10.299713185154499 0.003846684331349 10.29971 
0.000000000000000 -3.895765525253948 0.474246212300936 3.89577 

±10.311630315898372 3.397224688449697 0.002841012046587 10.85683 
± 6.251012172182811 -8.794364006109971 0.002944454683352 10.78962 
± 3.752487980256190 -1.228482827331175 0.460111970539923 3.94846 
± 2.312667676618243 3.141828043257887 0.472797630406369 3.90122 

9. Degree-9 rules. 

9.1. Degree 9, dimension 4, 124-point rule. We found a 124-point rule for 
2

Er
4 

 

with 
negative weights (stability factor 15.4) and central symmetry but no central point. We also 
found a 125-point rule for the same integrals with central symmetry and a central point. It 
also has negative weights but a somewhat better stability factor of 8.1. For details, see the 
supplemental material. 

10. Summary. 

10.1. Listings. The new cubature rules are listed in Tables 10.1, 10.2, and 10.3. In 
addition to those described above, we found many rules with only bilateral symmetry or no 
apparent symmetry, the details for which appear only in the supplemental material. Symmetry 
of “x2, x3" indicates a rule closed under sign changes in both of the indicated coordinates. 
Rules with the symmetry of a known polytope are indicated by that polytope. “Vertex” 
indicates symmetry with respect to the exchange of any two noncentral points but that the 
polytope has not been identified. 

The “Quality” of a rule is given using the notation introduced in [27]. The first letter is P 
if all weights are positive or N if some weights are negative. For the integral Sn, there is a 
second letter which is I if all points are inside the region, B if some are on the boundary, or O 
if some points are outside the region. 

Also shown is the Möller lower bound (MLB) for the number of points in a rule of the 
given degree from (2.2) and the smallest known rule of the given degree or the next higher 
degree. The new rules with points supported by one or two spherical shells are very efficient— 
within three points of the Möller lower bound. Those with little or no symmetry are much less 
efficient with over 40 percent more points than the Möller lower bound in the median, though 
still better than the previously known rules with the exceptions noted in the tables. 

In most odd-degree formulas, points are supported by a few spherical shells with all 
weights positive. Most even-degree formulas lack symmetry, and they have more negative 
weights. We were unable to find rules for Er 

n and sometimes even Sn corresponding to some 

of the rules for 
2

Er 
n 

 

. 

10.2. Examples. To illustrate the formulas, we numerically evaluate an integral used as 
an example by Stroud [36]: 

(10.1) J4 =

∫

S4 

cos(x1 + · · · + x4) dx1 · · · dx4 = 3.4823322817 . 

The values calculated using our seven formulas of dimension 4 plus the 16-point formula of 
Mysovskih [7, 32], the 31-point formula of degree 5 by Meng and Luo [30], and Stroud’s 
formulas of degrees 5 [37] and 7 [38] are given in Table 10.4 ordered by N .
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TABLE 7.1 
127-point rules of degree 7 in 6 dimensions. 

x1 x2 x3 x4 x5 x6 Weight Radius # Points 

0 0 0 0 0 0 W0 0 1 
±g 0 0 0 0 0 W1 r1 2 
±c (±f 0 0 0 0 )S W1 r1 20 
±(a b b b b b ) W1 r1 2 
±(a (b b b −b −b)S) W1 r1 20 
±(a (b −b −b −b −b)S) W1 r1 10 
±(h (e e e e −e)S) W2 r2 10 
±(h (e e −e −e −e)S) W2 r2 20 
±(h −e −e −e −e −e ) W2 r2 2 

0 (±i ±i 0 0 0 )S W2 r2 40 

2 

Er 
6 S6 

g = r1

√

(4−
√
6) × 2

√

2/3 

c
√

(4 −
√
6)/2

√

1/6 

f
√

(4−
√
6)× 3/2

√

1/2 

a
√

(4−
√
6)/8

√

1/24 

b
√

(4−
√
6)× 3/8

√

1/8 

e
√

(6 +
√
6)/8

√

1/8 

h
√

(6 +
√
6) × 3/8

√

3/8 

i
√

(6 +
√
6)/2

√

1/2 

r2
√

6 + 
√
6 1 

W0 

√ 
3 (16− 6)π /100 π3 /240 

W1 (68 + 27
√
6)π3 /9000 π3 /480 

W2 (54− 19
√
6)π3 /9000 π3 /1440 

10.3. Supplemental material. The supplemental material4 includes plain-text listings 
of the new rules in double and quad precision with 15 and 32 decimal digits, respectively. 
Some known rules are included for comparison with sources indicated in the double precision 
listings. The quad precision listings are of two sorts both generated by programs in Maxima. 
Where closed form expressions were found for the parameters of a rule, those expressions 
were evaluated with 64 digit precision and printed with 32 digit precision. Otherwise, a simple 
root-finder using Newton’s method with Moore-Penrose pseudoinverses was used to refine 
the double precision rule with an excessive 32d + 10 digits of precision with the goal that the 
printed values of both node coordinates and weights would be correct to 32 digits. In either 
case, the constraint equations to the stated degree were evaluated and the maximum error was 
printed. The error is zero whenever the parameters were expressed in closed form and Maxima 
was able to simplify the resulting equations. Otherwise the error is the result of an extended 
precision calculation. 

4http://etna.ricam.oeaw.ac.at/volumes/2011-2020/vol51/addition/files.zip

http://etna.ricam.oeaw.ac.at/volumes/2011-2020/vol51/addition/files.zip
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TABLE 7.2 
183-point rules of degree 7 in 7 dimensions. 

x1 x2 x3 x4 x5 x6 x7 Weight Radius # Points 

0 0 0 0 0 0 0 W0 0 1 
±(−m 0 0 0 0 0 0) W1 r1 2 
±(−c k 0 0 0 0 0) W1 r1 2 
±(−c −f (±i 0 0 0 0)S) W1 r1 20 
±(−c a e e e e e) W1 r1 2 
±(−c a (e e e −e −e)S) W1 r1 20 
±(−c a (e −e −e −e −e)S) W1 r1 10 
±(j p 0 0 0 0 0) W2 r2 2 
±(j b g g g g g) W2 r2 2 
±(j b (g g g −g −g)S) W2 r2 20 
±(j b (g −g −g −g −g)S) W2 r2 10 
±(j −h (±o 0 0 0 0)S) W2 r2 20 
±(0 l (g g g g −g)S) W2 r2 10 
±(0 l (g g −g −g −g)S) W2 r2 20 
±(0 l −g −g −g −g −g) W2 r2 2 

0 0 (±o ±o 0 0 0)S W2 r2 40 

r 2 E7 S7 

m = r1 (9  4 3)  3/2 
√q 

− ×
 

(117 − 4 
√
78) × 3/377 

q 

c (9  4 
√
3)/6 

q 

− (117  4 78)/1131 
q √

− 
k 

√
(9  4 3)  4/3 

q 

− ×
√

(117  4 78) 8/1131  
q 

− ×
f (9  4 3)/3 

q √
− (117  4 

√
78)  2/1131 

q 

− ×
i 9  4 3 

p √
− (117  4 

√
78)  2/377 

q 

− ×
a (9 

√
 4 3)/12 

q 

− (117  4 78)/2262 
q √

− 
e (9  4 3)/4 

q √
− (117  4 78)/754 

q √
−

j ( 3 + 6)/3 
q √

( 
√
78 + 78)/273 

q

p ( 3 + 6)  2/3 
q √

× ( 
√
78 + 78)  2/273 

q

×
b ( 3 + 6)/24 

q √
( 78 + 78)/2184 

q √

g ( 3 + 6) 8 /
q √

78 + 78)/728 
q √

h ( 
√
3 + 6)/6 

q √
( 78 + 78)/546 

q

o ( 3 + 6)/2 
q √

( 
√
78 + 78)/182 

q

l ( 3 + 6) × 3/8 
q √

( 
√
78 + 78) × 3/728 

q

r2 3 + 6 
p√ √ 

( 78 + 78)/91
q 

W0 (144− 35
√
3) ˇ7/2 /1089 (6912− 7× 211/2

√
39)π3/2264031

W1 (675 + 388 
√
3) ˇ7/2 /95832  (104598 + 1085  27/2 

√
× 39) ˇ3 /124521705 

W2 (90 − 37 
√
3) ˇ7/2 /23958 (101088 − 235 × 29/2 

√
39) ˇ3 /124521705 
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TABLE 10.1
25 new cubature rules for 

2

Er 
n 

 

. A * indicates that a rule with fewer points was known. 

New Rule
NMLB 

Smallest Previous Rule 

n N d Shells Quality Symmetry N d Source 

2 17 8 P bilateral 15 18 9 [17] 
2 24 10 N bilateral 21 25 11 [16] 
3 10 4 P x2, x3 10 13 5 [40, VII] 

3 22 6 P bilateral 20 27 7 [39, r 2 E n :7-1] 

3 220 14 N none 120 288 14 [39, r2 E 3 :14-1]
3 234 15 N none 140 none 

4 16 4 1+10+5 P 4-simplex 15 22 5 [39, 
2 

Er 
n :5-1] 

4 16 4 1+6+9 P x1, x3 15 22 5 [39, 
2 

Er 
n :5-1] 

4 23∗ 5 1+22 P vertex 21 22 5 [39, 
2 

Er 
n :5-1] 

4 43 6 P bilateral 35 49 7 [39, r 2 E n :7-1] 
 

4 105 8 N none 70 193 9 [39, 
2

Er 
n :9-1] 

4 124 9 N central 91 193 9 [39, r 2 E n :9-1] 

4 125 9 N central 91 193 9 [39, r 2 E n :9-1] 

4 213 10 N none 126 417 11 [39, r 2 E n :11-1] 

5 22 4 1+6+15 P 5-simplex 21 32 5 [39, r 2 E n :5-1] 

5 80 6 P none 56 83 7 [39, r 2 E n :7-1] 
5 224 8 N none 126 395 9 [1, CUT8] 

6 28 4 1+27 P vertex 28 44 5 [39, 
2 

Er 
n :5-1] 

6 127 7 1+54+72 P central 124 137 7 [39, 
2 

Er 
n :7-1] 

7 38 4 1+8+8+21 N see text 36 57 5 [39, r 2 E n :5-1] 

7 183 7 1+56+126 P central 182 227 7 [39, 
2 

Er 
n :7-1] 

8 339 6 N none 165 705 7 [39, r 2 E n :7-3] 
9 76 4 P none 55 111 5 [25, I] 

10 96 4 P none 66 133 5 [25, I] 
11 119 4 N none 78 157 5 [25, I] 

Also included are several of the MATLAB/Octave and Maxima programs used to find 
these rules and to refine them to high precision. 

Acknowledgements. I thank one anonymous reviewer for finding closed forms for 
several coefficients in the rule of degree 4 for S3 and another anonymous reviewer for providing 
the weights and points for Mysovskih’s 16-point formula for S4. 
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