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Abstract 

This document describes a method for improving the Transmission Control Protocol (TCP) 

throughput between AIX hosts communicating over a high latency network connection (e.g., a 

wide area network (WAN)). MITRE observed that the TCP throughput between AIX hosts 

communicating across a high bandwidth WAN was low while that of Linux hosts was 

significantly higher. While researching this issue, MITRE learned that AIX uses the NewReno 

TCP congestion algorithm, and that Red Hat Enterprise Linux (RHEL) uses the Cubic TCP 

congestion algorithm. These algorithms are responsible for the observed difference in TCP 

throughput across the WAN. To improve the throughput for AIX hosts, a method was developed 

using RHEL hosts and a utility called “socat” that allows the Linux hosts to act as TCP proxies 

for the AIX hosts’ WAN communications. Since Linux uses the Cubic algorithm for TCP 

congestion control, the overall TCP throughput is improved over NewReno. MITRE observed 

between 7 and 10 times more throughput between AIX hosts using this method. 

 

  



Page | iv  

Executive Summary 

Different operating systems utilize different TCP congestion control algorithms. For AIX, the 

algorithm is “NewReno” and for Linux, the algorithm is “Cubic”. MITRE observed that the TCP 

throughput of the NewReno algorithm was much lower than expected between two 10 Gbps 

ethernet connected hosts communicating across a 100 Gbps WAN with 63 milliseconds (ms) of 

network latency. The average observed throughput was only 3.6 MBps (28.8 Mbps). 

This document provides a solution that greatly improves the TCP throughput between AIX hosts 

communicating over a high latency network connection. The solution requires the use of Red Hat 

Enterprise Linux (RHEL) hosts and a utility called socat to send data across the WAN on behalf 

of the AIX hosts. The test environment used the IBM PowerPC 64-bit Little Endian (PPC64LE) 

version of RHEL 7.6 running on IBM POWER9 servers. While other hosting platforms were not 

tested, this solution does not preclude the use of alternative platforms to run the RHEL hosts 

(e.g., RHEL x64). 

Using the configuration as outlined in this document, data throughput over a single TCP socket 

between AIX hosts was increased approximately 7 to 10 times. In addition, a major advantage of 

this solution is that most environments should be able to implement it with little to no additional 

cost. The MITRE team implemented this solution using existing hardware and software resulting 

in no additional cost. 
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 Low TCP Throughput 
This section provides an overview of the low Transmission Control Protocol (TCP) throughput 

between AIX hosts as observed by the MITRE team. The issue was first seen by the operations 

team while transferring data between sites connected by a wide area network (WAN). All forms 

of communication were affected: file transfers regardless of protocol used, database replications, 

etc. Large data transfers of multiple terabytes (TB) between AIX hosts across the WAN were 

taking days, instead of hours, to complete. However, data transfers between AIX hosts on the 

Local Area Network (LAN) did not experience low TCP throughput, and TB of data could be 

transferred in minutes to hours. 

The MITRE team collaborated with the operations team and IBM engineers to determine the 

cause of the low TCP throughput across the WAN. 

 

1.1 Summary 

Figure 1 summarizes the low TCP throughput as observed between AIX hosts over a high 

latency network connection: 

WAN

(High Latency)
rhel-vm-1 rhel-vm-2

IBM Power Server

Site A

rhel-vm-1 to rhel-vm-2 high TCP throughput

~26 Mbytes/sec over a WAN with 63 ms latency

aix-vm-1 to aix-vm-2 low TCP throughput

~3.6 Mbytes/sec over a WAN with 63 ms latency
IBM Power Server

Site B

aix-vm-1 aix-vm-2

 

Figure 1: Low TCP Throughput between AIX Hosts 

 

As seen in Figure 1, the data transfers between AIX hosts were observed to be limited to 

approximately 3.6 MBps over a WAN connection with 63 ms of latency. At this rate, data 

transfers across the WAN are intolerably slow for production operations. For example, a transfer 

of 2 TB of data using a single TCP socket at this rate (assuming a constant rate) would take 7 

days and 10 hours to complete. Replicating a large database across the WAN is an example of a 

process that would suffer greatly from this throughput rate. 
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An additional observation was that virtual machines (VMs) running the Red Hat Enterprise 

Linux (RHEL) OS on the IBM POWER9 exhibited acceptable TCP throughput for data transfers 

across the WAN. During testing, the transfer of a 1 gigabyte (GB) test file was approximately 7 

to 10 times faster between the RHEL hosts as compared to AIX hosts on the same POWER9 

servers. This was notable as the RHEL VMs were using the same servers, storage, and 

networking as the AIX VMs. 

While collaborating with IBM on the TCP throughput issue, the MITRE team learned that the 

cause of the low throughput is the NewReno congestion algorithm that is used by the AIX 

TCP/IP stack. The network congestion algorithm determines the rate at which the host should 

transmit data to avoid overwhelming the network. In this case the observation is that the 

NewReno algorithm sends data at a lower rate than the Cubic algorithm on the same WAN. Note 

that as the algorithm itself is the cause of the low throughput, there is nothing to patch or upgrade 

on the AIX host. 

Since the NewReno algorithm is unchangeable, the MITRE team evaluated other ways to 

increase the AIX data transfer rates across the WAN. 
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 An Observation and an Idea 
The most important data point available during the troubleshooting of this issue was the 

performance of the RHEL hosts. Data transfers between these hosts was approximately 7 to 10 

times faster than the AIX hosts using the same infrastructure. This sparked an idea: 

Could the higher TCP throughput of RHEL hosts be used to improve TCP throughput for 

AIX hosts communicating across the WAN? 

 

2.1 Test Environment Overview 

Initially, the idea was to create secure shell (SSH) tunnels to forward traffic between two data 

centers across the WAN – from Site A to Site B. While this concept worked and did improve 

TCP throughput by approximately 4 to 5 times in the test environment, it also added significant 

overhead to the connectivity in the form of encryption, SSH protocol performance limitations, 

and authentication/key management complexities. 

Thus, the MITRE team searched for another method to create a “TCP port proxy” that did not 

have the added overhead of the SSH tunnels. The search resulted in the discovery of an open-

source Linux utility known as “socat”. The socat utility is used to relay TCP network traffic 

between hosts and is readily available on RHEL and other Linux distributions, including RHEL 

for IBM Power systems (RHEL PPC64LE). The MITRE team used this distribution to test the 

concept. 
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With socat in hand, the MITRE team created a test environment as shown in Figure 2: 

WAN

(High Latency)

IBM Power Server

Site A

aix-vm-1 to aix-vm-2 high TCP throughput

~26 Mbytes/sec over a WAN with 63 ms latency

IBM Power Server

Site B

aix-vm-2

rhel-vm-2rhel-vm-1

socat

aix-vm-1

socat

 

Figure 2: An Overview of the socat Test Environment 

 

The goal was to have the RHEL hosts send data across the WAN on behalf of the AIX hosts. 

This seemed logical since the TCP throughput for WAN communications of the Cubic 

congestion algorithm was observed to be approximately 7 to 10 times faster than NewReno. The 

test configuration leveraged the hosts in Figure 2 in the following manner: 

• aix-vm-1 sends data to rhel-vm-1 via the LAN at Site A. 

aix-vm-1 is the source host. Since the LAN has little to no latency, the NewReno 

algorithm sends data quickly, and the TCP throughput to rhel-vm-1 is very high (the 

MITRE team observed a LAN throughput of approximately 1550 MBps in the test 

environment). 

• rhel-vm-1 sends data to rhel-vm-2 across the WAN. 

This transfer takes advantage of the higher TCP throughput of the Cubic congestion 

algorithm. 

• rhel-vm-2 sends data to aix-vm-2 via the LAN at Site B. 

aix-vm-2 is the destination host. 

In this way, data is transferred from aix-vm-1 to aix-vm-2 with higher TCP throughput as 

compared to having the AIX hosts communicate directly. Thus, the key is to avoid the NewReno 

congestion algorithm for WAN communications. 

The socat processes on rhel-vm-1 and rhel-vm-2 essentially create a “TCP port tunnel”. The 

proxied TCP connection takes advantage of the high TCP throughput of the Cubic algorithm for 

WAN communications, as well as the high throughput the NewReno algorithm for LAN 
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communications. This configuration results in a TCP throughput that is significantly higher than 

a direct AIX-to-AIX connection. The MITRE team observed an increase in TCP socket 

throughput between AIX hosts across the WAN of approximately 7 to 10 times for secure file 

transfers using port tcp/22 and even higher rates for iPerf tests. 

Using this method, the MITRE team observed the throughput increase from approximately 3.6 

MBps to approximately 26 MBps for a single socket across the WAN. Note that the test 

environment used an encrypted WAN connection, so the observed throughput includes the 

overhead of data encryption and decryption at the network layer between the sites. 
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 The Details 
This section provides the technical details for the implementation of the socat test environment. 

This technique can be used to create a similar setup for any environment. 

 

3.1 Pre-Requisites 

The minimum pre-requisites are: 

• One RHEL host running at “Site A” 

• One RHEL host running at “Site B” 

• socat utility installed on both RHEL hosts 

 

Note that the RHEL hosts used in the test environment were PPC64LE VMs running on the IBM 

POWER9 servers, but this same technique could be done using RHEL hosts running on an Intel 

platform. It is also possible that other Linux distributions (e.g., SUSE, Ubuntu, etc.) could serve 

as TCP port proxies, however these configurations were not tested by the MITRE team and are 

thus not specifically recommended. 

 

3.2 An Example Configuration 

For this example, a tunnel was created for an SSH (SCP or SFTP) file transfer. The overall data 

flow is from aix-vm-1 to aix-vm-2. If the data flow went from aix-vm-2 to aix-vm-1, the tunnel 

would simply be built in reverse. 

The specific port used for this example (6000) was selected arbitrarily. Any TCP port can be 

used.  Keep in mind that each tunnel endpoint will require a unique port on the RHEL hosts. 

For this example, the hosts have the following IP addresses: 

 

Table 1: Hostnames and IP Addresses for Example Configuration 

Hostname IP Address 

aix-vm-1 10.10.10.10 

rhel-vm-1 10.10.10.20 

aix-vm-2 10.20.20.10 

rhel-vm-2 10.20.20.20 
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To create the tunnel, run the following commands: 

 

3.2.1 On rhel-vm-1 (10.10.10.20): 

Perform the following steps on this host: 

• Create the script “socat-tunnel.sh” from Appendix A.1 

• Create a service named “socat-tunnel-6000-to-aix-vm-2-22.service” using the script and 

instructions in Appendix A.2. Substitute the values as shown below: 

• X = 6000 

• B = aix-vm-2 

• Y = 22 

• b = 10.20.20.20 

• y = 6000 

• Get the status of the TCP port tunnel process: 

systemctl status socat-tunnel-6000-to-aix-vm-2-22 

 

Try killing the socat process ( ps -ef | grep socat, take note of the PID, then kill -9 

PID) and ensure that it respawns automatically. 
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3.2.2 On rhel-vm-2 (10.20.20.20): 

Perform the following steps on this host: 

• Create the script “socat-tunnel.sh” from Appendix A.1 

• Create a service named “socat-tunnel-6000-to-aix-vm-2-22.service” using the script and 

instructions in Appendix A.2. Substitute the values as shown below: 

a. X = 6000 

b. B = aix-vm-2 

c. Y = 22 

d. b = 10.20.20.10 

e. Y = 22 

• Get the status of the TCP port tunnel process: 

systemctl status socat-tunnel-6000-to-aix-vm-2-22 

 

Try killing the socat process ( ps -ef | grep socat, take note of the PID, then kill -9 

PID) and ensure that it respawns automatically. 
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3.2.3 Test Environment Configuration Details 

Figure 3 shows the details of the completed tunnel: 

 

SOCAT TUNNEL 1

Local Listening Port:

tcp/6000

Remote Host:Port:

rhel-vm-2:6000 

WAN

(High Latency)

IBM Power Server

Site A

aix-vm-1 to aix-vm-2 high TCP throughput

~26 Mbytes/sec over a WAN with 63 ms latency

IBM Power Server

Site B

aix-vm-2

rhel-vm-2rhel-vm-1

socat

aix-vm-1

socat

SOCAT TUNNEL 2

Local Listening Port:

tcp/6000

Remote Host:Port:

aix-vm-2:22 

 

Figure 3: Test Environment Configuration Details 

 

Note that as configured here, any host at “Site A” can use the tunnel since it is simply listening 

on rhel-vm-1:6000 for incoming packets. See Appendix A.3 for an alternative service version 

that limits the incoming connections to specific source IP addresses. Alternatively, the firewall 

service (firewalld) on rhel-vm-1 can be configured to restrict access to that port to specific 

IP addresses, but that is beyond the scope of this document. 

To use the tunnel, run any command like the following on host aix-vm-1: 

 

scp -P 6000 my.data rhel-vm-1:/tmp/ 

 

Host aix-vm-1 copies the file “my.data” to rhel-vm-1, which is on the LAN. As the NewReno 

algorithm has excellent performance on the LAN, aix-vm-1 sends data quickly to rhel-vm-1. The 

socat process on rhel-vm-1 receives the packet and forwards it to rhel-vm-2 which is across the 

WAN. Since the Cubic algorithm has good TCP throughput across the WAN, the packets are 

sent in a timely manner. Next, rhel-vm-2 receives the packet and forwards it to aix-vm-2 on port 

22. Note that the final port number is also arbitrary. As another example, the destination could be 

port 1521 for an Oracle database. 
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Host aix-vm-2 believes that rhel-vm-2 is the client, but the socat process on rhel-vm-2 receives 

the return traffic from aix-vm-2 and forwards it back up the tunnel to aix-vm-1. In this way, an 

end to end socket is created and data flows as expected. The result of this configuration is that 

data moves approximately 7 to 10 times faster per TCP socket from aix-vm-1 to aix-vm-2. 

To reverse the flow (where aix-vm-2 is the sender), another tunnel would be created that uses a 

different port than 6000, since 6000 is already in use on rhel-vm-2. An example would be to use 

port 6001. Once the tunnel was setup in the opposite direction, the following command on aix-

vm-2 would use the new tunnel to aix-vm-1: 

 

scp -P 6001 my.data rhel-vm-2:/tmp/ 

 

Note that in both cases, the sending host is communicating with a RHEL host on the LAN to 

send the data. This is important because it determines the TCP throughput performance for the 

AIX hosts. If aix-vm-2 were to send data to rhel-vm-1 directly, then the NewReno TCP 

congestion control algorithm would be used, and throughput would be limited as before. 
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 Production Ready 
The socat tunnels, if configured as described in this document, will respawn if the socat process 

terminates for any reason. While this is a necessary feature, it alone is insufficient for a 

production environment. A more comprehensive solution has the following attributes: 

• High Availability (HA) for the tunnels 

• An integrity check on the tunnels (i.e. is the entire tunnel up and passing data?) 

• Performance monitoring for the tunnels 

• Resource monitoring for the socat processes 

 

The details of a specific configuration are left to the reader as there are too many variants 

between environments to make specific recommendations. However, Figure 4 provides a 

conceptual architecture for a production ready solution: 

 

Site A

WAN

(High Latency)

IBM Power

Server 1

rhel-vm-2

rhel-vm-1

Site B

IBM Power

Server 1

rhel-vm-4

rhel-vm-3 aix-vm-2aix-vm-1

Network
Load Balancer

socat socat

socat

socat socat

socat socat

socat

IBM Power

Server 2

IBM Power

Server 2 Network
Load Balancer

 

Figure 4: Conceptual Production Architecture 

NOTE: Load balancers are only used on the sending side of a connection. The socat tunnels send traffic directly to final host. 

 

Note that the socat processes consume a small amount of resources on the RHEL hosts so be sure 

they are sized appropriately. The MITRE team observed approximately 10% CPU usage during a 

large data transfer. 
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 Additional Improvements 
Keep in mind that the TCP throughput rate limit only applies to a single socket. One way to 

improve end to end data throughput is to multiplex the transfer across multiple TCP sockets. For 

example, instead of using four sockets for the transfer, one can use ten sockets. All sockets are 

operating at the same time so in this example, there would be a 60% increase in data throughput. 

This increase is independent of the data throughput rate of each TCP socket. 

The creation and use of multiple sockets will be determined by the program performing the file 

transfer. For example, Oracle’s recovery manager (RMAN) creates what are known as 

“channels” to transfer data. Creating multiple channels results in multiple sockets at the TCP 

layer. The use of multiple sockets combined with the socat tunnel solution in this document 

should result in significant data throughput improvement between AIX hosts across the WAN. 
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 Conclusion 
The use of socat tunnels on RHEL hosts to proxy AIX hosts’ WAN communications greatly 

improves the TCP throughput between the AIX hosts. The socat tunnel solution can be 

implemented now at little to no cost to improve operational data transfers. 
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Appendix A Scripts and Services 

 

A.1 The socat-tunnel.sh Script 

The following is the socat-tunnel.sh script. 

Perform these steps on the RHEL host where the socat tunnel will reside: 

• Copy the script below to /usr/sbin/socat-tunnel.sh 

• Execute: chown root:root /usr/sbin/socat-tunnel.sh 

• Execute: chmod 740 /usr/sbin/socat-tunnel.sh 

 

#!/bin/sh 

 

Usage() { 

echo "Usage:" 

echo "$0 <local_socat_listening_port> <destination host>:<destination port>" 

exit 1 

} 

 

LOCAL_SOCAT_LISTENING_PORT="$1" 
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DESTINATION="$2" 

 

# Check parameters 

if [ x"$LOCAL_SOCAT_LISTENING_PORT" == x"" ] || [ x"$DESTINATION" == x"" ]; then 

Usage 

fi 

 

if [[ "$DESTINATION" != *":"* ]]; then 

Usage 

fi 

 

/usr/bin/socat TCP4-LISTEN:${LOCAL_SOCAT_LISTENING_PORT},fork,reuseaddr TCP4:${DESTINATION} 

 

Note that the “fork,reuseaddr” options allow multiple TCP connections to the same port. It causes socat to launch a child process for each 

external host and port that connects to the listening port. 
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A.2 SOCAT Service File 

Be sure that the socat-tunnel.sh script from either Appendix A-1 or A-3 is in place before performing this step. 

The following is a generic socat-tunnel service definition. Make the following substitutions as indicated: 

• X = Listening port on this host 

• B = Endpoint host name 

• Y = Endpoint host’s port number 

• b = Next hop host’s IP address 

• y = Next hop host’s port number 

 

Perform these steps on the RHEL host where the socat tunnel will reside: 

• For each tunnel that will run, copy the script below to /usr/lib/systemd/system/socat-tunnel-X-to-B-
Y.service 

• Execute: chown root:root /usr/lib /systemd/system/socat-tunnel-X-to-B-Y.service 

• Execute: chmod 640 /usr/lib /systemd/system/socat-tunnel-X-to-B-Y.service 

• Execute: systemctl daemon-reload 

• Execute: systemctl enable socat-tunnel-X-to-B-Y.service 

• Execute: systemctl start socat-tunnel-X-to-B-Y.service 

• Execute: systemctl list-units | grep socat 

 

[Unit] 

Description=Start socat tunnel on X to B:Y (service name) 
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[Service] 

Type=simple 

ExecStart=/bin/bash /usr/sbin/socat-tunnel.sh X b:y 

Restart=always 

 

[Install] 

WantedBy=multi-user.target 

 

The “Restart=always” entry causes systemd to respawn the process if it dies. This is important to keep the tunnel up if the process dies 

unexpectedly. 

Note the parameters that are passed to the “socat-tunnel.sh” script. They are the local listening port, the remote host, and the remote port. 

These will vary for each tunnel service that is created so be sure to substitute the appropriate values as indicated. 
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A.3 Socat-tunnel.sh Script (Optional) 

This section contains an alternative socat-tunnel.sh script. It is identical to the script in Appendix A.1 except that there is an additional 

parameter that causes the tunnel use to be restricted to specific source IP addresses. This might be desirable if the SOCAT tunnel should be 

used only by specific source hosts. 

Perform these steps on the RHEL host where the socat tunnel will reside: 

• Copy the script below to /usr/sbin/socat-tunnel.sh 

• Execute: chown root:root /usr/sbin/socat-tunnel.sh 

• Execute: chmod 740 /usr/sbin/socat-tunnel.sh 

 

#!/bin/sh 

 

Usage() { 

echo "Usage:" 

echo "$0 <local_socat_listening_port> <destination host>:<destination port>" 

exit 1 

} 

 

LOCAL_SOCAT_LISTENING_PORT="$1" 

DESTINATION="$2" 
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# Check parameters 

if [ x"$LOCAL_SOCAT_LISTENING_PORT" == x"" ] || [ x"$DESTINATION" == x"" ]; then 

Usage 

fi 

 

if [[ "$DESTINATION" != *":"* ]]; then 

Usage 

fi 

 

/usr/bin/socat TCP4-LISTEN:${LOCAL_SOCAT_LISTENING_PORT},fork,reuseaddr,range=10.10.10.20/32 

TCP4:${DESTINATION} 

 

Note that the “fork,reuseaddr” options allow multiple TCP connections to the same port. It causes socat to launch a child process for each 

external host and port that connects to the listening port. In addition, the use of the “range” parameter in this version limits the connection 

to a particular source classless inter-domain routing (CIDR) block. In this case, it is limited to a single host “10.10.10.20”. 
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Appendix B Abbreviations and Acronyms 

The following is a list of abbreviations and acronyms used in this document 

Term Definition 

AIX Advanced Interactive eXecutive 

CIDR Classless Inter-Domain Routing 

Cubic The TCP congestion algorithm used by the Linux TCP/IP stack 

GB Gigabytes 

Gbps Gigabits per second 

GBps Gigabytes per second 

IP Internet Protocol 

LAN Local Area Network 

MB Megabytes 

Mbps Megabits per second 

MBps Megabytes per second 

NewReno The TCP congestion algorithm used by the AIX TCP/IP stack 

OS Operating System 

PPC64LE PowerPC 64-bit Little Endian 

RHEL Red Hat Enterprise Linux 

RMAN Recovery Manager 

SCP Secure Copy 

SFTP Secure FTP 

SSH Secure Shell 

TB Terabytes 

TCP Transmission Control Protocol 
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VM Virtual Machine 

WAN Wide Area Network 
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	 Low TCP Throughput 
	This section provides an overview of the low Transmission Control Protocol (TCP) throughput between AIX hosts as observed by the MITRE team. The issue was first seen by the operations team while transferring data between sites connected by a wide area network (WAN). All forms of communication were affected: file transfers regardless of protocol used, database replications, etc. Large data transfers of multiple terabytes (TB) between AIX hosts across the WAN were taking days, instead of hours, to complete. H
	The MITRE team collaborated with the operations team and IBM engineers to determine the cause of the low TCP throughput across the WAN. 
	 
	1.1 Summary 
	Figure 1 summarizes the low TCP throughput as observed between AIX hosts over a high latency network connection: 
	 
	 
	InlineShape

	Figure 1: Low TCP Throughput between AIX Hosts 
	 
	As seen in Figure 1, the data transfers between AIX hosts were observed to be limited to approximately 3.6 MBps over a WAN connection with 63 ms of latency. At this rate, data transfers across the WAN are intolerably slow for production operations. For example, a transfer of 2 TB of data using a single TCP socket at this rate (assuming a constant rate) would take 7 days and 10 hours to complete. Replicating a large database across the WAN is an example of a process that would suffer greatly from this throug
	An additional observation was that virtual machines (VMs) running the Red Hat Enterprise Linux (RHEL) OS on the IBM POWER9 exhibited acceptable TCP throughput for data transfers across the WAN. During testing, the transfer of a 1 gigabyte (GB) test file was approximately 7 to 10 times faster between the RHEL hosts as compared to AIX hosts on the same POWER9 servers. This was notable as the RHEL VMs were using the same servers, storage, and networking as the AIX VMs. 
	While collaborating with IBM on the TCP throughput issue, the MITRE team learned that the cause of the low throughput is the NewReno congestion algorithm that is used by the AIX TCP/IP stack. The network congestion algorithm determines the rate at which the host should transmit data to avoid overwhelming the network. In this case the observation is that the NewReno algorithm sends data at a lower rate than the Cubic algorithm on the same WAN. Note that as the algorithm itself is the cause of the low through
	Since the NewReno algorithm is unchangeable, the MITRE team evaluated other ways to increase the AIX data transfer rates across the WAN. 
	  
	 An Observation and an Idea 
	The most important data point available during the troubleshooting of this issue was the performance of the RHEL hosts. Data transfers between these hosts was approximately 7 to 10 times faster than the AIX hosts using the same infrastructure. This sparked an idea: 
	Could the higher TCP throughput of RHEL hosts be used to improve TCP throughput for AIX hosts communicating across the WAN? 
	 
	2.1 Test Environment Overview 
	Initially, the idea was to create secure shell (SSH) tunnels to forward traffic between two data centers across the WAN – from Site A to Site B. While this concept worked and did improve TCP throughput by approximately 4 to 5 times in the test environment, it also added significant overhead to the connectivity in the form of encryption, SSH protocol performance limitations, and authentication/key management complexities. 
	Thus, the MITRE team searched for another method to create a “TCP port proxy” that did not have the added overhead of the SSH tunnels. The search resulted in the discovery of an open-source Linux utility known as “socat”. The socat utility is used to relay TCP network traffic between hosts and is readily available on RHEL and other Linux distributions, including RHEL for IBM Power systems (RHEL PPC64LE). The MITRE team used this distribution to test the concept. 
	  
	With socat in hand, the MITRE team created a test environment as shown in Figure 2: 
	 
	 
	InlineShape

	Figure 2: An Overview of the socat Test Environment 
	 
	The goal was to have the RHEL hosts send data across the WAN on behalf of the AIX hosts. This seemed logical since the TCP throughput for WAN communications of the Cubic congestion algorithm was observed to be approximately 7 to 10 times faster than NewReno. The test configuration leveraged the hosts in Figure 2 in the following manner: 
	• aix-vm-1 sends data to rhel-vm-1 via the LAN at Site A. aix-vm-1 is the source host. Since the LAN has little to no latency, the NewReno algorithm sends data quickly, and the TCP throughput to rhel-vm-1 is very high (the MITRE team observed a LAN throughput of approximately 1550 MBps in the test environment). 
	• aix-vm-1 sends data to rhel-vm-1 via the LAN at Site A. aix-vm-1 is the source host. Since the LAN has little to no latency, the NewReno algorithm sends data quickly, and the TCP throughput to rhel-vm-1 is very high (the MITRE team observed a LAN throughput of approximately 1550 MBps in the test environment). 
	• aix-vm-1 sends data to rhel-vm-1 via the LAN at Site A. aix-vm-1 is the source host. Since the LAN has little to no latency, the NewReno algorithm sends data quickly, and the TCP throughput to rhel-vm-1 is very high (the MITRE team observed a LAN throughput of approximately 1550 MBps in the test environment). 

	• rhel-vm-1 sends data to rhel-vm-2 across the WAN. This transfer takes advantage of the higher TCP throughput of the Cubic congestion algorithm. 
	• rhel-vm-1 sends data to rhel-vm-2 across the WAN. This transfer takes advantage of the higher TCP throughput of the Cubic congestion algorithm. 

	• rhel-vm-2 sends data to aix-vm-2 via the LAN at Site B. aix-vm-2 is the destination host. 
	• rhel-vm-2 sends data to aix-vm-2 via the LAN at Site B. aix-vm-2 is the destination host. 


	In this way, data is transferred from aix-vm-1 to aix-vm-2 with higher TCP throughput as compared to having the AIX hosts communicate directly. Thus, the key is to avoid the NewReno congestion algorithm for WAN communications. 
	The socat processes on rhel-vm-1 and rhel-vm-2 essentially create a “TCP port tunnel”. The proxied TCP connection takes advantage of the high TCP throughput of the Cubic algorithm for WAN communications, as well as the high throughput the NewReno algorithm for LAN 
	communications. This configuration results in a TCP throughput that is significantly higher than a direct AIX-to-AIX connection. The MITRE team observed an increase in TCP socket throughput between AIX hosts across the WAN of approximately 7 to 10 times for secure file transfers using port tcp/22 and even higher rates for iPerf tests. 
	Using this method, the MITRE team observed the throughput increase from approximately 3.6 MBps to approximately 26 MBps for a single socket across the WAN. Note that the test environment used an encrypted WAN connection, so the observed throughput includes the overhead of data encryption and decryption at the network layer between the sites. 
	  
	 The Details 
	This section provides the technical details for the implementation of the socat test environment. This technique can be used to create a similar setup for any environment. 
	 
	3.1 Pre-Requisites 
	The minimum pre-requisites are: 
	• One RHEL host running at “Site A” 
	• One RHEL host running at “Site A” 
	• One RHEL host running at “Site A” 

	• One RHEL host running at “Site B” 
	• One RHEL host running at “Site B” 

	• socat utility installed on both RHEL hosts 
	• socat utility installed on both RHEL hosts 


	 
	Note that the RHEL hosts used in the test environment were PPC64LE VMs running on the IBM POWER9 servers, but this same technique could be done using RHEL hosts running on an Intel platform. It is also possible that other Linux distributions (e.g., SUSE, Ubuntu, etc.) could serve as TCP port proxies, however these configurations were not tested by the MITRE team and are thus not specifically recommended. 
	 
	3.2 An Example Configuration 
	For this example, a tunnel was created for an SSH (SCP or SFTP) file transfer. The overall data flow is from aix-vm-1 to aix-vm-2. If the data flow went from aix-vm-2 to aix-vm-1, the tunnel would simply be built in reverse. 
	The specific port used for this example (6000) was selected arbitrarily. Any TCP port can be used.  Keep in mind that each tunnel endpoint will require a unique port on the RHEL hosts. 
	For this example, the hosts have the following IP addresses: 
	 
	Table 1: Hostnames and IP Addresses for Example Configuration 
	Hostname 
	Hostname 
	Hostname 
	Hostname 

	IP Address 
	IP Address 


	aix-vm-1 
	aix-vm-1 
	aix-vm-1 

	10.10.10.10 
	10.10.10.10 


	rhel-vm-1 
	rhel-vm-1 
	rhel-vm-1 

	10.10.10.20 
	10.10.10.20 


	aix-vm-2 
	aix-vm-2 
	aix-vm-2 

	10.20.20.10 
	10.20.20.10 


	rhel-vm-2 
	rhel-vm-2 
	rhel-vm-2 

	10.20.20.20 
	10.20.20.20 



	 
	  
	To create the tunnel, run the following commands: 
	 
	3.2.1 On rhel-vm-1 (10.10.10.20): 
	Perform the following steps on this host: 
	• Create the script “socat-tunnel.sh” from Appendix A.1 
	• Create the script “socat-tunnel.sh” from Appendix A.1 
	• Create the script “socat-tunnel.sh” from Appendix A.1 

	• Create a service named “socat-tunnel-6000-to-aix-vm-2-22.service” using the script and instructions in Appendix A.2. Substitute the values as shown below: 
	• Create a service named “socat-tunnel-6000-to-aix-vm-2-22.service” using the script and instructions in Appendix A.2. Substitute the values as shown below: 

	• X = 6000 
	• X = 6000 
	• X = 6000 

	• B = aix-vm-2 
	• B = aix-vm-2 

	• Y = 22 
	• Y = 22 

	• b = 10.20.20.20 
	• b = 10.20.20.20 

	• y = 6000 
	• y = 6000 


	• Get the status of the TCP port tunnel process: 
	• Get the status of the TCP port tunnel process: 


	systemctl status socat-tunnel-6000-to-aix-vm-2-22 
	 
	Try killing the socat process ( ps -ef | grep socat, take note of the PID, then kill -9 PID) and ensure that it respawns automatically. 
	 
	  
	3.2.2 On rhel-vm-2 (10.20.20.20): 
	Perform the following steps on this host: 
	• Create the script “socat-tunnel.sh” from Appendix A.1 
	• Create the script “socat-tunnel.sh” from Appendix A.1 
	• Create the script “socat-tunnel.sh” from Appendix A.1 

	• Create a service named “socat-tunnel-6000-to-aix-vm-2-22.service” using the script and instructions in Appendix A.2. Substitute the values as shown below: 
	• Create a service named “socat-tunnel-6000-to-aix-vm-2-22.service” using the script and instructions in Appendix A.2. Substitute the values as shown below: 

	a. X = 6000 
	a. X = 6000 
	a. X = 6000 

	b. B = aix-vm-2 
	b. B = aix-vm-2 

	c. Y = 22 
	c. Y = 22 

	d. b = 10.20.20.10 
	d. b = 10.20.20.10 

	e. Y = 22 
	e. Y = 22 


	• Get the status of the TCP port tunnel process: 
	• Get the status of the TCP port tunnel process: 


	systemctl status socat-tunnel-6000-to-aix-vm-2-22 
	 
	Try killing the socat process ( ps -ef | grep socat, take note of the PID, then kill -9 PID) and ensure that it respawns automatically. 
	  
	3.2.3 Test Environment Configuration Details 
	Figure 3 shows the details of the completed tunnel: 
	 
	 
	 
	InlineShape

	Figure 3: Test Environment Configuration Details 
	 
	Note that as configured here, any host at “Site A” can use the tunnel since it is simply listening on rhel-vm-1:6000 for incoming packets. See Appendix A.3 for an alternative service version that limits the incoming connections to specific source IP addresses. Alternatively, the firewall service (firewalld) on rhel-vm-1 can be configured to restrict access to that port to specific IP addresses, but that is beyond the scope of this document. 
	To use the tunnel, run any command like the following on host aix-vm-1: 
	 
	scp -P 6000 my.data rhel-vm-1:/tmp/ 
	 
	Host aix-vm-1 copies the file “my.data” to rhel-vm-1, which is on the LAN. As the NewReno algorithm has excellent performance on the LAN, aix-vm-1 sends data quickly to rhel-vm-1. The socat process on rhel-vm-1 receives the packet and forwards it to rhel-vm-2 which is across the WAN. Since the Cubic algorithm has good TCP throughput across the WAN, the packets are sent in a timely manner. Next, rhel-vm-2 receives the packet and forwards it to aix-vm-2 on port 22. Note that the final port number is also arbi
	Host aix-vm-2 believes that rhel-vm-2 is the client, but the socat process on rhel-vm-2 receives the return traffic from aix-vm-2 and forwards it back up the tunnel to aix-vm-1. In this way, an end to end socket is created and data flows as expected. The result of this configuration is that data moves approximately 7 to 10 times faster per TCP socket from aix-vm-1 to aix-vm-2. 
	To reverse the flow (where aix-vm-2 is the sender), another tunnel would be created that uses a different port than 6000, since 6000 is already in use on rhel-vm-2. An example would be to use port 6001. Once the tunnel was setup in the opposite direction, the following command on aix-vm-2 would use the new tunnel to aix-vm-1: 
	 
	scp -P 6001 my.data rhel-vm-2:/tmp/ 
	 
	Note that in both cases, the sending host is communicating with a RHEL host on the LAN to send the data. This is important because it determines the TCP throughput performance for the AIX hosts. If aix-vm-2 were to send data to rhel-vm-1 directly, then the NewReno TCP congestion control algorithm would be used, and throughput would be limited as before. 
	  
	 Production Ready 
	The socat tunnels, if configured as described in this document, will respawn if the socat process terminates for any reason. While this is a necessary feature, it alone is insufficient for a production environment. A more comprehensive solution has the following attributes: 
	• High Availability (HA) for the tunnels 
	• High Availability (HA) for the tunnels 
	• High Availability (HA) for the tunnels 

	• An integrity check on the tunnels (i.e. is the entire tunnel up and passing data?) 
	• An integrity check on the tunnels (i.e. is the entire tunnel up and passing data?) 

	• Performance monitoring for the tunnels 
	• Performance monitoring for the tunnels 

	• Resource monitoring for the socat processes 
	• Resource monitoring for the socat processes 


	 
	The details of a specific configuration are left to the reader as there are too many variants between environments to make specific recommendations. However, Figure 4 provides a conceptual architecture for a production ready solution: 
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	Figure 4: Conceptual Production Architecture 
	NOTE: Load balancers are only used on the sending side of a connection. The socat tunnels send traffic directly to final host. 
	 
	Note that the socat processes consume a small amount of resources on the RHEL hosts so be sure they are sized appropriately. The MITRE team observed approximately 10% CPU usage during a large data transfer. 
	 
	 Additional Improvements 
	Keep in mind that the TCP throughput rate limit only applies to a single socket. One way to improve end to end data throughput is to multiplex the transfer across multiple TCP sockets. For example, instead of using four sockets for the transfer, one can use ten sockets. All sockets are operating at the same time so in this example, there would be a 60% increase in data throughput. This increase is independent of the data throughput rate of each TCP socket. 
	The creation and use of multiple sockets will be determined by the program performing the file transfer. For example, Oracle’s recovery manager (RMAN) creates what are known as “channels” to transfer data. Creating multiple channels results in multiple sockets at the TCP layer. The use of multiple sockets combined with the socat tunnel solution in this document should result in significant data throughput improvement between AIX hosts across the WAN. 
	  
	 Conclusion 
	The use of socat tunnels on RHEL hosts to proxy AIX hosts’ WAN communications greatly improves the TCP throughput between the AIX hosts. The socat tunnel solution can be implemented now at little to no cost to improve operational data transfers. 
	 
	 
	Appendix A Scripts and Services 
	 
	A.1 The socat-tunnel.sh Script 
	A.1 The socat-tunnel.sh Script 
	A.1 The socat-tunnel.sh Script 
	A.1 The socat-tunnel.sh Script 
	A.1 The socat-tunnel.sh Script 
	A.1 The socat-tunnel.sh Script 
	A.1 The socat-tunnel.sh Script 
	A.1 The socat-tunnel.sh Script 
	A.1 The socat-tunnel.sh Script 








	The following is the socat-tunnel.sh script. 
	Perform these steps on the RHEL host where the socat tunnel will reside: 
	• Copy the script below to /usr/sbin/socat-tunnel.sh 
	• Copy the script below to /usr/sbin/socat-tunnel.sh 
	• Copy the script below to /usr/sbin/socat-tunnel.sh 

	• Execute: chown root:root /usr/sbin/socat-tunnel.sh 
	• Execute: chown root:root /usr/sbin/socat-tunnel.sh 

	• Execute: chmod 740 /usr/sbin/socat-tunnel.sh 
	• Execute: chmod 740 /usr/sbin/socat-tunnel.sh 


	 
	#!/bin/sh 
	 
	Usage() { 
	echo "Usage:" 
	echo "$0 <local_socat_listening_port> <destination host>:<destination port>" 
	exit 1 
	} 
	 
	LOCAL_SOCAT_LISTENING_PORT="$1" 
	DESTINATION="$2" 
	 
	# Check parameters 
	if [ x"$LOCAL_SOCAT_LISTENING_PORT" == x"" ] || [ x"$DESTINATION" == x"" ]; then 
	Usage 
	fi 
	 
	if [[ "$DESTINATION" != *":"* ]]; then 
	Usage 
	fi 
	 
	/usr/bin/socat TCP4-LISTEN:${LOCAL_SOCAT_LISTENING_PORT},fork,reuseaddr TCP4:${DESTINATION} 
	 
	Note that the “fork,reuseaddr” options allow multiple TCP connections to the same port. It causes socat to launch a child process for each external host and port that connects to the listening port. 
	  
	A.2 SOCAT Service File 
	A.2 SOCAT Service File 
	A.2 SOCAT Service File 
	A.2 SOCAT Service File 
	A.2 SOCAT Service File 
	A.2 SOCAT Service File 
	A.2 SOCAT Service File 
	A.2 SOCAT Service File 
	A.2 SOCAT Service File 








	Be sure that the socat-tunnel.sh script from either Appendix A-1 or A-3 is in place before performing this step. 
	The following is a generic socat-tunnel service definition. Make the following substitutions as indicated: 
	• X = Listening port on this host 
	• X = Listening port on this host 
	• X = Listening port on this host 

	• B = Endpoint host name 
	• B = Endpoint host name 

	• Y = Endpoint host’s port number 
	• Y = Endpoint host’s port number 

	• b = Next hop host’s IP address 
	• b = Next hop host’s IP address 

	• y = Next hop host’s port number 
	• y = Next hop host’s port number 


	 
	Perform these steps on the RHEL host where the socat tunnel will reside: 
	• For each tunnel that will run, copy the script below to /usr/lib/systemd/system/socat-tunnel-X-to-B-Y.service 
	• For each tunnel that will run, copy the script below to /usr/lib/systemd/system/socat-tunnel-X-to-B-Y.service 
	• For each tunnel that will run, copy the script below to /usr/lib/systemd/system/socat-tunnel-X-to-B-Y.service 

	• Execute: chown root:root /usr/lib /systemd/system/socat-tunnel-X-to-B-Y.service 
	• Execute: chown root:root /usr/lib /systemd/system/socat-tunnel-X-to-B-Y.service 

	• Execute: chmod 640 /usr/lib /systemd/system/socat-tunnel-X-to-B-Y.service 
	• Execute: chmod 640 /usr/lib /systemd/system/socat-tunnel-X-to-B-Y.service 

	• Execute: systemctl daemon-reload 
	• Execute: systemctl daemon-reload 

	• Execute: systemctl enable socat-tunnel-X-to-B-Y.service 
	• Execute: systemctl enable socat-tunnel-X-to-B-Y.service 

	• Execute: systemctl start socat-tunnel-X-to-B-Y.service 
	• Execute: systemctl start socat-tunnel-X-to-B-Y.service 

	• Execute: systemctl list-units | grep socat 
	• Execute: systemctl list-units | grep socat 


	 
	[Unit] Description=Start socat tunnel on X to B:Y (service name) 
	 
	[Service] 
	Type=simple 
	ExecStart=/bin/bash /usr/sbin/socat-tunnel.sh X b:y 
	Restart=always 
	 
	[Install] 
	WantedBy=multi-user.target 
	 
	The “Restart=always” entry causes systemd to respawn the process if it dies. This is important to keep the tunnel up if the process dies unexpectedly. 
	Note the parameters that are passed to the “socat-tunnel.sh” script. They are the local listening port, the remote host, and the remote port. These will vary for each tunnel service that is created so be sure to substitute the appropriate values as indicated. 
	  
	A.3 Socat-tunnel.sh Script (Optional) 
	A.3 Socat-tunnel.sh Script (Optional) 
	A.3 Socat-tunnel.sh Script (Optional) 
	A.3 Socat-tunnel.sh Script (Optional) 
	A.3 Socat-tunnel.sh Script (Optional) 
	A.3 Socat-tunnel.sh Script (Optional) 
	A.3 Socat-tunnel.sh Script (Optional) 
	A.3 Socat-tunnel.sh Script (Optional) 
	A.3 Socat-tunnel.sh Script (Optional) 








	This section contains an alternative socat-tunnel.sh script. It is identical to the script in Appendix A.1 except that there is an additional parameter that causes the tunnel use to be restricted to specific source IP addresses. This might be desirable if the SOCAT tunnel should be used only by specific source hosts. 
	Perform these steps on the RHEL host where the socat tunnel will reside: 
	• Copy the script below to /usr/sbin/socat-tunnel.sh 
	• Copy the script below to /usr/sbin/socat-tunnel.sh 
	• Copy the script below to /usr/sbin/socat-tunnel.sh 

	• Execute: chown root:root /usr/sbin/socat-tunnel.sh 
	• Execute: chown root:root /usr/sbin/socat-tunnel.sh 

	• Execute: chmod 740 /usr/sbin/socat-tunnel.sh 
	• Execute: chmod 740 /usr/sbin/socat-tunnel.sh 


	 
	#!/bin/sh 
	 
	Usage() { 
	echo "Usage:" 
	echo "$0 <local_socat_listening_port> <destination host>:<destination port>" 
	exit 1 
	} 
	 
	LOCAL_SOCAT_LISTENING_PORT="$1" 
	DESTINATION="$2" 
	 
	# Check parameters 
	if [ x"$LOCAL_SOCAT_LISTENING_PORT" == x"" ] || [ x"$DESTINATION" == x"" ]; then 
	Usage 
	fi 
	 
	if [[ "$DESTINATION" != *":"* ]]; then 
	Usage 
	fi 
	 
	/usr/bin/socat TCP4-LISTEN:${LOCAL_SOCAT_LISTENING_PORT},fork,reuseaddr,range=10.10.10.20/32 TCP4:${DESTINATION} 
	 
	Note that the “fork,reuseaddr” options allow multiple TCP connections to the same port. It causes socat to launch a child process for each external host and port that connects to the listening port. In addition, the use of the “range” parameter in this version limits the connection to a particular source classless inter-domain routing (CIDR) block. In this case, it is limited to a single host “10.10.10.20”. 
	 
	 
	Appendix B Abbreviations and Acronyms 
	The following is a list of abbreviations and acronyms used in this document 
	Term 
	Term 
	Term 
	Term 

	Definition 
	Definition 


	AIX 
	AIX 
	AIX 

	Advanced Interactive eXecutive 
	Advanced Interactive eXecutive 


	CIDR 
	CIDR 
	CIDR 

	Classless Inter-Domain Routing 
	Classless Inter-Domain Routing 


	Cubic 
	Cubic 
	Cubic 

	The TCP congestion algorithm used by the Linux TCP/IP stack 
	The TCP congestion algorithm used by the Linux TCP/IP stack 


	GB 
	GB 
	GB 

	Gigabytes 
	Gigabytes 


	Gbps 
	Gbps 
	Gbps 

	Gigabits per second 
	Gigabits per second 


	GBps 
	GBps 
	GBps 

	Gigabytes per second 
	Gigabytes per second 


	IP 
	IP 
	IP 

	Internet Protocol 
	Internet Protocol 


	LAN 
	LAN 
	LAN 

	Local Area Network 
	Local Area Network 


	MB 
	MB 
	MB 

	Megabytes 
	Megabytes 


	Mbps 
	Mbps 
	Mbps 

	Megabits per second 
	Megabits per second 


	MBps 
	MBps 
	MBps 

	Megabytes per second 
	Megabytes per second 


	NewReno 
	NewReno 
	NewReno 

	The TCP congestion algorithm used by the AIX TCP/IP stack 
	The TCP congestion algorithm used by the AIX TCP/IP stack 


	OS 
	OS 
	OS 

	Operating System 
	Operating System 


	PPC64LE 
	PPC64LE 
	PPC64LE 

	PowerPC 64-bit Little Endian 
	PowerPC 64-bit Little Endian 


	RHEL 
	RHEL 
	RHEL 

	Red Hat Enterprise Linux 
	Red Hat Enterprise Linux 


	RMAN 
	RMAN 
	RMAN 

	Recovery Manager 
	Recovery Manager 


	SCP 
	SCP 
	SCP 

	Secure Copy 
	Secure Copy 


	SFTP 
	SFTP 
	SFTP 

	Secure FTP 
	Secure FTP 


	SSH 
	SSH 
	SSH 

	Secure Shell 
	Secure Shell 


	TB 
	TB 
	TB 

	Terabytes 
	Terabytes 


	TCP 
	TCP 
	TCP 

	Transmission Control Protocol 
	Transmission Control Protocol 



	VM 
	VM 
	VM 
	VM 

	Virtual Machine 
	Virtual Machine 


	WAN 
	WAN 
	WAN 

	Wide Area Network 
	Wide Area Network 
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