

Approved for Public Release;
Distribution Unlimited. Public
Release Case Number 21-0602

Improving TCP Throughput
for AIX Hosts Communicating
Over High Latency Network
Connections

The views, opinions and/or findings contained

in this report are those of The MITRE

Corporation and should not be construed as an
official government position, policy, or

decision, unless designated by other

documentation.

©2021 The MITRE Corporation.

All rights reserved.

McLean, VA

Author(s):

Neil A. Kirr

Paul E. Nguyen

February 2021

Page | iii

Abstract

This document describes a method for improving the Transmission Control Protocol (TCP)

throughput between AIX hosts communicating over a high latency network connection (e.g., a

wide area network (WAN)). MITRE observed that the TCP throughput between AIX hosts

communicating across a high bandwidth WAN was low while that of Linux hosts was

significantly higher. While researching this issue, MITRE learned that AIX uses the NewReno

TCP congestion algorithm, and that Red Hat Enterprise Linux (RHEL) uses the Cubic TCP

congestion algorithm. These algorithms are responsible for the observed difference in TCP

throughput across the WAN. To improve the throughput for AIX hosts, a method was developed

using RHEL hosts and a utility called “socat” that allows the Linux hosts to act as TCP proxies

for the AIX hosts’ WAN communications. Since Linux uses the Cubic algorithm for TCP

congestion control, the overall TCP throughput is improved over NewReno. MITRE observed

between 7 and 10 times more throughput between AIX hosts using this method.

Page | iv

Executive Summary

Different operating systems utilize different TCP congestion control algorithms. For AIX, the

algorithm is “NewReno” and for Linux, the algorithm is “Cubic”. MITRE observed that the TCP

throughput of the NewReno algorithm was much lower than expected between two 10 Gbps

ethernet connected hosts communicating across a 100 Gbps WAN with 63 milliseconds (ms) of

network latency. The average observed throughput was only 3.6 MBps (28.8 Mbps).

This document provides a solution that greatly improves the TCP throughput between AIX hosts

communicating over a high latency network connection. The solution requires the use of Red Hat

Enterprise Linux (RHEL) hosts and a utility called socat to send data across the WAN on behalf

of the AIX hosts. The test environment used the IBM PowerPC 64-bit Little Endian (PPC64LE)

version of RHEL 7.6 running on IBM POWER9 servers. While other hosting platforms were not

tested, this solution does not preclude the use of alternative platforms to run the RHEL hosts

(e.g., RHEL x64).

Using the configuration as outlined in this document, data throughput over a single TCP socket

between AIX hosts was increased approximately 7 to 10 times. In addition, a major advantage of

this solution is that most environments should be able to implement it with little to no additional

cost. The MITRE team implemented this solution using existing hardware and software resulting

in no additional cost.

Page | v

Table of Contents

 Low TCP Throughput ... 1

1.1 Summary .. 1

 An Observation and an Idea ... 3

2.1 Test Environment Overview .. 3

 The Details .. 6

3.1 Pre-Requisites .. 6

3.2 An Example Configuration .. 6

3.2.1 On rhel-vm-1 (10.10.10.20): .. 7

3.2.2 On rhel-vm-2 (10.20.20.20): .. 8

3.2.3 Test Environment Configuration Details ... 9

 Production Ready .. 11

 Additional Improvements ... 12

 Conclusion .. 13

Appendix A Scripts and Services .. A-1

A.1 The socat-tunnel.sh Script .. A-1

A.2 SOCAT Service File .. A-3

A.3 Socat-tunnel.sh Script (Optional)... A-5

Appendix B Abbreviations and Acronyms .. B-1

Page | vi

List of Figures

Figure 1: Low TCP Throughput between AIX Hosts ... 1

Figure 2: An Overview of the socat Test Environment .. 4

Figure 3: Test Environment Configuration Details .. 9

Figure 4: Conceptual Production Architecture ... 11

List of Tables

Table 1: Hostnames and IP Addresses for Example Configuration ... 6

Page | 1

 Low TCP Throughput
This section provides an overview of the low Transmission Control Protocol (TCP) throughput

between AIX hosts as observed by the MITRE team. The issue was first seen by the operations

team while transferring data between sites connected by a wide area network (WAN). All forms

of communication were affected: file transfers regardless of protocol used, database replications,

etc. Large data transfers of multiple terabytes (TB) between AIX hosts across the WAN were

taking days, instead of hours, to complete. However, data transfers between AIX hosts on the

Local Area Network (LAN) did not experience low TCP throughput, and TB of data could be

transferred in minutes to hours.

The MITRE team collaborated with the operations team and IBM engineers to determine the

cause of the low TCP throughput across the WAN.

1.1 Summary

Figure 1 summarizes the low TCP throughput as observed between AIX hosts over a high

latency network connection:

WAN

(High Latency)
rhel-vm-1 rhel-vm-2

IBM Power Server

Site A

rhel-vm-1 to rhel-vm-2 high TCP throughput

~26 Mbytes/sec over a WAN with 63 ms latency

aix-vm-1 to aix-vm-2 low TCP throughput

~3.6 Mbytes/sec over a WAN with 63 ms latency
IBM Power Server

Site B

aix-vm-1 aix-vm-2

Figure 1: Low TCP Throughput between AIX Hosts

As seen in Figure 1, the data transfers between AIX hosts were observed to be limited to

approximately 3.6 MBps over a WAN connection with 63 ms of latency. At this rate, data

transfers across the WAN are intolerably slow for production operations. For example, a transfer

of 2 TB of data using a single TCP socket at this rate (assuming a constant rate) would take 7

days and 10 hours to complete. Replicating a large database across the WAN is an example of a

process that would suffer greatly from this throughput rate.

Page | 2

An additional observation was that virtual machines (VMs) running the Red Hat Enterprise

Linux (RHEL) OS on the IBM POWER9 exhibited acceptable TCP throughput for data transfers

across the WAN. During testing, the transfer of a 1 gigabyte (GB) test file was approximately 7

to 10 times faster between the RHEL hosts as compared to AIX hosts on the same POWER9

servers. This was notable as the RHEL VMs were using the same servers, storage, and

networking as the AIX VMs.

While collaborating with IBM on the TCP throughput issue, the MITRE team learned that the

cause of the low throughput is the NewReno congestion algorithm that is used by the AIX

TCP/IP stack. The network congestion algorithm determines the rate at which the host should

transmit data to avoid overwhelming the network. In this case the observation is that the

NewReno algorithm sends data at a lower rate than the Cubic algorithm on the same WAN. Note

that as the algorithm itself is the cause of the low throughput, there is nothing to patch or upgrade

on the AIX host.

Since the NewReno algorithm is unchangeable, the MITRE team evaluated other ways to

increase the AIX data transfer rates across the WAN.

Page | 3

 An Observation and an Idea
The most important data point available during the troubleshooting of this issue was the

performance of the RHEL hosts. Data transfers between these hosts was approximately 7 to 10

times faster than the AIX hosts using the same infrastructure. This sparked an idea:

Could the higher TCP throughput of RHEL hosts be used to improve TCP throughput for

AIX hosts communicating across the WAN?

2.1 Test Environment Overview

Initially, the idea was to create secure shell (SSH) tunnels to forward traffic between two data

centers across the WAN – from Site A to Site B. While this concept worked and did improve

TCP throughput by approximately 4 to 5 times in the test environment, it also added significant

overhead to the connectivity in the form of encryption, SSH protocol performance limitations,

and authentication/key management complexities.

Thus, the MITRE team searched for another method to create a “TCP port proxy” that did not

have the added overhead of the SSH tunnels. The search resulted in the discovery of an open-

source Linux utility known as “socat”. The socat utility is used to relay TCP network traffic

between hosts and is readily available on RHEL and other Linux distributions, including RHEL

for IBM Power systems (RHEL PPC64LE). The MITRE team used this distribution to test the

concept.

Page | 4

With socat in hand, the MITRE team created a test environment as shown in Figure 2:

WAN

(High Latency)

IBM Power Server

Site A

aix-vm-1 to aix-vm-2 high TCP throughput

~26 Mbytes/sec over a WAN with 63 ms latency

IBM Power Server

Site B

aix-vm-2

rhel-vm-2rhel-vm-1

socat

aix-vm-1

socat

Figure 2: An Overview of the socat Test Environment

The goal was to have the RHEL hosts send data across the WAN on behalf of the AIX hosts.

This seemed logical since the TCP throughput for WAN communications of the Cubic

congestion algorithm was observed to be approximately 7 to 10 times faster than NewReno. The

test configuration leveraged the hosts in Figure 2 in the following manner:

• aix-vm-1 sends data to rhel-vm-1 via the LAN at Site A.

aix-vm-1 is the source host. Since the LAN has little to no latency, the NewReno

algorithm sends data quickly, and the TCP throughput to rhel-vm-1 is very high (the

MITRE team observed a LAN throughput of approximately 1550 MBps in the test

environment).

• rhel-vm-1 sends data to rhel-vm-2 across the WAN.

This transfer takes advantage of the higher TCP throughput of the Cubic congestion

algorithm.

• rhel-vm-2 sends data to aix-vm-2 via the LAN at Site B.

aix-vm-2 is the destination host.

In this way, data is transferred from aix-vm-1 to aix-vm-2 with higher TCP throughput as

compared to having the AIX hosts communicate directly. Thus, the key is to avoid the NewReno

congestion algorithm for WAN communications.

The socat processes on rhel-vm-1 and rhel-vm-2 essentially create a “TCP port tunnel”. The

proxied TCP connection takes advantage of the high TCP throughput of the Cubic algorithm for

WAN communications, as well as the high throughput the NewReno algorithm for LAN

Page | 5

communications. This configuration results in a TCP throughput that is significantly higher than

a direct AIX-to-AIX connection. The MITRE team observed an increase in TCP socket

throughput between AIX hosts across the WAN of approximately 7 to 10 times for secure file

transfers using port tcp/22 and even higher rates for iPerf tests.

Using this method, the MITRE team observed the throughput increase from approximately 3.6

MBps to approximately 26 MBps for a single socket across the WAN. Note that the test

environment used an encrypted WAN connection, so the observed throughput includes the

overhead of data encryption and decryption at the network layer between the sites.

Page | 6

 The Details
This section provides the technical details for the implementation of the socat test environment.

This technique can be used to create a similar setup for any environment.

3.1 Pre-Requisites

The minimum pre-requisites are:

• One RHEL host running at “Site A”

• One RHEL host running at “Site B”

• socat utility installed on both RHEL hosts

Note that the RHEL hosts used in the test environment were PPC64LE VMs running on the IBM

POWER9 servers, but this same technique could be done using RHEL hosts running on an Intel

platform. It is also possible that other Linux distributions (e.g., SUSE, Ubuntu, etc.) could serve

as TCP port proxies, however these configurations were not tested by the MITRE team and are

thus not specifically recommended.

3.2 An Example Configuration

For this example, a tunnel was created for an SSH (SCP or SFTP) file transfer. The overall data

flow is from aix-vm-1 to aix-vm-2. If the data flow went from aix-vm-2 to aix-vm-1, the tunnel

would simply be built in reverse.

The specific port used for this example (6000) was selected arbitrarily. Any TCP port can be

used. Keep in mind that each tunnel endpoint will require a unique port on the RHEL hosts.

For this example, the hosts have the following IP addresses:

Table 1: Hostnames and IP Addresses for Example Configuration

Hostname IP Address

aix-vm-1 10.10.10.10

rhel-vm-1 10.10.10.20

aix-vm-2 10.20.20.10

rhel-vm-2 10.20.20.20

Page | 7

To create the tunnel, run the following commands:

3.2.1 On rhel-vm-1 (10.10.10.20):

Perform the following steps on this host:

• Create the script “socat-tunnel.sh” from Appendix A.1

• Create a service named “socat-tunnel-6000-to-aix-vm-2-22.service” using the script and

instructions in Appendix A.2. Substitute the values as shown below:

• X = 6000

• B = aix-vm-2

• Y = 22

• b = 10.20.20.20

• y = 6000

• Get the status of the TCP port tunnel process:

systemctl status socat-tunnel-6000-to-aix-vm-2-22

Try killing the socat process (ps -ef | grep socat, take note of the PID, then kill -9

PID) and ensure that it respawns automatically.

Page | 8

3.2.2 On rhel-vm-2 (10.20.20.20):

Perform the following steps on this host:

• Create the script “socat-tunnel.sh” from Appendix A.1

• Create a service named “socat-tunnel-6000-to-aix-vm-2-22.service” using the script and

instructions in Appendix A.2. Substitute the values as shown below:

a. X = 6000

b. B = aix-vm-2

c. Y = 22

d. b = 10.20.20.10

e. Y = 22

• Get the status of the TCP port tunnel process:

systemctl status socat-tunnel-6000-to-aix-vm-2-22

Try killing the socat process (ps -ef | grep socat, take note of the PID, then kill -9

PID) and ensure that it respawns automatically.

Page | 9

3.2.3 Test Environment Configuration Details

Figure 3 shows the details of the completed tunnel:

SOCAT TUNNEL 1

Local Listening Port:

tcp/6000

Remote Host:Port:

rhel-vm-2:6000

WAN

(High Latency)

IBM Power Server

Site A

aix-vm-1 to aix-vm-2 high TCP throughput

~26 Mbytes/sec over a WAN with 63 ms latency

IBM Power Server

Site B

aix-vm-2

rhel-vm-2rhel-vm-1

socat

aix-vm-1

socat

SOCAT TUNNEL 2

Local Listening Port:

tcp/6000

Remote Host:Port:

aix-vm-2:22

Figure 3: Test Environment Configuration Details

Note that as configured here, any host at “Site A” can use the tunnel since it is simply listening

on rhel-vm-1:6000 for incoming packets. See Appendix A.3 for an alternative service version

that limits the incoming connections to specific source IP addresses. Alternatively, the firewall

service (firewalld) on rhel-vm-1 can be configured to restrict access to that port to specific

IP addresses, but that is beyond the scope of this document.

To use the tunnel, run any command like the following on host aix-vm-1:

scp -P 6000 my.data rhel-vm-1:/tmp/

Host aix-vm-1 copies the file “my.data” to rhel-vm-1, which is on the LAN. As the NewReno

algorithm has excellent performance on the LAN, aix-vm-1 sends data quickly to rhel-vm-1. The

socat process on rhel-vm-1 receives the packet and forwards it to rhel-vm-2 which is across the

WAN. Since the Cubic algorithm has good TCP throughput across the WAN, the packets are

sent in a timely manner. Next, rhel-vm-2 receives the packet and forwards it to aix-vm-2 on port

22. Note that the final port number is also arbitrary. As another example, the destination could be

port 1521 for an Oracle database.

Page | 10

Host aix-vm-2 believes that rhel-vm-2 is the client, but the socat process on rhel-vm-2 receives

the return traffic from aix-vm-2 and forwards it back up the tunnel to aix-vm-1. In this way, an

end to end socket is created and data flows as expected. The result of this configuration is that

data moves approximately 7 to 10 times faster per TCP socket from aix-vm-1 to aix-vm-2.

To reverse the flow (where aix-vm-2 is the sender), another tunnel would be created that uses a

different port than 6000, since 6000 is already in use on rhel-vm-2. An example would be to use

port 6001. Once the tunnel was setup in the opposite direction, the following command on aix-

vm-2 would use the new tunnel to aix-vm-1:

scp -P 6001 my.data rhel-vm-2:/tmp/

Note that in both cases, the sending host is communicating with a RHEL host on the LAN to

send the data. This is important because it determines the TCP throughput performance for the

AIX hosts. If aix-vm-2 were to send data to rhel-vm-1 directly, then the NewReno TCP

congestion control algorithm would be used, and throughput would be limited as before.

Page | 11

 Production Ready
The socat tunnels, if configured as described in this document, will respawn if the socat process

terminates for any reason. While this is a necessary feature, it alone is insufficient for a

production environment. A more comprehensive solution has the following attributes:

• High Availability (HA) for the tunnels

• An integrity check on the tunnels (i.e. is the entire tunnel up and passing data?)

• Performance monitoring for the tunnels

• Resource monitoring for the socat processes

The details of a specific configuration are left to the reader as there are too many variants

between environments to make specific recommendations. However, Figure 4 provides a

conceptual architecture for a production ready solution:

Site A

WAN

(High Latency)

IBM Power

Server 1

rhel-vm-2

rhel-vm-1

Site B

IBM Power

Server 1

rhel-vm-4

rhel-vm-3 aix-vm-2aix-vm-1

Network
Load Balancer

socat socat

socat

socat socat

socat socat

socat

IBM Power

Server 2

IBM Power

Server 2 Network
Load Balancer

Figure 4: Conceptual Production Architecture

NOTE: Load balancers are only used on the sending side of a connection. The socat tunnels send traffic directly to final host.

Note that the socat processes consume a small amount of resources on the RHEL hosts so be sure

they are sized appropriately. The MITRE team observed approximately 10% CPU usage during a

large data transfer.

Page | 12

 Additional Improvements
Keep in mind that the TCP throughput rate limit only applies to a single socket. One way to

improve end to end data throughput is to multiplex the transfer across multiple TCP sockets. For

example, instead of using four sockets for the transfer, one can use ten sockets. All sockets are

operating at the same time so in this example, there would be a 60% increase in data throughput.

This increase is independent of the data throughput rate of each TCP socket.

The creation and use of multiple sockets will be determined by the program performing the file

transfer. For example, Oracle’s recovery manager (RMAN) creates what are known as

“channels” to transfer data. Creating multiple channels results in multiple sockets at the TCP

layer. The use of multiple sockets combined with the socat tunnel solution in this document

should result in significant data throughput improvement between AIX hosts across the WAN.

Page | 13

 Conclusion
The use of socat tunnels on RHEL hosts to proxy AIX hosts’ WAN communications greatly

improves the TCP throughput between the AIX hosts. The socat tunnel solution can be

implemented now at little to no cost to improve operational data transfers.

Page | A-1

Appendix A Scripts and Services

A.1 The socat-tunnel.sh Script

The following is the socat-tunnel.sh script.

Perform these steps on the RHEL host where the socat tunnel will reside:

• Copy the script below to /usr/sbin/socat-tunnel.sh

• Execute: chown root:root /usr/sbin/socat-tunnel.sh

• Execute: chmod 740 /usr/sbin/socat-tunnel.sh

#!/bin/sh

Usage() {

echo "Usage:"

echo "$0 <local_socat_listening_port> <destination host>:<destination port>"

exit 1

}

LOCAL_SOCAT_LISTENING_PORT="$1"

Page | A-2

DESTINATION="$2"

Check parameters

if [x"$LOCAL_SOCAT_LISTENING_PORT" == x""] || [x"$DESTINATION" == x""]; then

Usage

fi

if [["$DESTINATION" != *":"*]]; then

Usage

fi

/usr/bin/socat TCP4-LISTEN:${LOCAL_SOCAT_LISTENING_PORT},fork,reuseaddr TCP4:${DESTINATION}

Note that the “fork,reuseaddr” options allow multiple TCP connections to the same port. It causes socat to launch a child process for each

external host and port that connects to the listening port.

Page | A-3

A.2 SOCAT Service File

Be sure that the socat-tunnel.sh script from either Appendix A-1 or A-3 is in place before performing this step.

The following is a generic socat-tunnel service definition. Make the following substitutions as indicated:

• X = Listening port on this host

• B = Endpoint host name

• Y = Endpoint host’s port number

• b = Next hop host’s IP address

• y = Next hop host’s port number

Perform these steps on the RHEL host where the socat tunnel will reside:

• For each tunnel that will run, copy the script below to /usr/lib/systemd/system/socat-tunnel-X-to-B-
Y.service

• Execute: chown root:root /usr/lib /systemd/system/socat-tunnel-X-to-B-Y.service

• Execute: chmod 640 /usr/lib /systemd/system/socat-tunnel-X-to-B-Y.service

• Execute: systemctl daemon-reload

• Execute: systemctl enable socat-tunnel-X-to-B-Y.service

• Execute: systemctl start socat-tunnel-X-to-B-Y.service

• Execute: systemctl list-units | grep socat

[Unit]

Description=Start socat tunnel on X to B:Y (service name)

Page | A-4

[Service]

Type=simple

ExecStart=/bin/bash /usr/sbin/socat-tunnel.sh X b:y

Restart=always

[Install]

WantedBy=multi-user.target

The “Restart=always” entry causes systemd to respawn the process if it dies. This is important to keep the tunnel up if the process dies

unexpectedly.

Note the parameters that are passed to the “socat-tunnel.sh” script. They are the local listening port, the remote host, and the remote port.

These will vary for each tunnel service that is created so be sure to substitute the appropriate values as indicated.

Page | A-5

A.3 Socat-tunnel.sh Script (Optional)

This section contains an alternative socat-tunnel.sh script. It is identical to the script in Appendix A.1 except that there is an additional

parameter that causes the tunnel use to be restricted to specific source IP addresses. This might be desirable if the SOCAT tunnel should be

used only by specific source hosts.

Perform these steps on the RHEL host where the socat tunnel will reside:

• Copy the script below to /usr/sbin/socat-tunnel.sh

• Execute: chown root:root /usr/sbin/socat-tunnel.sh

• Execute: chmod 740 /usr/sbin/socat-tunnel.sh

#!/bin/sh

Usage() {

echo "Usage:"

echo "$0 <local_socat_listening_port> <destination host>:<destination port>"

exit 1

}

LOCAL_SOCAT_LISTENING_PORT="$1"

DESTINATION="$2"

Page | A-6

Check parameters

if [x"$LOCAL_SOCAT_LISTENING_PORT" == x""] || [x"$DESTINATION" == x""]; then

Usage

fi

if [["$DESTINATION" != *":"*]]; then

Usage

fi

/usr/bin/socat TCP4-LISTEN:${LOCAL_SOCAT_LISTENING_PORT},fork,reuseaddr,range=10.10.10.20/32

TCP4:${DESTINATION}

Note that the “fork,reuseaddr” options allow multiple TCP connections to the same port. It causes socat to launch a child process for each

external host and port that connects to the listening port. In addition, the use of the “range” parameter in this version limits the connection

to a particular source classless inter-domain routing (CIDR) block. In this case, it is limited to a single host “10.10.10.20”.

Page | B-1

Appendix B Abbreviations and Acronyms

The following is a list of abbreviations and acronyms used in this document

Term Definition

AIX Advanced Interactive eXecutive

CIDR Classless Inter-Domain Routing

Cubic The TCP congestion algorithm used by the Linux TCP/IP stack

GB Gigabytes

Gbps Gigabits per second

GBps Gigabytes per second

IP Internet Protocol

LAN Local Area Network

MB Megabytes

Mbps Megabits per second

MBps Megabytes per second

NewReno The TCP congestion algorithm used by the AIX TCP/IP stack

OS Operating System

PPC64LE PowerPC 64-bit Little Endian

RHEL Red Hat Enterprise Linux

RMAN Recovery Manager

SCP Secure Copy

SFTP Secure FTP

SSH Secure Shell

TB Terabytes

TCP Transmission Control Protocol

Page | B-2

VM Virtual Machine

WAN Wide Area Network

NOTICE

This software (or technical data) was produced for the U. S.

Government and is subject to the Rights in Data-General Clause

52.227-14, Alt. IV (May 2014) – Alternative IV (Dec 2007)

© 2021 The MITRE Corporation.

	Structure Bookmarks
	
	
	
	
	

	
	

	Approved for Public Release; Distribution Unlimited. Public Release Case Number 21-0602
	Approved for Public Release; Distribution Unlimited. Public Release Case Number 21-0602
	Approved for Public Release; Distribution Unlimited. Public Release Case Number 21-0602

	Improving TCP Throughput for AIX Hosts Communicating Over High Latency Network Connections
	Improving TCP Throughput for AIX Hosts Communicating Over High Latency Network Connections
	Improving TCP Throughput for AIX Hosts Communicating Over High Latency Network Connections

	
	
	

	
	

	The views, opinions and/or findings contained in this report are those of The MITRE Corporation and should not be construed as an official government position, policy, or decision, unless designated by other documentation.
	The views, opinions and/or findings contained in this report are those of The MITRE Corporation and should not be construed as an official government position, policy, or decision, unless designated by other documentation.
	The views, opinions and/or findings contained in this report are those of The MITRE Corporation and should not be construed as an official government position, policy, or decision, unless designated by other documentation.
	
	©2021 The MITRE Corporation. All rights reserved.
	
	McLean, VA
	

	Author(s):
	Author(s):
	Neil A. Kirr
	Paul E. Nguyen
	
	February 2021

	Figure
	..
	. 3
	
	
	Abstract
	This document describes a method for improving the Transmission Control Protocol (TCP) throughput between AIX hosts communicating over a high latency network connection (e.g., a wide area network (WAN)). MITRE observed that the TCP throughput between AIX hosts communicating across a high bandwidth WAN was low while that of Linux hosts was significantly higher. While researching this issue, MITRE learned that AIX uses the NewReno TCP congestion algorithm, and that Red Hat Enterprise Linux (RHEL) uses the Cub
	
	
	Executive Summary
	Different operating systems utilize different TCP congestion control algorithms. For AIX, the algorithm is “NewReno” and for Linux, the algorithm is “Cubic”. MITRE observed that the TCP throughput of the NewReno algorithm was much lower than expected between two 10 Gbps ethernet connected hosts communicating across a 100 Gbps WAN with 63 milliseconds (ms) of network latency. The average observed throughput was only 3.6 MBps (28.8 Mbps).
	This document provides a solution that greatly improves the TCP throughput between AIX hosts communicating over a high latency network connection. The solution requires the use of Red Hat Enterprise Linux (RHEL) hosts and a utility called socat to send data across the WAN on behalf of the AIX hosts. The test environment used the IBM PowerPC 64-bit Little Endian (PPC64LE) version of RHEL 7.6 running on IBM POWER9 servers. While other hosting platforms were not tested, this solution does not preclude the use
	Using the configuration as outlined in this document, data throughput over a single TCP socket between AIX hosts was increased approximately 7 to 10 times. In addition, a major advantage of this solution is that most environments should be able to implement it with little to no additional cost. The MITRE team implemented this solution using existing hardware and software resulting in no additional cost.
	
	..
	..
 1
	
	Table of Contents
	 Low TCP Throughput

	1.1 Summary
	1.1 Summary
	1.1 Summary

	..
 1
	

	 An Observation and an Idea

 6
	2.1 Test Environment Overview
	2.1 Test Environment Overview
	2.1 Test Environment Overview

	..
 3
	

	 The Details
	3.1 Pre-Requisites
	3.1 Pre-Requisites
	3.1 Pre-Requisites

	..
 6
	

	3.2 An Example Configuration
	3.2 An Example Configuration
	3.2 An Example Configuration

	..
 6
	

	3.2.1 On rhel-vm-1 (10.10.10.20):
	3.2.1 On rhel-vm-1 (10.10.10.20):
	3.2.1 On rhel-vm-1 (10.10.10.20):

	..
 7
	

	3.2.2 On rhel-vm-2 (10.20.20.20):
	3.2.2 On rhel-vm-2 (10.20.20.20):
	3.2.2 On rhel-vm-2 (10.20.20.20):

	..
 8
	

	3.2.3 Test Environment Configuration Details
	3.2.3 Test Environment Configuration Details
	3.2.3 Test Environment Configuration Details

	..
	... 9
	

	 Production Ready .. 11
	 Additional Improvements ... 12
	 Conclusion .. 13
	Appendix A Scripts and Services .. A-1
	Appendix A Scripts and Services .. A-1
	Appendix A Scripts and Services .. A-1

	

	A.1 The socat-tunnel.sh Script .. A-1
	A.1 The socat-tunnel.sh Script .. A-1
	A.1 The socat-tunnel.sh Script .. A-1

	

	A.2 SOCAT Service File .. A-3
	A.2 SOCAT Service File .. A-3
	A.2 SOCAT Service File .. A-3

	

	A.3 Socat-tunnel.sh Script (Optional)... A-5
	A.3 Socat-tunnel.sh Script (Optional)... A-5
	A.3 Socat-tunnel.sh Script (Optional)... A-5

	

	Appendix B Abbreviations and Acronyms .. B-1
	Appendix B Abbreviations and Acronyms .. B-1
	Appendix B Abbreviations and Acronyms .. B-1

	

	
	List of Figures
	List of Figures
	Figure 1: Low TCP Throughput between AIX Hosts
	Figure 1: Low TCP Throughput between AIX Hosts
	Figure 1: Low TCP Throughput between AIX Hosts

	..
 1
	

	Figure 2: An Overview of the socat Test Environment
	Figure 2: An Overview of the socat Test Environment
	Figure 2: An Overview of the socat Test Environment

	..
	.. 4
	

	Figure 3: Test Environment Configuration Details
	Figure 3: Test Environment Configuration Details
	Figure 3: Test Environment Configuration Details

	..
 9
	

	Figure 4: Conceptual Production Architecture ... 11
	Figure 4: Conceptual Production Architecture ... 11
	Figure 4: Conceptual Production Architecture ... 11

	

	
	List of Tables
	Table 1: Hostnames and IP Addresses for Example Configuration
	Table 1: Hostnames and IP Addresses for Example Configuration
	Table 1: Hostnames and IP Addresses for Example Configuration

 6
	

	

	
	 Low TCP Throughput
	This section provides an overview of the low Transmission Control Protocol (TCP) throughput between AIX hosts as observed by the MITRE team. The issue was first seen by the operations team while transferring data between sites connected by a wide area network (WAN). All forms of communication were affected: file transfers regardless of protocol used, database replications, etc. Large data transfers of multiple terabytes (TB) between AIX hosts across the WAN were taking days, instead of hours, to complete. H
	The MITRE team collaborated with the operations team and IBM engineers to determine the cause of the low TCP throughput across the WAN.
	
	1.1 Summary
	Figure 1 summarizes the low TCP throughput as observed between AIX hosts over a high latency network connection:
	
	
	InlineShape

	Figure 1: Low TCP Throughput between AIX Hosts
	
	As seen in Figure 1, the data transfers between AIX hosts were observed to be limited to approximately 3.6 MBps over a WAN connection with 63 ms of latency. At this rate, data transfers across the WAN are intolerably slow for production operations. For example, a transfer of 2 TB of data using a single TCP socket at this rate (assuming a constant rate) would take 7 days and 10 hours to complete. Replicating a large database across the WAN is an example of a process that would suffer greatly from this throug
	An additional observation was that virtual machines (VMs) running the Red Hat Enterprise Linux (RHEL) OS on the IBM POWER9 exhibited acceptable TCP throughput for data transfers across the WAN. During testing, the transfer of a 1 gigabyte (GB) test file was approximately 7 to 10 times faster between the RHEL hosts as compared to AIX hosts on the same POWER9 servers. This was notable as the RHEL VMs were using the same servers, storage, and networking as the AIX VMs.
	While collaborating with IBM on the TCP throughput issue, the MITRE team learned that the cause of the low throughput is the NewReno congestion algorithm that is used by the AIX TCP/IP stack. The network congestion algorithm determines the rate at which the host should transmit data to avoid overwhelming the network. In this case the observation is that the NewReno algorithm sends data at a lower rate than the Cubic algorithm on the same WAN. Note that as the algorithm itself is the cause of the low through
	Since the NewReno algorithm is unchangeable, the MITRE team evaluated other ways to increase the AIX data transfer rates across the WAN.
	
	 An Observation and an Idea
	The most important data point available during the troubleshooting of this issue was the performance of the RHEL hosts. Data transfers between these hosts was approximately 7 to 10 times faster than the AIX hosts using the same infrastructure. This sparked an idea:
	Could the higher TCP throughput of RHEL hosts be used to improve TCP throughput for AIX hosts communicating across the WAN?
	
	2.1 Test Environment Overview
	Initially, the idea was to create secure shell (SSH) tunnels to forward traffic between two data centers across the WAN – from Site A to Site B. While this concept worked and did improve TCP throughput by approximately 4 to 5 times in the test environment, it also added significant overhead to the connectivity in the form of encryption, SSH protocol performance limitations, and authentication/key management complexities.
	Thus, the MITRE team searched for another method to create a “TCP port proxy” that did not have the added overhead of the SSH tunnels. The search resulted in the discovery of an open-source Linux utility known as “socat”. The socat utility is used to relay TCP network traffic between hosts and is readily available on RHEL and other Linux distributions, including RHEL for IBM Power systems (RHEL PPC64LE). The MITRE team used this distribution to test the concept.
	
	With socat in hand, the MITRE team created a test environment as shown in Figure 2:
	
	
	InlineShape

	Figure 2: An Overview of the socat Test Environment
	
	The goal was to have the RHEL hosts send data across the WAN on behalf of the AIX hosts. This seemed logical since the TCP throughput for WAN communications of the Cubic congestion algorithm was observed to be approximately 7 to 10 times faster than NewReno. The test configuration leveraged the hosts in Figure 2 in the following manner:
	• aix-vm-1 sends data to rhel-vm-1 via the LAN at Site A. aix-vm-1 is the source host. Since the LAN has little to no latency, the NewReno algorithm sends data quickly, and the TCP throughput to rhel-vm-1 is very high (the MITRE team observed a LAN throughput of approximately 1550 MBps in the test environment).
	• aix-vm-1 sends data to rhel-vm-1 via the LAN at Site A. aix-vm-1 is the source host. Since the LAN has little to no latency, the NewReno algorithm sends data quickly, and the TCP throughput to rhel-vm-1 is very high (the MITRE team observed a LAN throughput of approximately 1550 MBps in the test environment).
	• aix-vm-1 sends data to rhel-vm-1 via the LAN at Site A. aix-vm-1 is the source host. Since the LAN has little to no latency, the NewReno algorithm sends data quickly, and the TCP throughput to rhel-vm-1 is very high (the MITRE team observed a LAN throughput of approximately 1550 MBps in the test environment).

	• rhel-vm-1 sends data to rhel-vm-2 across the WAN. This transfer takes advantage of the higher TCP throughput of the Cubic congestion algorithm.
	• rhel-vm-1 sends data to rhel-vm-2 across the WAN. This transfer takes advantage of the higher TCP throughput of the Cubic congestion algorithm.

	• rhel-vm-2 sends data to aix-vm-2 via the LAN at Site B. aix-vm-2 is the destination host.
	• rhel-vm-2 sends data to aix-vm-2 via the LAN at Site B. aix-vm-2 is the destination host.

	In this way, data is transferred from aix-vm-1 to aix-vm-2 with higher TCP throughput as compared to having the AIX hosts communicate directly. Thus, the key is to avoid the NewReno congestion algorithm for WAN communications.
	The socat processes on rhel-vm-1 and rhel-vm-2 essentially create a “TCP port tunnel”. The proxied TCP connection takes advantage of the high TCP throughput of the Cubic algorithm for WAN communications, as well as the high throughput the NewReno algorithm for LAN
	communications. This configuration results in a TCP throughput that is significantly higher than a direct AIX-to-AIX connection. The MITRE team observed an increase in TCP socket throughput between AIX hosts across the WAN of approximately 7 to 10 times for secure file transfers using port tcp/22 and even higher rates for iPerf tests.
	Using this method, the MITRE team observed the throughput increase from approximately 3.6 MBps to approximately 26 MBps for a single socket across the WAN. Note that the test environment used an encrypted WAN connection, so the observed throughput includes the overhead of data encryption and decryption at the network layer between the sites.
	
	 The Details
	This section provides the technical details for the implementation of the socat test environment. This technique can be used to create a similar setup for any environment.
	
	3.1 Pre-Requisites
	The minimum pre-requisites are:
	• One RHEL host running at “Site A”
	• One RHEL host running at “Site A”
	• One RHEL host running at “Site A”

	• One RHEL host running at “Site B”
	• One RHEL host running at “Site B”

	• socat utility installed on both RHEL hosts
	• socat utility installed on both RHEL hosts

	
	Note that the RHEL hosts used in the test environment were PPC64LE VMs running on the IBM POWER9 servers, but this same technique could be done using RHEL hosts running on an Intel platform. It is also possible that other Linux distributions (e.g., SUSE, Ubuntu, etc.) could serve as TCP port proxies, however these configurations were not tested by the MITRE team and are thus not specifically recommended.
	
	3.2 An Example Configuration
	For this example, a tunnel was created for an SSH (SCP or SFTP) file transfer. The overall data flow is from aix-vm-1 to aix-vm-2. If the data flow went from aix-vm-2 to aix-vm-1, the tunnel would simply be built in reverse.
	The specific port used for this example (6000) was selected arbitrarily. Any TCP port can be used. Keep in mind that each tunnel endpoint will require a unique port on the RHEL hosts.
	For this example, the hosts have the following IP addresses:
	
	Table 1: Hostnames and IP Addresses for Example Configuration
	Hostname
	Hostname
	Hostname
	Hostname

	IP Address
	IP Address

	aix-vm-1
	aix-vm-1
	aix-vm-1

	10.10.10.10
	10.10.10.10

	rhel-vm-1
	rhel-vm-1
	rhel-vm-1

	10.10.10.20
	10.10.10.20

	aix-vm-2
	aix-vm-2
	aix-vm-2

	10.20.20.10
	10.20.20.10

	rhel-vm-2
	rhel-vm-2
	rhel-vm-2

	10.20.20.20
	10.20.20.20

	
	
	To create the tunnel, run the following commands:
	
	3.2.1 On rhel-vm-1 (10.10.10.20):
	Perform the following steps on this host:
	• Create the script “socat-tunnel.sh” from Appendix A.1
	• Create the script “socat-tunnel.sh” from Appendix A.1
	• Create the script “socat-tunnel.sh” from Appendix A.1

	• Create a service named “socat-tunnel-6000-to-aix-vm-2-22.service” using the script and instructions in Appendix A.2. Substitute the values as shown below:
	• Create a service named “socat-tunnel-6000-to-aix-vm-2-22.service” using the script and instructions in Appendix A.2. Substitute the values as shown below:

	• X = 6000
	• X = 6000
	• X = 6000

	• B = aix-vm-2
	• B = aix-vm-2

	• Y = 22
	• Y = 22

	• b = 10.20.20.20
	• b = 10.20.20.20

	• y = 6000
	• y = 6000

	• Get the status of the TCP port tunnel process:
	• Get the status of the TCP port tunnel process:

	systemctl status socat-tunnel-6000-to-aix-vm-2-22
	
	Try killing the socat process (ps -ef | grep socat, take note of the PID, then kill -9 PID) and ensure that it respawns automatically.
	
	
	3.2.2 On rhel-vm-2 (10.20.20.20):
	Perform the following steps on this host:
	• Create the script “socat-tunnel.sh” from Appendix A.1
	• Create the script “socat-tunnel.sh” from Appendix A.1
	• Create the script “socat-tunnel.sh” from Appendix A.1

	• Create a service named “socat-tunnel-6000-to-aix-vm-2-22.service” using the script and instructions in Appendix A.2. Substitute the values as shown below:
	• Create a service named “socat-tunnel-6000-to-aix-vm-2-22.service” using the script and instructions in Appendix A.2. Substitute the values as shown below:

	a. X = 6000
	a. X = 6000
	a. X = 6000

	b. B = aix-vm-2
	b. B = aix-vm-2

	c. Y = 22
	c. Y = 22

	d. b = 10.20.20.10
	d. b = 10.20.20.10

	e. Y = 22
	e. Y = 22

	• Get the status of the TCP port tunnel process:
	• Get the status of the TCP port tunnel process:

	systemctl status socat-tunnel-6000-to-aix-vm-2-22
	
	Try killing the socat process (ps -ef | grep socat, take note of the PID, then kill -9 PID) and ensure that it respawns automatically.
	
	3.2.3 Test Environment Configuration Details
	Figure 3 shows the details of the completed tunnel:
	
	
	
	InlineShape

	Figure 3: Test Environment Configuration Details
	
	Note that as configured here, any host at “Site A” can use the tunnel since it is simply listening on rhel-vm-1:6000 for incoming packets. See Appendix A.3 for an alternative service version that limits the incoming connections to specific source IP addresses. Alternatively, the firewall service (firewalld) on rhel-vm-1 can be configured to restrict access to that port to specific IP addresses, but that is beyond the scope of this document.
	To use the tunnel, run any command like the following on host aix-vm-1:
	
	scp -P 6000 my.data rhel-vm-1:/tmp/
	
	Host aix-vm-1 copies the file “my.data” to rhel-vm-1, which is on the LAN. As the NewReno algorithm has excellent performance on the LAN, aix-vm-1 sends data quickly to rhel-vm-1. The socat process on rhel-vm-1 receives the packet and forwards it to rhel-vm-2 which is across the WAN. Since the Cubic algorithm has good TCP throughput across the WAN, the packets are sent in a timely manner. Next, rhel-vm-2 receives the packet and forwards it to aix-vm-2 on port 22. Note that the final port number is also arbi
	Host aix-vm-2 believes that rhel-vm-2 is the client, but the socat process on rhel-vm-2 receives the return traffic from aix-vm-2 and forwards it back up the tunnel to aix-vm-1. In this way, an end to end socket is created and data flows as expected. The result of this configuration is that data moves approximately 7 to 10 times faster per TCP socket from aix-vm-1 to aix-vm-2.
	To reverse the flow (where aix-vm-2 is the sender), another tunnel would be created that uses a different port than 6000, since 6000 is already in use on rhel-vm-2. An example would be to use port 6001. Once the tunnel was setup in the opposite direction, the following command on aix-vm-2 would use the new tunnel to aix-vm-1:
	
	scp -P 6001 my.data rhel-vm-2:/tmp/
	
	Note that in both cases, the sending host is communicating with a RHEL host on the LAN to send the data. This is important because it determines the TCP throughput performance for the AIX hosts. If aix-vm-2 were to send data to rhel-vm-1 directly, then the NewReno TCP congestion control algorithm would be used, and throughput would be limited as before.
	
	 Production Ready
	The socat tunnels, if configured as described in this document, will respawn if the socat process terminates for any reason. While this is a necessary feature, it alone is insufficient for a production environment. A more comprehensive solution has the following attributes:
	• High Availability (HA) for the tunnels
	• High Availability (HA) for the tunnels
	• High Availability (HA) for the tunnels

	• An integrity check on the tunnels (i.e. is the entire tunnel up and passing data?)
	• An integrity check on the tunnels (i.e. is the entire tunnel up and passing data?)

	• Performance monitoring for the tunnels
	• Performance monitoring for the tunnels

	• Resource monitoring for the socat processes
	• Resource monitoring for the socat processes

	
	The details of a specific configuration are left to the reader as there are too many variants between environments to make specific recommendations. However, Figure 4 provides a conceptual architecture for a production ready solution:
	
	
	
	InlineShape

	Figure 4: Conceptual Production Architecture
	NOTE: Load balancers are only used on the sending side of a connection. The socat tunnels send traffic directly to final host.
	
	Note that the socat processes consume a small amount of resources on the RHEL hosts so be sure they are sized appropriately. The MITRE team observed approximately 10% CPU usage during a large data transfer.
	
	 Additional Improvements
	Keep in mind that the TCP throughput rate limit only applies to a single socket. One way to improve end to end data throughput is to multiplex the transfer across multiple TCP sockets. For example, instead of using four sockets for the transfer, one can use ten sockets. All sockets are operating at the same time so in this example, there would be a 60% increase in data throughput. This increase is independent of the data throughput rate of each TCP socket.
	The creation and use of multiple sockets will be determined by the program performing the file transfer. For example, Oracle’s recovery manager (RMAN) creates what are known as “channels” to transfer data. Creating multiple channels results in multiple sockets at the TCP layer. The use of multiple sockets combined with the socat tunnel solution in this document should result in significant data throughput improvement between AIX hosts across the WAN.
	
	 Conclusion
	The use of socat tunnels on RHEL hosts to proxy AIX hosts’ WAN communications greatly improves the TCP throughput between the AIX hosts. The socat tunnel solution can be implemented now at little to no cost to improve operational data transfers.
	
	
	Appendix A Scripts and Services
	
	A.1 The socat-tunnel.sh Script
	A.1 The socat-tunnel.sh Script
	A.1 The socat-tunnel.sh Script
	A.1 The socat-tunnel.sh Script
	A.1 The socat-tunnel.sh Script
	A.1 The socat-tunnel.sh Script
	A.1 The socat-tunnel.sh Script
	A.1 The socat-tunnel.sh Script
	A.1 The socat-tunnel.sh Script

	The following is the socat-tunnel.sh script.
	Perform these steps on the RHEL host where the socat tunnel will reside:
	• Copy the script below to /usr/sbin/socat-tunnel.sh
	• Copy the script below to /usr/sbin/socat-tunnel.sh
	• Copy the script below to /usr/sbin/socat-tunnel.sh

	• Execute: chown root:root /usr/sbin/socat-tunnel.sh
	• Execute: chown root:root /usr/sbin/socat-tunnel.sh

	• Execute: chmod 740 /usr/sbin/socat-tunnel.sh
	• Execute: chmod 740 /usr/sbin/socat-tunnel.sh

	
	#!/bin/sh
	
	Usage() {
	echo "Usage:"
	echo "$0 <local_socat_listening_port> <destination host>:<destination port>"
	exit 1
	}
	
	LOCAL_SOCAT_LISTENING_PORT="$1"
	DESTINATION="$2"
	
	# Check parameters
	if [x"$LOCAL_SOCAT_LISTENING_PORT" == x""] || [x"$DESTINATION" == x""]; then
	Usage
	fi
	
	if [["$DESTINATION" != *":"*]]; then
	Usage
	fi
	
	/usr/bin/socat TCP4-LISTEN:${LOCAL_SOCAT_LISTENING_PORT},fork,reuseaddr TCP4:${DESTINATION}
	
	Note that the “fork,reuseaddr” options allow multiple TCP connections to the same port. It causes socat to launch a child process for each external host and port that connects to the listening port.
	
	A.2 SOCAT Service File
	A.2 SOCAT Service File
	A.2 SOCAT Service File
	A.2 SOCAT Service File
	A.2 SOCAT Service File
	A.2 SOCAT Service File
	A.2 SOCAT Service File
	A.2 SOCAT Service File
	A.2 SOCAT Service File

	Be sure that the socat-tunnel.sh script from either Appendix A-1 or A-3 is in place before performing this step.
	The following is a generic socat-tunnel service definition. Make the following substitutions as indicated:
	• X = Listening port on this host
	• X = Listening port on this host
	• X = Listening port on this host

	• B = Endpoint host name
	• B = Endpoint host name

	• Y = Endpoint host’s port number
	• Y = Endpoint host’s port number

	• b = Next hop host’s IP address
	• b = Next hop host’s IP address

	• y = Next hop host’s port number
	• y = Next hop host’s port number

	
	Perform these steps on the RHEL host where the socat tunnel will reside:
	• For each tunnel that will run, copy the script below to /usr/lib/systemd/system/socat-tunnel-X-to-B-Y.service
	• For each tunnel that will run, copy the script below to /usr/lib/systemd/system/socat-tunnel-X-to-B-Y.service
	• For each tunnel that will run, copy the script below to /usr/lib/systemd/system/socat-tunnel-X-to-B-Y.service

	• Execute: chown root:root /usr/lib /systemd/system/socat-tunnel-X-to-B-Y.service
	• Execute: chown root:root /usr/lib /systemd/system/socat-tunnel-X-to-B-Y.service

	• Execute: chmod 640 /usr/lib /systemd/system/socat-tunnel-X-to-B-Y.service
	• Execute: chmod 640 /usr/lib /systemd/system/socat-tunnel-X-to-B-Y.service

	• Execute: systemctl daemon-reload
	• Execute: systemctl daemon-reload

	• Execute: systemctl enable socat-tunnel-X-to-B-Y.service
	• Execute: systemctl enable socat-tunnel-X-to-B-Y.service

	• Execute: systemctl start socat-tunnel-X-to-B-Y.service
	• Execute: systemctl start socat-tunnel-X-to-B-Y.service

	• Execute: systemctl list-units | grep socat
	• Execute: systemctl list-units | grep socat

	
	[Unit] Description=Start socat tunnel on X to B:Y (service name)
	
	[Service]
	Type=simple
	ExecStart=/bin/bash /usr/sbin/socat-tunnel.sh X b:y
	Restart=always
	
	[Install]
	WantedBy=multi-user.target
	
	The “Restart=always” entry causes systemd to respawn the process if it dies. This is important to keep the tunnel up if the process dies unexpectedly.
	Note the parameters that are passed to the “socat-tunnel.sh” script. They are the local listening port, the remote host, and the remote port. These will vary for each tunnel service that is created so be sure to substitute the appropriate values as indicated.
	
	A.3 Socat-tunnel.sh Script (Optional)
	A.3 Socat-tunnel.sh Script (Optional)
	A.3 Socat-tunnel.sh Script (Optional)
	A.3 Socat-tunnel.sh Script (Optional)
	A.3 Socat-tunnel.sh Script (Optional)
	A.3 Socat-tunnel.sh Script (Optional)
	A.3 Socat-tunnel.sh Script (Optional)
	A.3 Socat-tunnel.sh Script (Optional)
	A.3 Socat-tunnel.sh Script (Optional)

	This section contains an alternative socat-tunnel.sh script. It is identical to the script in Appendix A.1 except that there is an additional parameter that causes the tunnel use to be restricted to specific source IP addresses. This might be desirable if the SOCAT tunnel should be used only by specific source hosts.
	Perform these steps on the RHEL host where the socat tunnel will reside:
	• Copy the script below to /usr/sbin/socat-tunnel.sh
	• Copy the script below to /usr/sbin/socat-tunnel.sh
	• Copy the script below to /usr/sbin/socat-tunnel.sh

	• Execute: chown root:root /usr/sbin/socat-tunnel.sh
	• Execute: chown root:root /usr/sbin/socat-tunnel.sh

	• Execute: chmod 740 /usr/sbin/socat-tunnel.sh
	• Execute: chmod 740 /usr/sbin/socat-tunnel.sh

	
	#!/bin/sh
	
	Usage() {
	echo "Usage:"
	echo "$0 <local_socat_listening_port> <destination host>:<destination port>"
	exit 1
	}
	
	LOCAL_SOCAT_LISTENING_PORT="$1"
	DESTINATION="$2"
	
	# Check parameters
	if [x"$LOCAL_SOCAT_LISTENING_PORT" == x""] || [x"$DESTINATION" == x""]; then
	Usage
	fi
	
	if [["$DESTINATION" != *":"*]]; then
	Usage
	fi
	
	/usr/bin/socat TCP4-LISTEN:${LOCAL_SOCAT_LISTENING_PORT},fork,reuseaddr,range=10.10.10.20/32 TCP4:${DESTINATION}
	
	Note that the “fork,reuseaddr” options allow multiple TCP connections to the same port. It causes socat to launch a child process for each external host and port that connects to the listening port. In addition, the use of the “range” parameter in this version limits the connection to a particular source classless inter-domain routing (CIDR) block. In this case, it is limited to a single host “10.10.10.20”.
	
	
	Appendix B Abbreviations and Acronyms
	The following is a list of abbreviations and acronyms used in this document
	Term
	Term
	Term
	Term

	Definition
	Definition

	AIX
	AIX
	AIX

	Advanced Interactive eXecutive
	Advanced Interactive eXecutive

	CIDR
	CIDR
	CIDR

	Classless Inter-Domain Routing
	Classless Inter-Domain Routing

	Cubic
	Cubic
	Cubic

	The TCP congestion algorithm used by the Linux TCP/IP stack
	The TCP congestion algorithm used by the Linux TCP/IP stack

	GB
	GB
	GB

	Gigabytes
	Gigabytes

	Gbps
	Gbps
	Gbps

	Gigabits per second
	Gigabits per second

	GBps
	GBps
	GBps

	Gigabytes per second
	Gigabytes per second

	IP
	IP
	IP

	Internet Protocol
	Internet Protocol

	LAN
	LAN
	LAN

	Local Area Network
	Local Area Network

	MB
	MB
	MB

	Megabytes
	Megabytes

	Mbps
	Mbps
	Mbps

	Megabits per second
	Megabits per second

	MBps
	MBps
	MBps

	Megabytes per second
	Megabytes per second

	NewReno
	NewReno
	NewReno

	The TCP congestion algorithm used by the AIX TCP/IP stack
	The TCP congestion algorithm used by the AIX TCP/IP stack

	OS
	OS
	OS

	Operating System
	Operating System

	PPC64LE
	PPC64LE
	PPC64LE

	PowerPC 64-bit Little Endian
	PowerPC 64-bit Little Endian

	RHEL
	RHEL
	RHEL

	Red Hat Enterprise Linux
	Red Hat Enterprise Linux

	RMAN
	RMAN
	RMAN

	Recovery Manager
	Recovery Manager

	SCP
	SCP
	SCP

	Secure Copy
	Secure Copy

	SFTP
	SFTP
	SFTP

	Secure FTP
	Secure FTP

	SSH
	SSH
	SSH

	Secure Shell
	Secure Shell

	TB
	TB
	TB

	Terabytes
	Terabytes

	TCP
	TCP
	TCP

	Transmission Control Protocol
	Transmission Control Protocol

	VM
	VM
	VM
	VM

	Virtual Machine
	Virtual Machine

	WAN
	WAN
	WAN

	Wide Area Network
	Wide Area Network

	
	NOTICE
	
	This software (or technical data) was produced for the U. S. Government and is subject to the Rights in Data-General Clause 52.227-14, Alt. IV (May 2014) – Alternative IV (Dec 2007)
	
	© 2021 The MITRE Corporation.

