This paper presents an analysis of the performance impact of scaling present-day micrometer-scale, charge-storing random-access memory (RAM) down to the scale of proposed molecular electronic memory.

On the Scaling of Electronic Charge-Storing Memory Down to the Size of Molecules
Download Resources
PDF Accessibility
One or more of the PDF files on this page fall under E202.2 Legacy Exceptions and may not be completely accessible. You may request an accessible version of a PDF using the form on the Contact Us page.
This paper presents an analysis of the performance impact of scaling present-day micrometer-scale, charge-storing random-access memory (RAM) down to the scale of proposed molecular electronic memory. As a part of this analysis, the likely performance is determined for arrays of molecular-scale memory 10,000 to 100,000 times denser than present-day memory. A combination of classical and quantum mechanical methods are employed to calculate the properties of nanometer-scale devices and memory systems. These calculations suggest that quantum mechanics and other small-scale effects should decrease the capacitance and increase the resistance of molecular-scale circuit components. However, these trends are not pronounced enough to prevent the operation of charge-storing memory on that scale. Some forms of molecular-scale memory built entirely from existing nanometer-scale devices should be able to function nearly as fast as present-day memory.